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Fixed-effects methods have become increasingly popular in the analysis of longitudinal

data for one powerful reason:  they make it possible to control for all stable characteristics of the

individual, even if those characteristics cannot be measured.  Fixed-effects methods are now

readily available for linear models (Greene 1990), logistic regression models (Chamberlain

1980), and Poisson regression models (Cameron and Trivedi 1998).  For event history analysis, a

fixed-effects version of Cox regression (partial likelihood) is available for data in which repeated

events are observed for each individual (Chamberlain 1985, Yamaguchi 1986, Allison 1996).

But fixed-effects Cox regression is not feasible when each individual experiences no more than

one event.

In this paper, we explore fixed-effects methods for non-repeated events using conditional

logistic regression on discrete-time data.  There are several peculiar features of non-repeated

event data that make a conventional fixed-effects approach problematic.  As we shall see, no

method works well for covariates that change monotonically with time (unless they are

transformed into non-monotonic functions)  For covariates that are not monotonic with time, one

approach works well when covariates are uncorrelated with time, but is badly biased otherwise.

Another method works well for covariates that are correlated with time, but only when the

covariate is dichotomous, a situation that may find many applications.
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AN EXAMPLE

To make things concrete, we shall consider these issues in the context of an empirical

example.  Consider the following question: Does the death of a wife increase the hazard for the

death of her husband?  We have data on 49,990 married couples in which both spouses were

alive and at least 68 years old on January 1, 1993.1  Death dates for both spouses are available

through May 30, 1994.  During that 17-month interval, there were 5,769 deaths of the husband

and 1,918 deaths of the wife.

Given data like these, how can we answer our question?  One straightforward approach is

to do a Cox regression for husband’s death with wife’s vital status as a time-varying covariate.

More specifically, let ti be the husband’s time of death for couple i, in days since the origin

(January 1, 1993).  If a death is not observed, then ti is the censoring time (515 days). Let Wi(t) be

a time-varying covariate coded 1 if the wife is alive at time t and 0 otherwise.  We postulate a

proportional hazards model

iii XtWtth δβα ++= )()()(log (1)

where hi(t) is the hazard for husband’s death at time t for couple i, α(t) is an unspecified function

of time, and Xi is a vector of fixed covariates for couple i.  We then estimate the model using

standard partial likelihood software.

Estimates for one such model are shown in the first two columns of Table 1.  Black is a

dummy variable coded 1 for black race, otherwise 0.  Age is the age in years at the origin. Illness

burden is scale based on medical records for the three years prior to the start of observation. The

observed values range from 0 to 15.  We see that the hazard of death for blacks is approximately

7 percent higher than for other races, but the effect is not statistically significant.  On the other

hand, there is a highly significant coefficient for age, with each year of age being associated with
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an 8 percent increase in the hazard.  Each 1-point increase in illness burden is associated with a

35 percent increase in the hazard. There is, however, no evidence for an effect of wife’s death on

husband’s hazard of death.

One possible explanation for the null effect of wife’s death is that any such effect may be

only last for a limited period of time.  To investigate this possibility, we estimated a second

model in which the time-dependent covariate for wife’s vital status was coded 1 if the wife had

died within the previous 30 days otherwise 0.  Results in the last two columns of Table 1 offer

modest support for this hypothesis.  The hazard for husband’s death is about 47 percent higher

during the 30 day period after wife’s death, with a p-value of .07.

Table 1.  Cox Regression Estimates for Models Predicting the Hazard of
Husband’s Death

Covariate
Hazard
Ratio p-value

Hazard
Ratio p-value

Black 1.07 .22 1.07 .23
Age 1.08 <.0001 1.08 <.0001
Illness burden 1.35 <.0001 1.35 <.0001
Wife Dead 1.02 .86 -- --
Wife Died
w/in 30 days

-- --
1.47 .07

Would we be justified in interpreting the hazard ratio for wife’s death within 30 days as

representing a causal relationship?  An obvious objection is that these models omit many

variables that are common to husbands and wives, or at least highly correlated, and which also

have an impact on mortality.  Possibilities include income, education, dietary habits, exercise

patterns, smoking behavior and drinking behavior.  The omission of these variables could

produce a spurious relationship between wife’s death and husband’s death.  So it would be

desirable to find a way to reduce or eliminate such biases.  Putting additional appropriate

variables into the model would be helpful, but such variables are not always available.
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THE CASE-CROSSOVER METHOD

In the absence of additional measured control variables, let’s consider a fixed-effects

approach in which each couple is compared with itself at different points in time, thereby

controlling for all time-invariant variables.  One way of doing this is the case-crossover design,

which has been recently developed in the epidemiological literature (Maclure 1991, Marshall and

Jackson 1993, Greenland 1996).  In its basic form, the case-crossover design says to choose a

sample of individuals who have experienced events, and record the values of their covariates at

the time of the event.  Then choose some previous point in time when the event did not occur (a

“control” period), and record the values of the covariates for the same individuals at that time.

The data are analyzed by doing a matched-pair conditional logistic regression predicting whether

or not the event occurred.  A critical issue is how to choose the “control period” in order to

minimize bias.  More complicated forms of the design involve drawing more than one control

period for each event.  While this can improve statistical efficiency, it is unclear how to do this in

an optimal fashion (Mittleman, Maclure and Robins 1995).

 For our mortality data, we extend the case-crossover design by using information from all

observed periods prior to the husband’s death.  Taking a discrete-time approach (Allison 1982),

we treat each day as a distinct unit of analysis. Suppose that a husband died on day 78.  We then

ask the question: Given that he died, why did he die on this day and not on one of the preceding

77 days? Was there something different about those days compared with the day on which he

died?  As in the usual case-crossover design, we answer this question by way of conditional

logistic regression.

Let pit be the probability that the husband in couple i dies on day t, given that he’s still

alive at the beginning of that day. Let Wit be an indicator of wife’s vital status on day t. For
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example, we could let Wit be 1 if the wife was dead on day t, otherwise 0. Alternatively, we could

let Wit be 1 if her death occurred within, say, 60 days prior to day t, otherwise 0.  We postulate

the following logistic regression model
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where γt represents an unspecified dependence on time and αi represents the effects of all

unmeasured variables that are specific to each couple but constant over time.  Note that no time-

invariant covariates are included in the model as their effects are absorbed into the αi term.

We estimate the model by conditional maximum likelihood, thereby eliminating the αi’s

from the estimating equations. For couples in which the husband died, a separate observation is

created for each day that he is observed, from the origin until the day of death. For each day, the

dependent variable Yit is coded 0 if the husband remains alive on that day, and coded 1 if the

husband died on that day.  Thus, a man who died on June 1, 1993, would contribute 152 person-

days; 151 of those would have a value of 0 on Yit, while the last would have a value of 1.  The

wife’s vital status is coded 1 if she was dead on the given day, otherwise 0.  For a different

representation of wife’s vital status, the variable is coded 1 if her death occurred within, say, 60

days prior to the given day, otherwise 0.

All couples in which the husband did not die can be deleted from the sample.  If the

husband is alive on every day of observation, there is no within-couple variation on the

dependent variable, and hence no information is contributed to the likelihood function.  After

deleting couples with no husband deaths, the likelihood function has the following form:
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In this equation, i runs over all couples whose husband died, and T represents the final day of

observation, that is, the day on which the husband died.  Notice that αi has been factored out of

likelihood.

 This likelihood function is identical in form to the stratified partial likelihood for a Cox

proportional hazards model.  Hence, the model may be estimated by any Cox regression program

that allows for stratification.  (For our analyses we used the SAS procedure PHREG.)

With a separate parameter for every day of observation, the model in equation (2) is too

general for estimation.  So we consider only models which impose some restrictions on γt.  We

begin by setting γt = 0, that is, no variation over time in the likelihood of a death. Because the

observation period covers only 17 months, this is not an unreasonable assumption.

It so happens that couples who have no variation on the covariates over time can also be

deleted from the sample because they contribute nothing to the likelihood.  In our case of a single

dichotomous covariate (wife’s death), we delete any couple whose wife did not die before the

husband.  Of the 5,769 couples in which the husband died, there were only 126 cases in which

the wife’s death preceded the husband’s in this 17-month interval.  So our usable set of couples

declines from 49,990 to 126, a rather drastic reduction by any standard.  These 126 couples

contributed a total of 39,942 couple-days.

RESULTS FOR COUPLE MORTALITY DATA

We first attempted to estimate a model in which Wit was coded 1 for wife dead on day t

otherwise 0.  However, this model did not converge.  The reason can be seen in Table 2.  If the
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husband is dead (on the final day of the sequence), the wife is necessarily dead and there is a 0

frequency count in one cell of the contingency table.  (Remember that conditional likelihood

necessarily restricts the sample to couples where the husband dies and the wife dies before the

husband).  This will also be true in every couple-specific subtable.  As is well known, the log-

odds ratio for a 2 × 2 table is not defined when there is a zero in the any of the cells.

Table 2.  Cross-Classification of Husband Dead by Wife Dead, 39992 Person-Days

Wife Alive Wife Dead
Husband
Dead 0 126
Husband
Alive 19344 20472

In general, convergence problems arise whenever the time-varying covariate can only

change monotonically with time.  In our case, the dummy variable for wife dead can change

from 0 to 1 over time but stays at 1 until the end of the series. The problem does not occur,

however, if we estimate a model in which the covariate is an indicator of whether the wife died

within, say, the previous 60 days.  This covariate increases from 0 to 1 when the wife dies, but

then goes back to 0 after 60 days (if the husband is still alive).  Estimating the model with

varying windows of time can give useful information about the how the effect of wife’s death

starts, peaks and stops.

Table 3 gives estimated odds ratios for several different intervals of time, using

conditional logistic regression.  In all cases, the odds ratios exceed 1.0, and are statistically

significant for the 60-day interval and the 30-day interval.  For the latter, the odds of husband’s

death on a day in which the wife died during the previous 30 days are about double the odds if
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the wife did not die during that interval.  It’s worth keeping in mind, however, that in this data

set there were only 22 couples in which the husband died within 30 days after the wife’s death.

A major limitation of these analyses is that they assume no dependence on time itself,

that is, γt = 0.  Unfortunately, it has been shown that case-crossover designs can be extremely

sensitive to violations of this assumption (Suissa 1995, Greenland 1996).  For our example, if

there is any tendency for the incidence of wife death to increase over the period of observation,

this can produce a spurious relationship between wife’s death (however coded) and husband’s

death.  Intuitively, the reason is that husband’s death always occurs at the end of the sequence of

observations for each couple, so any variable that tends to increase over time will appear to

increase the hazard of husband’s death.

Table 3.  Odds Ratios for Predicting Husband’s Death from Wife’s Death Within Varying
Intervals of Time, Case-Crossover Method

                        Wife Died Within

15 days 30 days 60 days 90 days 120 days

Odds-Ratio 1.26 1.96 1.61 1.27 1.26

p-value .54 .006 .03 .24 .25

Fortunately, there is little evidence for such a trend in these data.  Going back to the

original data set of 49,990 couples, a Weibull model for wife’s death shows that the hazard of a

death actually declines slightly with time.  Similarly, in our sample of 39,992 person days (from

126 couples) the correlation between wife’s death within 30 days and time since the origin was

-.04.  So we seem to be in good shape for this analysis.

But what if there were a correlation between time and wife’s death?  How could the

model be adapted to adjust for time dependence?  A natural approach is to relax the assumption
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that γt = 0 and include some function of time in the model.  Unfortunately, this strategy will not

generally work for this kind of data.  If the covariates include any monotonic function of time

(with coefficients to be estimated), the model will not converge.  Again the problem is that any

covariate that may increase with time but never decrease (or that may decrease but never

increase) will be a “perfect” predictor of husband’s death because a death always occurs at the

last point in time.

It is, however, possible to include non-monotonic functions of time.  For example, to

allow for cyclic annual variation in the hazard of husband’s death, we fit a conditional logistic

regression model with three covariates:  wife death within 30 days, sin(2πt/365), and

cos(2πt/365) where t is the number of days since the origin.  All three covariates were highly

significant, and the odds ratio for wife’s death remained at about 2.0.

While such a model provides useful information, it still doesn’t solve our problem of

needing to control for monotonic functions of time.  As one possible solution, we estimated

models with increasing functions of time in which the coefficients of time were fixed rather than

estimated.  These models converged, and the estimated hazard ratios  were similar to those in

Table 3.  Since the results could depend on the fixed values of the coefficients, we performed a

sensitivity analysis in which the time coefficients were systematically varied over a range of

plausible values.  Although the empirical application seemed to work well, results of simulation

studies (not shown) convinced us that this approach is not valid.  In particular, the coefficient for

wife’s death was badly biased unless the coefficients for time were ridiculously large, and there

was no apparent way to determine the correct values for the time coefficients.
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THE CASE-TIME-CONTROL METHOD

We now consider an alternative fixed-effects method that appears to solve the problems

that arise when the distribution of the covariate is not, in fact, stable over time.  Introduced by

Suissa (1995) who called it the “case-time-control” design, the key innovation in this approach is

the computational device of reversing the dependent and independent variables in the estimation

of the conditional logit model.  This makes it possible to introduce a control for time, something

that cannot be done with the case-crossover method.

 As is well known, when both the dependent and independent variables are dichotomous,

the odds-ratio is symmetric—reversing the dependent and independent variables yields the same

result, even when there are other covariates in the model.2  In the case-time-control method,  the

working dependent variable is the dichotomous covariate—in our case, whether or not the wife

died during the preceding specified number of days.  Independent variables are the dummy

variable for the occurrence of an event (husband’s death) on a given day and some appropriate

representation of time, for example, a linear function. Again a conditional logistic regression is

estimated with each couple treated as a separate stratum. Under this formulation there is no

problem including time as a covariate because the working dependent variable is not a

monotonic function of time.

In Suissa’s formulation of the method, it is critically important to include data from all

individuals, both those who experienced the event and those who are censored.  However, his

model was developed for data with only two points in time for each individual, an event period

and a control period.  In that scenario, the covariate effect and the time effect are perfectly

confounded if the sample is restricted to those who experienced events. On the other hand,
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censored individuals provide information about the dependence of the covariate on time,

information that is not confounded with the occurrence of the event.

By contrast, our data set (and presumably many others) has multiple “controls” at

different points in time for each individual.  That eliminates the complete confounding of time

with the occurrence of the event (husband death), making it possible to apply the case-time-

control method to uncensored cases only.  That’s a real boon in situations where it is difficult or

impossible to get information for those who did not experience the event.  The only restriction is

that when the model is estimated without the censored cases, one cannot estimate a model with a

completely arbitrary dependence on time, that is, with dummy variables for every point in time.

Of course, if the censored cases are available (as in our data set), more precise estimates

can be obtained by including them.  But even if censored cases are available, there is a potential

advantage to limiting the analysis to those who experienced the event.  The case-time-control

method has been criticized for assuming that the dependence of the covariate on time is the same

among those who did and did not experience the event (Greenland 1996).  This criticism has no

force if the data are limited to those with events.

For our mortality data, the working data set can be constructed as before with one record

for each day of observation, from the origin until the time of husband’s death or censoring.

Unlike the case-crossover analysis, we now include both censored and uncensored cases.

Because conditional logistic regression requires variation on the dependent variable for each

conditioning stratum, we can eliminate couples whose wife did not die, with no loss of

information. To avoid an unwieldy number of observations, we took a systematic sample of

couple-days.  All couple-days on which the husband died are included. For the remainder, we

sampled the first couple-day (January 1, 1993) and every 30th day thereafter, yielding a working
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sample of 31,755 couple days. If the data are restricted to couples for whom both the husband

and the wife died, the effective sample is reduced to 2,649 couple days.

We estimated the following model.  Let Hit be a dummy variable for the death of husband

i on day t, and let Pit be the probability that wife’s death occurred within a specified number of

days prior to day t.  Our working logistic regression model is

tH
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Estimation of the conditional logistic regression is a bit more complicated in the case-

time-control method because a couple may have more than one day on which wife had died

within the preceding specified number of days.  Consequently, a conventional Cox partial

likelihood is not appropriate.  One approach is to use a program explicitly designed for

conditional logistic regression with m:k matching (like Stata’s clogit command).  Alternatively,

equivalent results may be obtained with the SAS procedure PHREG with its DISCRETE option

for estimating a logit model with tied data.

Table 4 gives estimates for the full sample, and also for the subsample in which husbands

died.  For the reduced sample, the results are quite similar to those in Table 3, which used the

case-crossover method on an equivalent sample.  For the full sample, the odds ratios are a bit

larger and the p-values are noticeably smaller.  These smaller p-values are primarily due to the

larger odds ratios, not to reduced sampling variability.  The standard errors for the subsample are

only 10-15% larger than those in the full sample. Again, the evidence suggests that the effects of

wife’s death are limited in time, with considerable fading after about two months.

Although our working dependent variable is wife’s death, the odds ratios must be

interpreted as the effect of wife’s death on the odds of husband’s death.  That’s because of the

time ordering of the observations—wife’s death always precedes husband’s death. If our goal
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was to estimate the effect of husband’s death on wife’s mortality, we would have to construct a

completely different data set that would sample couple-days prior to the wife’s death, but not

thereafter.

Table 4.  Odds Ratios for Predicting Husband’s Death from Wife’s Death Within Varying
Intervals of Time, Case-Time-Control Method

                        Wife Died Within

15 days 30 days 60 days 90 days 120 days

Odds-Ratio 2.37 2.41 1.72 1.28 1.13Wife Died
(1918 couples)

p-value .008 <.0001 .007 .20 .52

Odds-Ratio 2.07 2.05 1.56 1.12 .90Both Husband
and Wife Died
(126 couples) p-value .05 .006 .05 .59 .60

SIMULATION RESULTS

Although the case-time-control method seems like the most promising approach for

fixed-effects analysis, the method has seen few applications and is still somewhat controversial

(Greenland 1996, Schneeweiss  et al. 1997, Suissa 1998, Greenland 1999).  To verify the

appropriateness of this method for the kind of data considered here, we undertook a simulation

study which investigated the possibility of large-sample bias under several scenarios. For each

scenario, we constructed a sample of 10,000 “couples” who were followed for a maximum of 20

“months”.  Since our aim is only to investigate bias and not sampling variation, a single large

sample is sufficient for each scenario. At each month, the husband could die or not die, with a

probability determined by a logistic regression equation.  Also at each time month, a “treatment”

variable could take on a value of 1 or 0, again with probability determined by a logistic

regression equation.
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Model 1.  We first tested to see whether the case-time-control method avoids the key flaw

of the case-crossover method:  a tendency to detect non-existent effects when the covariate is

correlated with time.  The model used to generate the data had the following form:

Logit[Pr(Hit=1)] = -3 + .10t + .50ui

Logit[Pr(Tit=1)] = -1 + .10t + .50ui

where Hit is a dummy variable for husband’s death in couple i at time t, Tit is dummy variable for

treatment for couple i at time t, and ui is a random draw from a standard normal distribution that

is specific to couple i but which does not vary over time.  Thus, the model does not allow for an

effect of treatment on death but does assume substantial effects of time on both treatment and

death (approximately a 10 percent increase in the odds at each succeeding month).  Furthermore,

there is substantial unmeasured heterogeneity (ui) that is common to both death and treatment.

Application of this model produced 136,728 couple-months with 6481 husband deaths.

The treatment dummy was equal to 1 in 45 percent of the couple-months. Conventional logistic

regression of death on treatment and time yielded an odds ratio for treatment of 1.20 (p<.0001).

Conditional logistic regression using the case-crossover method produced an odds ratio of 1.704

(p<.0001).  Only the case-time-control method gave an appropriate answer.  The odds ratio was

.951, with a 95 percent confidence interval of .897 to 1.108.  The estimated coefficient for time

was .10, exactly what the model specified.

In other variations of this model, we set the coefficient for t to 0 in either the first

equation or the second equation. The case-time-control method performed well in either

variation.  As expected, the case-crossover method did well when there was no effect of time on

treatment, but not otherwise.
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Model 2. The second model modified the equation for death to allow for a non-zero effect

of treatment.  The equation for T was the same as before.  The equation for H was

Logit[Pr(Hit=1)] = -3.5 + .10t + .69Tit + .50ui .

The coefficient of .69 corresponds to an odds ratio of 2.0.  This model produced 102,987 couple-

months with 8,851 husband deaths. Conventional logistic regression of death on treatment and

time yielded an odds ratio for treatment of 2.39 (p<.0001).  Conditional logistic regression using

the case-crossover method produced an odds ratio of 3.13 (p<.0001).  The case-time-control

method estimated the odds ratio at 1.94, with a 95 percent confidence interval of 1.84 to 2.05.

Model 3. To our knowledge, the case-time-control method has never been considered as a

method to control for other time-varying covariates.  Model 3 introduces a covariate that varies

with time and affects both treatment and death.  The equations are:

Logit[Pr(Hit=1)] = -3 + .10t + .69Tit + .8Xit + .50ui

Logit[Pr(Tit=1)] = -1 + .10t +  .5Xit + .50ui

Since X and T are correlated, we expect that omitting X from the estimated model will bias the

estimated coefficient of T in the equation for husband’s death. To control for X in the case-time-

control method, we shall include it as a covariate in the conditional logistic regression predicting

T.

The model produced 111,415 couple-months with 8349 husband deaths.  When we

applied the case-time-control method without a control for X, the estimated odds ratio relating T

and H was 2.75, well above the expected 2.0.  When the model included X, the odds ratio for the

relation between T and was 1.97 with a 95 percent confidence interval of 1.86 to 2.09.  The

estimated coefficient for X was .48, close to the .5 in the equation for T.
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DISCUSSION AND CONCLUSION

Fundamental problems can arise when attempting to apply fixed-effects logistic

regression to discrete-time event history data with non-repeated events (the case-crossover

method). In particular, the conditional likelihood estimates will not converge if any monotonic

function of time is included as a covariate.  This would include linear, polynomial or logarithmic

functions of time.  It would also include any covariate, such as a dummy for spouse alive or

dead, which can only change in one direction with time.  Since time dependence cannot be

controlled, the method can also produce highly spurious estimates of the effects of any covariates

that happen to be correlated with time.  Of course conventional Cox models could still be

estimated, but that would lose the advantage of the fixed-effects approaches.

The case-time-control method provides a solution to the inability to control for time.

This method also relies on conditional logistic regression, but reverses the role of the

dichotomous event and a dichotomous covariate.  Simulations suggest that the case-time-control

method produces approximately unbiased estimates of the odds ratio of interest, even in cases

where both the event hazard and the dichotomous covariate are strongly dependent of time.  We

have extended this method in two ways.  First, we argue that the inclusion of individuals who did

not experience events—previously thought to be a crucial component of this method—is

unnecessary if multiple control times are available for those who do experience events.  Second,

our simulation results suggest that additional time-varying covariates can be included as controls

in the regression model.

Application of both the case-crossover  method and the case-time-control method to

mortality data of elderly couples provides evidence that there is indeed an effect of wife’s death
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on husband’s odds of death, even when all stable covariates are controlled, but that the effect is

of limited duration.

At this point, the case-time-control method is still restricted to situations in which the aim

is to estimate the effect of a dichotomous covariate on an outcome event, while controlling for

other covariates, either dichotomous or continuous.  In principle, one ought to be able to estimate

effects of multiple dichotomous covariates by estimating a separate model for each covariate as

the “dependent” variable.  It may also be possible to handle polytomous variables by estimating a

conditional multinomial logit model.  At this point, however, we are unable the case-time-control

approach to estimate the effect of a continuous covariate.  And there is little hope for estimating

the effects of covariates that are monotonic with time. Still, as we saw here, many such variables

can be reformulated in ways that eliminate the monotonicity.
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NOTES

1 To assemble a population-based sample of elderly couples, we linked Medicare claims data and

other files at an individual level (using individual identifiers). We began with the 1993

Denominator File which includes 32,180,588 people 65 years of age or older.  Based on Census

data, we estimate that 13.2 million of these people were in marriages where both spouses were

65 or older.  From this file, we identified husband/wife pairs using a data described by Iwashyna

et al. (1998, 2000).  The method exploits Medicare's complex system of identification codes to

find spousal pairs, and it has a sensitivity of up to 80%.  While representing a majority of

married people, these couples are somewhat more likely to be those in which the husband had

been employed and the wife had either never earned money or earned less than her husband.

However, in the current generation of elderly, this is the modal pattern. The application of this

method resulted in the identification of 4,313,221 couples, 65% of the total population. Of these

couples, 3,247,729 are ones in which both members were older than 68.  From this group, we
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took a simple random sample of 50,000.  We subsequently deleted 10 cases due to data

inconsistencies, leaving 49,990 for analysis.  For these couples, we have detailed hospitalization

information for three years prior to 1993 and mortality and hospitalization information for both

members of each couple until mid-1994.  Using established methods of quantifying illness

burden, we assigned each individual a morbidity burden based on their medical records for the

three years preceding cohort inception. (Zhang et al. 1999).

2 This symmetry is exact when the model is “saturated” in the control covariates but only

approximate for unsaturated models.
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