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Abstract

The stochastic error distance (SED) representation of the mean absolute error and

its weighted versions have been introduced recently. The SED facilitates establishing
connections between ranking forecasts by the mean absolute error, the error variance,

and error entropy. We introduce the representation of the mean residual absolute error
(MRAE) function as a new weighted SED which includes a tolerance threshold for

forecast error. Conditions for this measure to rank the forecasts equivalently with
Shannon entropy are given. The global risk of this measure over all thresholds is the

survival information risk (SIR) of the absolute error. The SED, MRAE, and SIR are
illustrated for various error distributions and comparing empirical regression and times

series forecast models.

Keywords: Convex order; dispersive order; entropy; forecast error; mean absolute
error; mean residual function; survival function.

1 Introduction

Forecast distributions are usually evaluated according to the risk functions defined by ex-
pected values of various loss functions. The most commonly-used risk functions are mean
squared error and the mean absolute error (MAE). Recently, Diebold and Shin (2014, 2015)
introduced an interesting representation of the MAE in terms of the following L1 norm:

SED(F, F0) =
∫ ∞

−∞
|F (e)− F0(e)|de

= E(|e|)
= MAE(e),

(1)

where SED(·, ·) stands for “stochastic error distance”, F (e) is the probability distribution
of the forecast error and

F0(e) =

{

0, e < 0
1, e ≥ 0

is the distribution of the ideal error-free forecast. Let ek be the forecast error with distribution
Fk, k = 1, 2. Clearly e1 is preferred to e2 when SED(F1, F0) ≤ SED(F2, F0), which will be
denoted as e1 ≤sed e2.
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Diebold and Shin (2015) also defined weighted and more general versions of SED(F, F0)
in the following form:

SEDp,w(F, F0) =
∫ ∞

−∞
|F (e)− F0(e)|pw(e)de, (2)

where p > 0 and w(e) is a weight function. Diebold and Shin (2014) noted that the Cramér-
von Mises divergence is SED2,f (F, F0), where f is the probability density function (PDF)
of F . They explored the connection between SED2,1(F, F0) and Cramér distance and noted
a connection between SED and the Kolmogorov-Smirnov distance. They also noted that
the Kullback-Leibler information divergence does not fit in the SED framework. Through
an example, they illustrated that the mean squared error does not always fit in the SED
framework.

This paper continues this line of research, via two objectives. Our first objective is to
connect ranking forecasts by SED to the rankings by forecast variance and the Shannon
entropy. This will be accomplished through a stronger variation ordering, known as the
dispersive order and convex order. This exploration can be considered as continuation of
Ebrahimi, Maasoumi, and Soofi (1999) who established conditions for the equivalence of
entropy and variance orderings of probability distributions.

Our second objective is to offer the SED formulation of the mean residual absolute error
(MRAE) function as a generalization of the MAE. This is accomplished by introducing a
version of (2) which includes a forecast error tolerance threshold and provides a dynamic
generalization of SED(F, F0). This formulation also identifies sufficient conditions for the
forecast errors such that the weighted SED ranks forecasts similarly to the Shannon entropy
of the forecasts. For a given tolerance threshold, the weighted SED(F, F0) is a local risk
function. Its global risk is found through averaging by the distribution of the threshold. This
expedition leads us to a risk function which is an information measure, known as cumulative
residual entropy (Rao et al. 2004), survival entropy (Zografos and Nadarajah 2005), and the
entropy functional of the survival function (Asadi et al., 2014). The SED(F, F0) framework
reveals that this measure is an information measure, hence we call it the survival information
risk (SIR). Estimates of the SIR provide criteria for ranking forecast models. We compute an
estimate based on the empirical survival function and illustrates its applications via ranking
regression and some time series forecast models. These explorations are continuation of
the works by several authors who have shown usefulness of reliability notions for economic
problems; see Ebrahimi et al. (2014) and references therein.

Section 2 gives some sufficient conditions for the equivalence of ranking forecasts by SED
and by entropy and variance. Section 3 shows the representation of MRAE a new weighted
SED and gives some sufficient conditions for the equivalence of ranking forecasts by MRAE
and the entropy. Section 4 presents the SIR as the global risk of MRAE. Section 5 illustrates
empirical applications of SED, MRAE, and SIR to evaluation of regression and time series
models.
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2 SED, Variance, and Entropy

The error variance will be denoted by V (e) = E(e− E(e))2 and Shannon entropy of e with
probability density function (PDF) f is defined by

H(e) = H(f) = −
∫ ∞

−∞
f(e) log f(e)de,

provided that the integral is finite. The orderings of forecast distributions by SED, variance,
and entropy can be connected through two stronger dispersion orderings of random variables
(distributions) defined as follows.

Definition 1 Let ek, k = 1, 2 denote forecast errors with distributions Fk, k = 1, 2.

(a) The forecast error e1 is smaller than another forecast error e2 in dispersive order,
denoted as e1 ≤disp e2, if

F−1
1 (β) − F−1

1 (α) ≤ F−1
2 (β) − F−1

2 (α), for all 0 < α < β < 1,

where F−1
k (α) = sup{e : F−1

k (e) ≤ α} is the αth quantile.

(b) The forecast errors e1 is smaller than another forecast error e2 in convex order, denoted
as e1 ≤cx e2, if E[φ(e1)] ≤ E[φ(e2)] for all convex functions φ : < → <.

The dispersive order e1 ≤disp e2 implies that V (e1) ≤ V (e2), H(e1) ≤ H(e2), and E|e1 −
E(e1)| ≤ E|e2 − E(e2)|; (see Oja 1981). Thus, under dispersive order, MAE, variance, and
entropy rank forecast equally biased forecasts similarly.

It is easy to verify convex order. Let SC(h) be the number of sign changes of function
h. Then e1 ≤cx e2 and any of the following conditions hold:

(a) SC(f2 − f1) = 2 and the sign sequence is +,-,+.

(b) SC(F2 − F1) = 1 and the sign sequence is +,-.

See Shaked and Shanthikumar (2007) for details.
The following Proposition provides implications of the convex order for the equivalence

ranking of forecasts by SED, variance, and entropy.

Proposition 1 Let ek be forecast error with distribution Fk, k = 1, 2.

(a) If e1 ≤cx e2, then e1 ≤sed e2.

(b) If e1 ≤cx e2, then e1 ≤sed e2 ⇐⇒ V (e1) ≤ V (e2).

(c) If e1 ≤cx e2 and f2 is log-concave, then e1 ≤sed e2 ⇐⇒ H(e1) ≤ H(e2).
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Proof. (a) The convex order, e1 ≤cx e2 is represented by the following two integral relation-
ships:

∫ b

−∞
F1(u)du ≤

∫ b

−∞
F2(u)du for all b, (3)

∫ ∞

b
(1 − F1(u))du ≤

∫ ∞

b
(1 − F2(u))du for all b; (4)

(Shaked and Shanthikumar 2007). Summing up (3) and (4) with b = 0 we obtain

SED(F1, F0) =
∫ 0

−∞
F1(u)du+

∫ ∞

0
(1 − F1(u))du

≤
∫ 0

−∞
F2(u)du+

∫ ∞

0
(1 − F2(u))du = SED(F2, F0).

(b) This result is obtained from part (a) and the known result e1 ≤cx e2 =⇒ V (e1) ≤ V (e2).
(c) This result is obtained from part (a) and the following result. If e1 ≤cx e2 and the PDF
of e2 is log-concave, then H(e1) ≤ H(e2) (Yu 1988).

From parts (b) and (c) of Proposition 1 we have the following Corollary.

Corollary 1 If e1 ≤cx e2 and f2 is log-concave, then the MAE, variance, and entropy rank
forecasts similarly.

The inequality (3) is equivalent to an ordering referred to as the increasing concave
order which with strict inequality at some b gives the second order stochastic dominance.
The inequality (4) is equivalent to an ordering referred to as the increasing convex order.
Each of these two orderings is weaker than and implied by the usual (first order) stochastic
dominance. However, when E(X1) = E(X2), then X1 ≤cx X2 if and only if one of the two
relationships, (3) or (4), holds. Therefore, neither (3) nor (4) alone is sufficient for ranking
the forecasts by SED(F, F0).

The dispersive order and/or convex order with log-concavity are sufficient, but not nec-
essary for the similar rankings of the MAE, variance, and entropy. We illustrate this fact
using two families of error distributions.

Both families considered include the normal model N(µ, σ2). For unbiased (and equally
biased forecasts), the forecast errors are dispersive ordered and convex ordered by the σ2,
and the PDF is log-concave. Thus the three measures rank the family similarly. For example
for unbiased forecasts we have:

f(e) =
1√
2πσ

e
−

1

2σ2
e2

, Dispersive and convex ordered by σ2 ↑,

where ↑ indicates the increasing order. The expressions for the three measures are well-known
and order the family as follows:

MAE(e) = σ

√

2

π
↑, V (e) = σ2 ↑, H(e) =

1

2
+

1

2
log(2πσ2) ↑ .
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Figure 1: MAE, variance, and entropy of the Student-t and Generalized Error Families.

2.1 Student-t Family

Consider the Student-t error model t(µ, σ, ν), where ν is the degrees of freedom. For a given
ν, the errors are ordered by the scale parameter as in the case of normal errors. For given µ
and σ, the errors are dispersive and convex ordered by the degrees of freedom. For example,
for t(0, 1, ν) we have:

f(e) = Cν

(

1 +
e2

ν

)−
ν + 1

2
, Dispersive and convex ordered by ν ↓,

where Cν =
Γ(ν/2 + 1/2)√
νπΓ(ν/2)

is the normalizing factor. The PDF is not log-concave for all ν, so

parts (a) and (b) of Proposition 1 are applicable, but part (c) is not applicable to the entire
family. However, due to the dispersive order, the three measures order the family similarly.
These measures order the family as follows: Therefore,

MAE(e) =
2νCν

ν − 1
, ν > 1 ↓, V (e) =

ν

ν − 2
, ν > 2 ↓,

H(e) = − logCν +
ν + 1

2

[

ψ
(

ν + 1

2

)

− ψ
(

ν

2

)]

↓,

where ψ(·) is digamma function. The expressions for the variance and entropy of the t
distribution are well-known. The expression for the MAE is the mean of folded-t given by
Psarakis and Panaretos (1990). Note that for ν = 1 the SED is not applicable and for ν = 2,
the variance is not defined, however the SED is applicable.

2.2 Generalized Error Family

This example illustrates that the dispersive and convex orders are sufficient, but not necessary
for SED, variance, and entropy order forecasts similarly. The Generalized Error family
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GE(µ, σ, β), also known as the exponential power distribution family, and the PDF in the
following form:

f(e) =
β

2σΓ(1/β)
e−|(e−µ)/σ|β , β > 0.

This distribution is the maximum entropy error model subject to the moment condition
E|(e− µ)/σ|β . Specific cases include the Laplace distribution for β = 1 and N(µ, σ2/2) for
β = 2. For a given β, the errors are ordered by the scale parameter as in the case of normal
errors. For the unbiased forecasts with equal scale parameters of the errors, the family is
convex ordered by β ↓ when, β ≤ 2 and when β1 < 2, β2 ≥ 2. The PDF is log-concave
for β ≥ 1. It can also be shown that the family is not dispersive ordered by β. Yet for
given µ and σ, and all β > 0, the MAE, variance, and entropy order forecasts similarly. The
expressions for the variance and entropy are known. The expression for the MAE can be
obtained by noting that the distribution of |e| is a generalized gamma with shape parameters
1/β and β and scale parameter σ. For example, for GE(0, 1, β) we have:

MAE(e) =
Γ(2/β)

Γ(1/β)
, β > 0 ↓, V (e) =

Γ(3/β)

Γ(1/β)
, β > 0 ↓,

H(e) =
1

β
+ log

2Γ(1/β)

β
, β > 0 ↓ .

Figure 1 shows the plots of the three measures for the t family (left panel) and for the
GE family (right panel). Because ν and β determine thickness of the tails, the plots show
similar patterns for the two families.

3 SED With Tolerance Threshold

Consider the weighted SED (2) with p = 1 and

wτ (e) =











0, |e| ≤ τ
1

P (|e| > τ )
, |e| > τ,

(5)

where τ is the error tolerance threshold. The forecast errors whose magnitudes are less than
τ are negligible.

Using (5) in (2) gives the following weighted SED:

WSEDτ (F, F0) =
∫ ∞

−∞
|F (e)− F0(e)|wτ(e)de

=
1

P (|e| > τ )

[
∫ −τ

−∞
|F (e)− F0(e)|de+

∫ ∞

τ
|F (e)− F0(e)|de

]

=
1

P (|e| > τ )

[
∫ −τ

−∞
F (e)de+

∫ ∞

τ
S(e)de

]

=
1

P (|e| > τ )
E(e− τ )1(|e| > τ )

= MRAE(τ ),
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where 1(A) is the indicator function of set A and MRAE(τ ) is the mean residual function
of |e| with the following representations:

MRAE(τ ) = E(|e| − τ
∣

∣

∣ |e| > τ ) (6)

=

∫ ∞

τ
S|e|(|e|)d|e|
S|e|(τ )

(7)

=
E(|e|)−

∫ τ

0
S|e|(|e|)d|e|

S|e|(τ )
, (8)

where S|e| denotes the survival function. See Poynor (2010) for an exposition of the mean
residual function.

MRAE(τ ) is the dynamic generalization of the MAE,MRAE(0) = E(|e|), henceWSEDτ (F, F0)
is the dynamic generalization of SED(F, F0); clearly, WSED0(F, F0) = SED(F, F0). For a

given τ ≥ 0,WSEDτ (F, F0) is the risk of the loss function L(e) = |e| − τ
∣

∣

∣ |e| > τ according
to which forecasts with error magnitudes below threshold τ are not penalized.

The mean residual functions of distributions can be monotone (decreasing or increasing)
or non-monotone. For representation of WSEDτ (F, F0), the monotone model of a bounded
PDF is meaningful. We give two examples.

Example 1 Consider the normal error model fe = N(0, σ2). The distribution of absolute
error |e| is half-normal (folded-normal) at zero and the mean residual function is given by

MRAE(τ ) =
σ
√

2
π
e−

τ2

2σ2

1 − 2(Φ(τ/σ) − .5)
− τ, τ ≥ 0,

where Φ(·) is the standard normal CDF. Figure 2 shows plots of MRAE(τ ) and corre-
sponding plots of PDF and CDF for two normal error models with σ = 1, 2. The CDF
plot also includes the error distribution of the prefect forecast F0. The total area between
F0 and F gives the SED(F : F0) = E(|e|), which graphically display that N(0, 1) is pre-
ferred to N(0, 4). For the normal models MRAE(τ ) is decreasing, which implies that the
more tolerance is allowed, the lower will be the loss. Hence the MAE is the maximum loss,
WSEDτ (F, F0) ≤ SED(F, F0) for all τ ≥ 0.

The mean residual function uniquely determines the distribution and provides a measure
for ranking random variables. That is, for the nonnegative random variable |e|,

S|e|(x) =
MRAE(0)

MRAE(τ )
exp

{

−
∫ x

0

1

MRAE(τ )
d|e|

}

.

The following example illustrates a well-known case.

Example 2 Let MRAE(τ ) = Aτ + B, A > −1, B > 0. Oakes and Dasu (1990) showed
that the survival function corresponding to the linear MR is

S(|e|) =

(

B

A|e|+B

)
1
A

+1

, |e| ≥ 0. (9)
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Figure 2: Plots of the mean residual absolute error and corresponding plots of PDF and
CDF for two normal error models.

This is the survival function of the Generalized Pareto (GP) distribution, which includes
three distributions.

(a) For A = B > 0, (9) is the survival function of Pareto Type II distribution with PDF
usually parameterized in terms of tail index as follows:

fα(|e|) =
α

(1 + |e|)α
, |e| ≥ 0, α =

1

A
+ 1 > 1.

The mean residual function is

MRAE(τ ) =
τ + 1

α − 1
, α > 1.

The left panel of Figure 3 shows the WSEDτ (F, F0) for A = 1, 2(α = 2, 1.5). The other
two panels of Figure 3 show the PDF (middle panel) of the corresponding Double Pareto
error distributions for α = 1.5, 2 and their distribution functions along with F0 (right
panel). For the Pareto models MRAE(τ ) is increasing, which implies that the more
tolerance is allowed, the higher will be the loss. Hence the MAE is the minimum loss,
WSEDτ (F, F0) ≥ SED(F, F0) for all τ ≥ 0. We also should note that the variance is
defined when α > 2, so the errors having these distributions cannot be compared by
the variance. However, the entropy is defined for these distributions and orders them
similarly.

(b) For A = 0, MRAE(τ ) = B and (9) is the survival function of the exponential distri-
bution and the error distribution is Laplace.

(c) For −1 < A < 0, (9) is the survival function of a Beta distribution with unbounded
PDF, which is not a suitable model for |e|.
In general, MRAE(τ ) is not available in a closed form. However, like the mean residual

order of random variables, WSEDτ(F, F0) provides a stochastic distance for comparison
of forecasts, denoted as e1 ≤mrae e2. The results available for the mean residual order
are applicable to ranking forecasts by SED(F, F0). The mean residual order can be easily
verified by the following stronger orderings.
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Figure 3: Linear mean residual function for absolute error and corresponding plots of PDF
and CDF for two Double Pareto error distributions.

Definition 2 Consider two nonnegative random variables Xk, k = 1, 2 with distributions

PDF fk and hazard functions λk =
fk(x)

Sk(x)
.

(a) X1 is smaller than X2 in likelihood ratio order, denoted as X1 ≤lr X2, if f1(x)
f2(x)

is
decreasing in x over the union of the supports of F1 and F2.

(b) X1 is smaller than X2 in hazard order, denoted as X1 ≤hr X2, if λ1 ≥ λ2.

The likelihood ratio order implies the hazard order and hazard order implies the mean
residual order; see Shaked and Shanthikumar (2007) for details. The hazard rate order and
a monotone PDF condition implies ordering by the Shannon entropy (Asadi et al. 2004).
Thus we have the following result.

Proposition 2 Let ek, k = 1, 2 be two forecast errors. If |e1| ≤hr |e2| and f(|e2|) is decreas-
ing, then e1 ≤mrae e2 ⇐⇒ H(e1) ≤ H(e2).

The assumption of decreasing density for |e| is quite reasonable for the unbiased forecasts.
For example, Proposition 2 applies when the distribution of |e| is half-normal, exponential,
and Pareto with tail index larger than one.

4 Survival Information Risk

As a risk function, WSEDτ(F, F0) is conditional on the threshold. That is, for each τ ≥
0,WSEDτ (F, F0) is a local measure. The global risk of WSEDτ (F, F0) over τ ≥ 0 gives the
following measure:

E[WSEDτ(F, F0)] =
∫ ∞

0
WSEDτ (F, F0)f|e|(τ )dτ

= E[MRAE(τ )]

= SIR(|e|), (10)
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where
SIR(|e|) = h(S|e|) = −

∫ ∞

0
S|e|(τ ) logS|e|(τ )dτ ≥ 0. (11)

The inequality becomes equality if and only if F (e) = F0(e) almost everywhere. Proof of the
nonnegativeness of h(S|e|) is given by Rao et al. (2004) and proof of (10) is given by Asadi
and Zohrevand (2007).

The measure (11) is a well-known measure. Rao et al. (2004) introduced (11) as “a new
measure of information” and as “an alternative measure of uncertainty in a random variable”
to the Shannon entropy. They called it the cumulative residual entropy and illustrated that
this measure is useful for applications in image processing. Zografos and Nadarajah (2005)
studied extensions of (11) in terms of analogs of some generalizations of Shannon entropy
which were referred to as the Survival Exponential Entropies. Asadi et al. (2014) referred
to (11) as the entropy functional of the survival function because of its functional similarity
to (??) but with an important conceptual distinction between the two measures. The global
maximum of Shannon entropy in the discrete and continuous cases is the uniform (rectangu-
lar) PDF. This makes H(f) a measure of uncertainty in terms of the lack of concentration
of f . But h(S) is a nonnegative concave function of S and its global maximum is attained
by a rectangular survival function, a characterization of a degenerate distribution. However,
h(S) = h(1 − F ) is a nonnegative convex function of F and the degenerate distribution F0

is its global minimum. Thus, contrary to its functional similarity to the Shannon entropy
which is a measure of divergence of F from the least concentrated distribution, h(S) is a
measure of divergence of F from the most concentrated distribution, F0. Hence, h(S) is an
information measure, hereafter referred to as the survival information risk.

The following Example illustrates SIR(|e|).

Example 3 Consider the case of Example 2. The global risk of WSEDτ (F, F0) for the
Pareto model is given by

SIR(|e|) = αE2(|e|) =
α

(α− 1)2
, α =

1

A
+ 1 > 1.
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Figure 4 shows the plots of SIR(|e|) and the MAE of the Pareto model for |e|. It is seen that
both measures are decreasing functions of the tail index parameter and SIR(|e|) dominates
the MAE.

5 Empirical SED, MRAE, and SIR

Sample versions of SED, MRAE, and SIR provide criteria for evaluating empirical forecast
models. Consider a sample of forecast errors e1, · · · , en which are distributed according to F
with a finite mean. There is no other restriction on F . This requirement is also important
for estimating F in the representation (1) of E(|e|) by the sample version

MAEn =
1

n

n
∑

i=1

|ei|.

The the sample version of MRAE is defined by the empirical estimate of (7):

MRAEn(τ ) =

∫ ∞

τ
Ŝ(u)du

Ŝ(|e|)
· 1(Ŝ(|e|) > 0),

where

Ŝ(|e|) =
1

n

n
∑

i=1

1(|ei| > |e|)

is the empirical survival function. The the sample version of SIR is given by using the
empirical survival function (11):

SIRn = h(Sn) = −
∫ ∞

0
Ŝ(|e|) log Ŝ(|e|)d|e|

= −
n
∑

i=1

∫ |e(i)|

|e(i−1) |
Ŝ(|e|) log Ŝ(|e|)d|e|

= −
n
∑

i=1

(|e(i)| − |e(i−1)|)
(

1 − i

n

)

log
(

1 − i

n

)

,

where 0 = |e(0)| < |e(1)| < · · · < |e(n)| are the ordered absolute errors. The empirical
estimator of MRAE is uniformly strong consistent (Yang 1978, Lemma 2) and SIRn is
almost surely consistent (Rao et al., 2004, Theorem 9).

Next we illustrate applications of MAEn,MRAEn and SIRn.

5.1 Regression Forecasting

This example uses a subset of variables chosen from the Stock Liquidity data described in
Frees (1996, p. 263). The variables chosen for the purpose of illustration are as follows. The
trading volume for a three month period in millions shares (Y ) to be predicted by the price
(X1), the number of shares outstanding at the end of the three month period in millions
(X2), and the market value in billion dollars (X3).
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Figure 5: MRAEn of three regression models for financial data.

We compare the top three subsets of predictors selected by AIC or BIC. The forecast
errors are found by leave-one-out cross-validation forecast ỹ(i) of the deleted observation yi.
The raw residuals ei = yi − ỹ(i), i = 1, · · · , n have different variances, so we use Studentized
residuals given by

sei =
ei

s(ei)
.

Table 1 list the subsets of predictors. The left panel of Figure 5 shows histogram of sei

for the full model X1, X2, X3 (the histograms for the other two models were similar, thus
are not shown). The right panel of Figure 5 shows the MRAEn plots of the three regression
models with τ ≤ .5 (the scale of thresholds is standard deviation). These plots are produced
based on between n = 123 observations at τ = 0 (full sample) and at least 63 observations
at τ = .5. The plots indicate decreasing patterns, where none of the models uniformly
dominates another model. For τ > .12, the best model according to the MAEn (X1, X2)
loses to the second best model (X2) and for τ > .25, the best model becomes the worse.

Table 1 shows MAEn and SIRn for the three models. The numbers in the parentheses
indicate the top three choices according to each criteria. In this example, MAEn and SIRn

rank the models differently. For all three models MAEn < SIRn.
The following example illustrates MAEn,MRAEn and SIRn of time series forcasts.

Table 1: SIRn,MAEn forecasting loss of regression models selected by AIC and BIC.

Models selected by Forecast assessment
Subset AIC BIC MAEn SIRn

X2 470.8 (3) 476.4 (1) .751 (1) .652 (3)
X2, X3 468.0 (1) 476.5 (2) .789 (3) .625 (2)
X1, X2, X3 468.6 (2) 479.8 (3) .756 (2) .624 (1)

12



5.2 Time Series Forecasting

We illustrate applications to three univariate time series.

5.2.1 U.S. Inflation

The left column of Figure 6 pertains to the U.S. monthly inflation from January 1947 to
December 2014 at an annual rate calculated by yt = 1200 ln(Pt/Pt−1), where P is the price
index. The series consists of 815 observations. The upper-left panel shows the sequence plot
of the data. We considered two models for the entire series: ARIMA(5,1,5) identified as
the optimal model by an R program which first tests for the unit root and then selects the
model using AIC (Hyndman and Khandakar 2008), and the random walk with drift drawn
from the literature. We then used data from January 1947 to December 1999 for estimation
and produced rolling sample one-step ahead forecasting for January 2000 to December 2014.
This procedure provided 635 observations for estimation and 180 forecasts. The histogram
of the standardized forecast errors of the ARIMA(5,1,5) is shown Figure 6. The lower left
panel of Figure 6 shows the plots of MRAEn for the two models for τ ≤ .5. These plots
show that neither of the two models uniformly dominates the other. For τ < .4, the ARIMA
model dominates the random walk and τ > .4 the dominance is reversed.

5.2.2 Chemical Process Concentration

The middle column of Figure 6 pertains to a chemical process concentration labeled by
Box, Jenkins, and Reinsel (1994) as Series A. The series consists of 197 observations. We
considered three models for the entire series: ARIMA(1,1,1) identified as the optimal model
by an R program as descried above, and two models ARIMA(0,1,1) and ARIMA(1,0,1) used
by Box, Jenkins, and Reinsel (1994). We the used the first 80 observations for estimation
and produced rolling sample 117 one-step ahead forecast. The histogram of the standardized
forecast errors of the ARIMA(0,1,1) is shown Figure 6. (The histograms for the other two
models were similar, hence not shown here). The lower middle panel of Figure 6 shows the
plots of MRAEn for the three models for τ ≤ .5. The ARIMA(1,0,1) uniformly dominates
the ARIMA(1,1,1) in this range of tolerance thresholds. However, the plot of ARIMA(0,1,1)
crosses the plots for the other two models.

5.2.3 Chemical Process Temperature

The left column of Figure 6 pertains to a chemical process temperature labeled by Box,
Jenkins, and Reinsel (1994) as Series C. The series consists of 225 observations. We con-
sidered three models for the entire series: ARIMA(2,0,0) identified as the optimal model by
an R program as descried above, and two models ARIMA(1,1,0) and ARIMA(0,2,2) used
by Box, Jenkins, and Reinsel (1994). Note that ARIMA(2,0,0) is the AIC optimal among
ARIMA(p,0,q) because the unit root test concluded stationarity. We the used the first 80
observations for estimation and produced rolling sample 145 one-step ahead forecast. The
histogram of the standardized forecast errors of the ARIMA(0,2,2) is shown Figure 6. (The
histograms for the other two models were similar, hence not shown here). The lower left
panel of Figure 6 shows the plots of MRAEn for the three models for τ ≤ .5. The plots for
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Figure 6: Sequence plots of U.S. Inflation rate and two chemical processes measurements,
sequence plots and histograms of the forecast errors of the optimal models, and MRAE plots
of the optimal models and random walk.

ARIMA(2,0,0) and ARIMA(0,2,2) are similar and flat in this range of tolerance thresholds.
However, the plot of ARIMA(1,1,0) is linealy decreasing and crosses the plots for the other
two models.

Table 2 summarizes the forecasting results in terms MAEn and SIRn. We note that
these measures rank the models differently. The ranks given by MAEn are similar to the
ranks given by AIC, whereas, the ranks given by SIRn are quite different, illustrating that
tolerance for small forecast errors makes a difference.
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Table 2: Forecast error measures of models for three time series

AIC MAEn SIRn

U.S. Inflation
ARIMA(5,1,5) 4039.09(1) 0.683(1) 0.708(2)
Random Walk 4509.06(2) 0.730(2) 0.675(1)

Chemical Process Concentration

ARIMA(1,1,1) 108.74(1) 0.743(1) 0.647(3)
ARIMA(0,1,1) 111.02(3) 0.767(2) 0.615(2)

ARIMA(1,0,1) 109.49(2) 0.822(3) 0.568(1)

Chemical Process Temperature
ARIMA(2,0,0) -256.94(2) 0.705(2) 0.739(3)

ARIMA(1,1,0) -259.34(1) 0.703(1) 0.732(2)
ARIMA(0,2,2) -240.80(3) 0.726(3) 0.721(1)
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