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I. Introduction

The price range, defined as the difference between
the highest and lowest log asset prices over a fixed
sampling interval (for concreteness, we focus on
a 1-day interval), has a long, colorful, and distin-
guished history of use as a volatility estimator.! As
emphasized most recently by Alizadeh, Brandt,
and Diebold (2002), the range is a highly efficient
volatility proxy, distilling volatility information
from the entire intraday price path, in contrast to
volatility proxies based on the daily return, such
as the daily squared return, which use only the
opening and closing prices. Moreover, data on the

* This work was supported by the National Science Founda-
tion, the Wharton Institutions Center, and the Rodney L. White
Center for Financial Research at the Wharton School. We thank
Al Mandansky and an anonymous referee for insightful and
forceful comments. We also thank Tim Bollerslev, Celso Brunetti,
Rob Engle, Joel Hasbrouk, Peter Lildolt, Jeff Russell, and Niel
Shephard, as well as seminar participants at the University of
Pennsylvania and CIRANO for insightful discussions and com-
ments. Clara Vega provided outstanding research assistance. Con-
tact the corresponding author, Francis X. Diebold, at fdiebold@
wharton.upenn.edu.

1. The relevant literature includes Garman and Klass (1980),
Parkinson (1980), Beckers (1983), Ball and Torous (1984), Rogers
and Satchell (1991), Kunitomo (1992), and Yang and Zhang (2000).
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We extend range-based
volatility estimation to
the multivariate case. In
particular, we propose a
range-based covariance
estimator motivated by a
key financial economic
consideration, the
absence of arbitrage, in
addition to statistical
considerations. We
show that this estimator
is highly efficient yet
robust to the market
microstructure noise
arising from bid-

ask bounce and
asynchronous trading.
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range are widely available for individual stocks and exchange-traded
futures contracts (including currencies, Treasury securities, and stock
indices), not only presently but also, in many cases, over long historical
spans. In fact, the range has been reported for many decades in business
newspapers through so-called candlestick plots, showing the daily high,
low, and close prices.

Despite these appealing properties of the range, one cannot help but
notice a large and striking gap in the range-based volatility estimation
literature: it is entirely univariate. That is, although range-based variance
estimation has been discussed and refined extensively, range-based co-
variance estimation remains uncharted territory. The reason is that it is
not at all obvious how to construct an appropriate range-based covari-
ance estimator. Hence, the range would seem to join the ranks of other
famously obvious and intuitive univariate statistics, such as the median,
that have no similarly obvious or intuitive multivariate generalization.

The apparent failure of range-based volatility estimation to generalize
to the multivariate case is particularly unfortunate, because financial
economics is intimately concerned with multivariate interactions. Con-
sider, for example, three pillars of modern finance: asset pricing, asset
allocation, and risk management. Asset prices depend on covariance with
the market and perhaps other risk factors. Similarly, optimal portfolio
shares depend on the variances and covariances of asset returns, as does
the portfolio value at risk.

We attempt to remedy the situation by proposing a simple and intuitive
range-based covariance estimator. Our approach is not merely statistical;
rather, it relies appealingly on a key financial economic consideration,
the absence of arbitrage. In particular, we use no-arbitrage conditions to
express covariances in terms of variances, which may then be estimated
by standard range-based methods.

II. Range-Based Variance and Covariance Estimation

Before considering the range-based estimation of covariances, we must
set the stage by considering certain aspects of univariate volatility esti-
mation. Consider a univariate stochastic volatility diffusion for the log
of an asset price p, with instantaneous volatility o,. Suppose we sample
this process discretely at m regular times throughout the day, which lasts
from time # to ¢ + 1, to obtain the intraday returns 7, /- t/m = Prkim —
Pit(k—1ym> for k=1,...,m. Under conditions given in Andersen,
Bollerslev and Diebold (2003a), the variance of the discrete-time returns
over the 1-day interval conditional on the sample path {G,JFT}LO is

1
6?2/0 o7,.dT. (1)
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Estimation of Return Covariances 63

The integrated volatility &, thus provides a canonical and natural mea-
sure of return volatility, and it features prominently in the financial eco-
nomics literature (e.g., Hull and White 1987). Because the integrated
volatility is inherently unobservable, several estimators have been pro-
posed, including estimators based on daily returns (e.g., daily squared or
absolute returns), high-frequency intraday returns (e.g., the “realized
volatility”” of Andersen et al. 2003b), and the daily range. In particular,
Parkinson’s (1980) celebrated range-based estimator of the daily inte-
grated variance is given by

v = 0.361range’. (2)

The univariate range-based volatility estimator has several appealing
properties. First, of course, it is trivial to compute. Second, it is unbiased
and highly efficient relative to competitors, such as the squared or ab-
solute daily return (Andersen and Bollerslev 1998). Finally, it is robust
to certain types of microstructure noise, such as bid-ask bounce (Alizadeh
et al. 2002).

Now consider the multivariate case. In parallel with our univariate dis-
cussion, consider a stochastic volatility diffusion for a vector of log asset
prices with diffusion matrix 3, whose ijth element we denote o2. Then,
again, under the conditions given in Andersen et al. (2003a), the 1-day
conditional covariance of the discrete-time returns on assets i and  is just
the integrated instantaneous covariance,

1
6;,:/0 O;H_Td’l'. (3)

The attractive blend of convenience, efficiency, and robustness achieved
by the range-based estimator in the univariate estimation of integrated
volatility (1) makes one hungry for an extension to a range-based estimator
of the integrated covariance (3) in the multivariate case. We now proceed
to do so. The basic idea is very simple, and the implementation varies
slightly, depending on whether the application is to foreign exchange,
bonds, or stocks. We consider each in turn.

First, consider foreign exchange. In foreign exchange markets, the ab-
sence of triangular arbitrage implies a deterministic relationship between
any pair of dollar rates and the corresponding cross rate. Consider two
dollar exchange rates, denoted A/$ and B/S. Then, in the absence of tri-
angular arbitrage, the cross rate is

AlnA4/B = AInA4/$ — Aln B/S, (4)
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and hence the continuously compounded 4/B return is A/B =
(A4/$)/(B/$). Taking variances gives

Var[Aln 4/B] = Var[Aln 4/$] 4+ Var[Aln B/$] — 2Cov[Aln 4/$, Aln B/$],
(5)

and solving for the covariance yields

Cov[Aln 4/$, Aln B/$] = — (Var[Aln A/$]+ Var[Aln B/$]— Var[Aln 4/B]).

(6)

N —

This suggests a natural covariance estimator,

Cov[Aln /S, Aln B/S] = % (Var(Aln 4/5] + Var(Aln 5/5] — Var(Aln 4/5]).
(7)

where @[A -] in principle can be any return variance estimator. Given the
desirable properties of range-based volatility just estimation discussed, we
advocate the use of Parkinson’s (1980) range-based estimator in equa-
tion (2). We then assembled the estimated variance-covariance matrix as

S = Var[Aln 4/ Cov[Aln4/$,AlnB/S] |.  (8)
Cov[AIn4/$, Aln B/S)] Var[Aln B/$)]

In higher dimensional cases, we proceed in analogous fashion, estimat-
ing each pairwise covariance as in the preceding, then assembling the
results into an estimated covariance matrix.

Now consider fixed-income markets, in which the absence of arbitrage
implies a deterministic relationship among any two zero-coupon bond
prices and the corresponding forward contract. Specifically, consider two
bonds with maturities 7 and 75 and prices P(7}) and P(75), with T} < T5.
The price of a forward contract between times 77 and 7, is F(T},
T;) = P(T>)/P(Ty). Taking logs gives f(T1, T2) = p(1>) — p(T1); then,
taking first differences gives 1 (71, 7o) = r(T>) — r(T}); finally, taking
variances gives

Var[ry (T, T»)] = Var[r(T2)] + Var[r(T1)] — 2Cov[r(T1),7(T2)]. (9)

Hence, we can form the covariance estimator,

Covlr(12),r(13)] = 5 ( Varlr(T)] + Varir(13)] — Varl (73, 12]), (10)
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Estimation of Return Covariances 65

and assemble the estimated variance-covariance matrix precisely as in
the foreign exchange case.

Finally, consider equities. The return on a two-equity portfolio with
shares \ and 1 — X\, denoted r, = X\ry + (1 — X\)ry, has a variance of

Var[r,] = N2Var[r] + (1 — X\)*Var[ry] +2X(1 = N)Covlri,r], (11)

which suggests the covariance estimator,

1

COV[I"],I”z] = m

(\//a\r[rp] —\Narjn] - (1 - xymrz]). (12)

This method of estimating the covariance via the range of the two-
asset portfolio return is generally applicable to any two assets—not just
equities—if data on the portfolio return range are available.

III. Discussion

Our no-arbitrage approach to range-based covariance estimation is widely
applicable in the foreign exchange context because daily ranges of all
legs of many currency triangles are available. For example, Datastream
provides as much as 40 years of historical data on the daily high, low, and
closing prices of 37 British-pound-denominated currencies and 14 Swiss-
franc-denominated currencies. The International Monetary Market, a
subsidiary of the Chicago Mercantile Exchange, recently introduced
futures and options contracts on euro/British pound, euro/Swiss franc,
and euro/Japanese yen cross rates. Finally, the New York Board of
Trade offers futures contracts on 14 cross currencies, including seven
euro-denominated contracts.

We hasten to add, however, that the practical applicability of our ap-
proach in other contexts is far more limited. For fixed-income securities,
our approach is directly applicable to only select maturities, for which lig-
uid bonds are aligned with liquid forward or futures contracts, such as the
3- and 6-month Eurodollar deposits and the 3-month Eurodollar futures.
For equities, our approach rarely will be applicable, because historical data
on the range of two-asset portfolios are typically not available.”

Thus far, we have said little about the theoretical properties of the
range-based covariance estimator. One obvious point is that the covari-
ance estimator is unbiased under the same conditions that deliver unbi-
asedness of Parkinson’s (1980) variance estimator, because it is a linear
combination of variances. Conversion to correlation, however, will in-
troduce bias due to the nonlinearity of the transformation.

2. Some notable exceptions are the TSE 100, TSE 200, and TSE 300 indices of the Toronto
Stock Exchange and the ASX 100, ASX 200, and ASX 300 indices of the Australian Stock
Exchange.
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A similarly obvious and related point is that 32, in general, is not guar-
anteed to be positive definite. In our experience, however, positive def-
initeness is rarely violated in practice. If desired, positive definiteness
can be imposed by estimating the Cholesky factor P of ¥, rather than X
itself, where P is the unique lower-triangular matrix defined by ¥ = PP
Note that the elements of P are functions of the elements of >J. Hence, we
insert our range-based estimators of the relevant variances and covariances
into P_(computed analytically) to obtain an estimator of the Cholesky
factor P, then form the estimator PP’ of the covariance matrix. Because the
estimated Cholesky factor P will be complex when . is not positive def-
initeé we define P’ as the conjugate transpose, which guarantees that PP’ is
real.

Ultimately, however, the interesting questions for financial economists
center not on the theoretical properties of range-based covariance and
correlation estimates under abstract conditions surely violated in prac-
tice, but rather on their performance in realistic situations involving small
samples, discrete sampling, and market microstructure noise. As we ar-
gued previously, we have reason to suspect the good performance of the
range-based approach, because of both its high efficiency due to the use
of the information in the intraday sample path and its robustness to mi-
crostructure noise. We now turn to a brief Monte Carlo analysis designed
to illuminate precisely those issues.

IV. Monte Carlo Exploration

We initially ignored market microstructure issues. We assumed that two
dollar-denominated exchange rates P; and P, evolve as driftless diffu-
sions with annualized volatilities o of 15%, a covariance of 0.9, and
hence a correlation p of 0.4. We further assumed that, at each instant, the
cross rate P; is determined by the absence of triangular arbitrage as the
ratio of the two dollar rates. Starting at P; o = P, = 1, we simulated
24 hours worth of m regularly spaced intraday log price observations using

Pi,t+k/m = Pi,tJr(kfl)/m +ov 250/m Eittk/ms
for i = {1,2} and p3;, = p1; — pass (13)

where p; = In P;, [e], €| are standard normal innovations with corre-
lation p, and there are 250 trading days per year. We considered sam-
pling frequencies m ranging from m = 18 (one observation every 1 hour
and 20 minutes) to m = 1,440 (one observation every minute) and used
the resulting data to compute the daily range and intraday returns. We

3. Other ways to guarantee positive definiteness include the shrinkage approach of Ledoit and
Wolf (2001) or the perturbation methods of Gill, Murray, and Wright (1981) and Schnabel and
Eskow (1999).
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TABLE 1 Range-Based and Realized Estimates in Merton’s Utopia

SD Covariance Correlation

Sampling Frequency Mean SD RMSE Mean SD RMSE Mean SD RMSE

Range-Based Estimates

1 minute 14.099 4.279 4373 862 1.084 1.085 371 341 .342
5 minutes 13.746 4.277 4457 .823 1.061 1.064 369 .351 .352
10 minutes 13.477 4274 4537 .794 1.043 1.048 .368 .359 .360
20 minutes 13.090 4.266 4.674 753 1.016 1.026 .366 .370 .372
40-minutes 12.525 4.255 4923 .695 977 998 363 .3890 .391

1 hour 20 minutes 11.701 4.236 5.369 .615 918 961 358 420 422

Realized Estimates with No-Arbitrage Condition

1 minutes 14997 280 .280 .900 .064 .064 400 .022 .022
5 minutes 14985 .623 .624 900 .143 .143 400 .050 .050
10 minutes 14971 883 883 901 .202 .202 .399 .070 .070
20 minutes 14943 1249 1250 .900 285 285 .398 .099 .099
40 minutes 14.888 1.758 1.762 .898 .404 404 395 .142 .142

1 hour 20 minutes 14.788 2.475 2484 896 570 570 389 203 203

Realized Estimates with Cross Products

1 minute 14997 280 280 .900 .064 .064 .400 .022 .022
5 minutes 14985 623  .624 900 .143 .143 400 .050 .050
10 minutes 14971 883 .883 .901 202 .202 .399 .070 .070
20 minutes 14943 1.249 1.250 900 .285 .285 .398 .099 .099
40 minutes 14.888 1.758 1.762 .898 .404 .404 395 .142 .142

1 hour 20 minutes 14.788 2.475 2484 .896 570 .570 .389 .203 .203

NoTeE.—Two dollar denominated exchange rates P; and P, evolve as driftless diffusions with an
annualized volatility o of 15%, covariance of 0.9, and correlation p of 0.4. At each instant, the cross-
currency rate P is given by the absence of triangular arbitrage as the ratio of the two base currencies.
Starting at P o = P> = 1, we simulated 24 hours worth of m regularly spaced intraday log prices using
Pitkim = Py (k—1ym + 0V250/m e ijym, i ={1,2}, and P3 ;= Py, — Py, for k=1,...,m, where
pi =InP; and [g, ;] are standard-normal innovations with correlation p. The sampling frequency m
ranges from 18 (one observation every hour and 20 minutes) to 1,440 (an observation every minute). We
used this observed data to compute the daily range and intraday returns then construct three estimates of
the volatilities, covariance, and correlation. We construct range-based covariance estimates using Parkinson’s
variance estimator and Cov[Apy, Aps| = 1/2(Var[Ap;] + Var[Ap,] — Var[Aps]). We constructed realized
covariance estimates using either the realized variance estimator and the same expression for the covariance
or the cross products of intraday returns. We repeated this procedure 10,000 times and report the mean,
standard deviations (SD), and root mean squared errors (RMSE).

then constructed three estimates of the volatilities, covariance, and
correlation of the two dollar rates. Specifically, we constructed range-
based covariance matrix estimates using Parkinson’s variance estimator
(2) and equation (7), and for comparison, we computed the realized co-
variance matrix using two different approaches. First, in parallel fashion
to the range-based estimator, we used the three realized variances con-
structed from the sum of squared intraday returns to obtain an estimate
of'the covariance. Second, we computed the realized covariance directly
using the cross products of intraday returns. We repeated this procedure
10,000 times and report the means, standard deviations, and root mean
squared errors of the resulting sampling distributions in table 1.
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The results for the volatilities are familiar from Alizadeh et al. (2002).*
The range-based estimates are downward biased because the range of the
discretely sampled process is strictly less than the range of the underlying
diffusion. The magnitude of the bias decreases as the sampling frequency
increases. But, even in the limit as m — o0, the range is still only a noisy
volatility proxy, which means that the standard deviation and RMSE of
the range-based volatility estimator settle down to nonzero values. The
realized volatility behaves quite differently because it converges not only
in expectation but also in realization to the true volatility. The more fre-
quently the underlying diffusion is sampled, the more precise the realized
volatility gets, until, in the limit, the standard deviation and root mean
squared error (RMSE) of the estimator are zero.

The results for the range-based covariance estimates follow from the
properties of the range-based volatility estimates. The estimator Cov[Ap,
Ap>] = 1/2(Var[Ap:] + Var[Ap,] — Var[Aps]) involves three volatility
estimates, each of which is downward biased by an amount that depends
on the level of volatility (the higher is the volatility, the more likely that the
true extremes are far from the observed extremes). Because the variance of
p3 is less than the variance of p; and p», due to the positive covariance, the
covariance estimates are also downward biased because the downward
bias of Var[Ap,] 4+ Var[Ap,] dominates the upward bias of —Var[Aps].
As with the volatility estimates, the bias vanishes as we increase the sam-
pling frequency, and the standard deviation and RMSE stabilize. The real-
ized covariances, computed either through the no-arbitrage condition or
with return cross products, yield identical estimates that inherit the out-
standing properties of the realized volatility estimates.

Finally, the range-based correlation is downward biased, although,
by construction, the covariance in the numerator is less downward bi-
ased than the product of volatilities in the denominator (the correlation
evaluated at the average covariance and volatilities with m = 1,440 is
0.4336). The source of this bias is the sampling variation of the covariance
and volatility estimates through Jensen’s inequality. Because the sampling
variation does not vanish as m — oo, the range-based correlation esti-
mator remains downward biased even in the limit. The realized correlation
does not suffer from this bias.

Bid-ask bounce is a well-known reality of financial market data. To ex-
amine its effect on the covariance and correlation estimates, we augmented
the Monte Carlo experiment with a simple model of bid-ask bounce and
price discreteness taken from Hasbrouck (1999). Specifically, we took the
dollar rates from the original experiment as the true prices and computed
the bid and ask quotes B; , = floor [P; , — 1/2 spread, tick]| and 4;, =
ceiling[P;, + 1/2 spread, tick] where floor[x, tick] and ceiling][x, tick] are

4. Since p; and p; follow the same stochastic process, we analyze the volatility estimates
for only p.
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functions that round x down or up to the nearest tick, respectively. For the
cross rate, we computed the bid and ask quotes by imposing no arbitrage
given the bid and ask quotes of the dollar rates. We then took the observed
prices as P = q; B, + (1 — qi)Ais, where g;, ~ Bemoulli [1/2]. To
capture the fact that the two base currencies are denominated in dollars,
which means that the sale or purchase of the dollar might involve a si-
multaneous purchase or sale of the two currencies, we allow the buy-sell
indicators ¢; , and ¢, to be correlated with Corr[q, ;, g2} = m. The in-
dicator g3, is independent.

Table 2 presents the results for a bid-ask spread of 0.0005 and a tick size
0f'0.0001, which are realistic values for currencies (see Hasbrouck 1999).
In panel A, the correlation ) is set to 0, and in panel B, the correlation is
0.5. The effect of bid-ask bounce on the range-based estimates is relatively
minor. In contrast, the effect on the realized volatilities, covariance, and
correlation is striking. Consistent with the intuition outlined previously,
the realized volatilities are upward biased when the data is sampled more
frequently than once every 3 hours. By the time the data is sampled every
minute, the bias inflates the true volatility by almost 100% (an average
estimate of 29.7% as opposed to a true volatility of 15%). The results for
the realized covariance depend on whether we construct the estimator us-
ing the no-arbitrage condition or return cross products and on the correla-
tion of the bid-ask indicators. If we use the no-arbitrage condition, the
realized covariance inherits the biases of the realized volatilities, to the
point where, for 5-minute sampling, the average estimate is negative. In
contrast, if we use return cross products and if the bid-ask indicators are
independent (in panel A), the realized covariance is unbiased. The reason
is that, if the bid-ask indicators are independent, then the expectation of
the product of observed returns is equal to the expectation of the product
of true returns. The bid-ask bounce, therefore, increases the variability of
only the estimator. However, if the bid-ask indicators are correlated (in
panel B), this argument no longer holds and the realized covariance is
severely positively biased because each cross product of returns con-
tains an upward bias due to the common component of the bid-ask indi-
cators. Finally, the realized correlation, computed from the biased realized
volatilities and biased covariance, is unreliable, ranging from —0.89 to
0.66.

Finally, asynchronous trading is another market microstructure effect
that is likely to affect differently the range-based and realized covariance
and correlation estimates. With infrequent trading, a security has a latent
true price that is revealed only when a trade occurs. Between trades, the
observed price is stale at the last traded price and therefore does not
reflect the true price. In a univariate setting, infrequent trading induces
positive serial correlation in the intraday returns, which in turn causes
a downward bias in the realized volatility. In a bivariate setting, asyn-
chronous infrequent trading, when the trades for the two assets do not
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TABLE 2 Range-Based and Realized Estimates with Bid-Ask Bounce

SD Covariance Correlation

Sampling Frequency Mean SD RMSE Mean SD RMSE Mean SD RMSE

Panel A. Independent Bid-Ask Bounce with n = 0

Range-Based Estimates

1 minute 14.512 4.278 4.306 826 1.121 1.124 327 344 352
5 minutes 14.006 4.274 4.388 779 1.087 1.093 327 357 365
10 minutes 13.671 4272 4.474 754 1.063 1.073 331 366 .373
20 minutes 13.228 4.263 4.617 721 1.032 1.047 335 378 384
40 minutes 12.622 4.256 4.875 672 989 1.015 339 397 402

1 hour 20 minutes  11.767 4.236 5.328 600 928 975 340 428 432

Realized Estimates with No-Arbitrage Condition

1 minutes 29.645 490 14.653 —5.578 462 6.495 —.636 .060 1.037
5 minutes 18.849 760 3.924 —395 341 1.339 —.114 .100 .524
10 minutes 17.010 .990 2.241 253 351 736 .082 .118 .339
20 minutes 15.994 1327 1.658 578 396 511 217 141 231
40 minutes 15.422 1.820 1.868 736 486 513 296 177 206

1 hour 20 minutes ~ 15.058 2.515 2.516 815 629 635 335 232 241

Realized Estimates with Cross Products

1 minutes 29.645 490 14.653 900 263 263 .102 .030 .299
5 minutes 18.849 .760 3.924 900 223 223 253 .057 .158
10 minutes 17.010 990 2.241 901 256 256 309 .076 .119
20 minutes 15.994 1327 1.658 901 322 322 347 .104 117
40 minutes 15.422 1.820 1.868 898 429 429 368 .145 149

1 hour 20 minutes ~ 15.058 2.515 2.516 .896 588 588 376 205 207

Panel B. Correlated Bid-Ask Bounce with n = .5

Range-Based Estimates

1 minutes 14.512 4.278 4.306 810 1.123 1.127 318 347 356
5 minutes 14.006 4.274 4.388 764 1.089 1.097 319 360 .369
10 minutes 13.671 4.272 4.474 741 1.065 1.077 323 369 377
20 minutes 13.228 4.263 4.617 710 1.033 1.051  .329 380 .387
40 minutes 12.622 4256 4.875 .664 990 1.018 333 .399 405

1 hour 20 minutes  11.767 4.236 5.328 595929 978 335 430 435

Realized Estimates with No-Arbitrage Condition

1 minutes 29.645 490 14.653 —7.812 548 8.729 —.890 .073 1.292
5 minutes 18.849 760 3.924 —.842 375 1.782 —241 .114 .651
10 minutes 17.010 990 2.241 029 375 949  .004 .130 417
20 minutes 15.994 1327 1.658 465 414 601 172 151 273
40 minutes 15.422 1.820 1.868 679 500 547 270 .185 226

1 hour 20 minutes ~ 15.058 2.515 2.516 186 .640 650 321 238 251
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TABLE 2 (Continued)

SD Covariance Correlation

Sampling Frequency Mean SD RMSE Mean SD RMSE Mean SD RMSE

Realized Estimates with Cross Products

1 minutes 29.645 490 14.653 4.140 265 3.251 471 .024 .075
5 minutes 18.849 760 3.924 1549 230 .688 .435 .050 .061
10 minutes 17.010 990 2.241 1.225 262 418 421 .070 .073
20 minutes 15994 1327 1.658 1.062 .328 366 .410 .099 .099
40 minutes 15422 1.820 1.868 979 433 440 .401 .141 .141

1 hour 20 minutes  15.058 2.515 2.516 .937 .591  .592 393 .202 .202

NoTE.—We simulated two currency prices as described in table 1 then computed the bid and ask quotes
B;; = floor[P;; — 1/2 spread, tick] and 4,, = ceilingr[P;, + 1/2 spread, tick|, where floor[x, tick] and
ceiling[x, tick] are functions that round x down or up to the nearest tick, respectively. The spread is set to
0.0005 and the tick size is 0.0001. For the cross currency, we computed the bid and ask quotes by
imposing no-arbitrage, given the bid and ask quotes of the base currencies. We then took the observed
prices as P = ¢;,B;, + (1 — qi,)A;,, where g;, ~ Bernoulli [1/2]. The buy-sell indicators ¢, and g,
are correlated with Corr[g; ,¢>,] = m, but the indicator ¢3, is independent. In panel A, v} = 0, and in panel
B, n = 0.5. We used this observed data to compute the daily range and intraday returns then constructed
three estimates of the volatilities, covariance, and correlation. We constructed range-based covariance esti-
mates using Parkinson’s variance estimator and Cov[Apy, Ap,| = 1/2(Var[Ap;] + Var[Ap,| — Var[Aps]).
We constructed realized covariance estimates using either the realized variance estimator and the same
expression for the covariance or using the cross products of intraday returns. We repeated this procedure
10,000 times and report the means, standard deviations, and root mean squared errors.

take place at the same time, also creates a misalignment of the return cross
products that may lead to a downward bias of the realized covariance.

To capture the effect of asynchronous infrequent trading in our Monte
Carlo experiment, we used the discretization (13) with m = 17,280 (one
observation per second) to simulate the latent “true” price processes.
Then, for each process, we assigned » trade times randomly throughout
the day and constructed stale price processes for which the price is equal
to the price at the previous trade time until it is reset to the latent true price at
the next trade time. Hence, the true prices look like continuous diffusions,
while the stale prices look like discrete steps that occur at different times for
the different currencies. Finally, we sampled these stale price processes at a
regular frequency m, ranging again from 4 to 1,440, and proceeded just as
in table 1 (i.e., there is no bid-ask bounce in this experiment).

We present the results for » = 1,440 (an average of one trade every
minute) in table 3. The range-based estimates are slightly downward
biased, because the infrequent trading magnifies the discretization bias.
The realized volatilities are slightly downward biased due to the positive
serial correlation induced by infrequent trading. Finally, when we com-
puted the realized covariance and correlation using the no-arbitrage con-
dition, the estimates inherited only the slight bias from infrequent trading,
but when we instead used return cross products, the estimates were se-
verely downward biased. In particular, the average realized covariance and
correlation computed with return cross products are close to 0 in both
panels. This extreme bias is due to the asynchronous price revelation.
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TABLE 3 Range-Based and Realized Estimates with Asynchronous Trading

SD Covariance Correlation

Sampling Frequency ~Mean SD RMSE Mean SD RMSE Mean SD RMSE

Range-Based Estimates

1 minutes 14.037 4333 4.436 894 1.115 1.115 382 341 341
5 minutes 13.743 4335 4511 858 1.098 1.098 379 .350 .351
10 minutes 13.472 4315 4575 826 1.078 1.079 377 .359 .359
20 minutes 13.096 4.308 4.708 .789 1.050 1.055 .377 .367 .368
40 minutes 12.531 4280 4939 .730 1.017 1.030 .374 391 .392

1 hour 20 minutes ~ 11.674 4.250 5395 .646 958 991 368 428 429

Realized Estimates with No-Arbitrage Condition

1 minutes 14989 405 405 898 .097 .097 399 .034 .034
5 minutes 14952 .678 680 .888 .163 .163 .395 .057 .057
10 minutes 14940 932 934 891 222 222 .39 .079 .079
20 minutes 14923 1292 1294 882 315 315 .390 .113 .113
40 minutes 14.898 1.773 1.775 898 433 433 394 158 .158

1 hour 20 minutes 14.836 2.463 2468 913 591 591 391 220 220

Realized Estimates with Cross Products

1 minutes 14.989 405 405 .096 .096 .810 .043 .042 360
5 minutes 14952 678 .680 266 212 .668 .119 .094 296
10 minutes 14940 932 934 387 257 574 173 112 253
20 minutes 14923 1292 1.294 545 317 476 243 133 .206
40 minutes 14.898 1.773 1.775 700  .402 449 310 .161 .185

1 hour 20 minutes 14.836 2.463 2468 .824 558 563 356 .210 214

NoTE.—We simulated 24 hours worth of m = 17,280 regularly spaced intraday log prices (one price every
second) for three currencies, as described in table 1. We then assigned to each log price process n = 1,440 trade
times (an average of one trade every minute) randomly throughout the day and constructed stale price
processes for which the price is equal to the price at the previous trade time until it is reset to the latent true price
at the next trade time. We next sampled these stale price processes at a regular frequency m ranging from 18
(one observation every hour and 20 minutes) to 1,440 (one observation every minute). We used this observed
data to compute the daily range and intraday returns and then construct three estimates of the volatilities,
covariance, and correlation. We constructed range-based covariance estimates using Parkinson’s variance
estimator and Cov[Ap,, Ap,] = 1/2(Var[Ap;] + Var[Ap,] — Var[Ap;]). We constructed realized covari-
ance estimates using either the realized variance estimator and the same expression for the covariance or
the cross products of intraday returns. We repeated this procedure 10,000 times and report the means,
standard deviations, and root mean squared errors.

V. Conclusion

We extended the important idea of range-based volatility estimation to
the multivariate case. In particular, we proposed a range-based covari-
ance estimator motivated by financial economic considerations (the ab-
sence of arbitrage), in addition to statistical considerations. We showed
that, unlike other univariate and multivariate volatility estimators, the
range-based estimator is highly efficient yet robust to market micro-
structure noise arising from bid-ask bounce and asynchronous trading.
Many extensions and applications of the ideas developed here are pos-
sible, and Brunetti and Lildolt (2002) take up several.
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An intriguing application, which to the best of our knowledge has not
yet been explored, involves constructing range-based volatility and co-
variance bets via a portfolio of lookback options. The payoft of a lookback
straddle (a lookback call plus a lookback put) is equal to the range of the
underlying asset over the life of the option. Therefore, lookback straddles
are ideal for placing bets on the range-based volatility of an asset: their
payoffs are high (low) when volatility as measured by the range is high
(low). Our no-arbitrage approach to covariance estimation suggests an
analogous way of placing bets on the covariance between two assets.
Consider a portfolio of a long 4/$ lookback straddle, a long B/$ lookback
straddle, and a short 4/B lookback straddle. Since each of the straddles
is a variance bet, the payoffs of this portfolio are high (low) when covari-
ance between the two dollar rates is high (low) over the life of the option.
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