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Cointegration and Long-Horizon Forecasting 
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We consider the forecasting of cointegrated variables. and we show that at long horizons nothing 
is lost by ignoring cointegration when forecasts are evaluated using standard multivariate forecast 
accuracy measures. In fact, simple univariate Box-Jenkins forecasts are just as accurate. Our results 
highlight a potentially important deficiency of standard forecast accuracy measures-they fail to 
value the maintenance of cointegrating relationships among variables-and we suggest alternatives 
that explicitly do so. 
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Cointegration implies restrictions on the low-frequency 
dynamic behavior of multivariate time series. Thus, im- 
position of cointegrating restrictions has immediate impli- 
cations for the behavior of long-horizon forecasts, and it 
is widely believed that imposition of cointegrating restric- 
tions. when they are in fact true, will produce superior long- 
horizon forecasts. This view stems from the theoretical re- 
sult that long-horizon forecasts from cointegrated systems 
satisfy the cointegrating relationships exactly and the re- 
lated result that only the cointegrating combinations of the 
variables can be forecast with finite long-horizon error vari- 
ance. Moreover, it appears to be supported by several inde- 
pendent Monte Carlo analyses (e.g., Engle and Yoo 1987; 
Reinsel and Ahn 1992; Clements and Hendry 1993; Lin and 
Tsay 1996). 

This article grew out of an attempt to reconcile the pop- 
ular intuition just sketched, which seems sensible, with a 
competing conjecture, which also seems sensible. Forecast 
enhancement from exploiting cointegration comes from us- 
ing information in the current deviations from the coin- 
tegrating relationships. That is: knowing whether and by 
how much the cointegrating relations are violated today 
is valuable in assessing where the variables will go to- 
morrow because deviations from cointegrating relations 
tend to be eliminated. Although the current value of the 
error-correction term clearly provides information about 
the likely near-horizon evolution of the system, however, it 
seems unlikely that it provides information about the long- 
horizon evolution of the system because the long-horizon 
forecast of the error-correction term is always 0. (The error- 
correction term: by construction, is covariance stationary 
with a zero mean.) From this perspective, it seems un- 
likely that cointegration could be exploited to improve long- 
horizon forecasts. 

Motivated by this apparent paradox, we provide a pre- 
cise characterization of the implications of cointegration 
for long-horizon forecasting. Our work is closely related 
to important earlier contributions of Clements and Hendry 
(1993, 1994, 1995) and Banerjee, Dolado. Galbraith, and 

Hendry (1993, pp. 278-285), who compared forecasts from 
a true vector autoregression (VAR) to forecasts from a mis- 
specified VAR in differences, whereas we compare the true 
forecasts to exact forecasts from correctly specified but uni- 
variate representations. We focus explicitly and exclusively 
on forecasting, and we obtain several new theoretical re- 
sults that sharpen the interpretation of existing Monte Carlo 
results. Moreover. our motivation is often very different. 
Rather than focusing, for example, on loss functions invari- 
ant to certain linear transformations of the data, we take 
the opposite view that loss functions-like preferences- 
are sovereign and explore in detail how the effects of im- 
posing cointegration on long-horizon forecasts vary funda- 
mentally with the loss function adopted. In short, our results 
and theirs are highly complementary. 

We proceed as follows. In Section 1 we show that, con- 
trary to popular belief, nothing is lost by ignoring coin- 
tegration when long-horizon forecasts are evaluated using 
standard accuracy measures; in fact, even univariate Box- 
Jenkins forecasts are equally accurate. In Section 2, we ad- 
dress a potentially important deficiency of standard forecast 
accuracy measures highlighted by our analysis-they fail to 
value the maintenance of cointegrating relationships among 
variables-and we suggest alternative accuracy measures 
that explicitly do so. In Section 3, we consider forecasting 
from models with estimated parameters, and we use our 
results to clarify the interpretation of several well-known 
Monte Carlo studies. We conclude in Section 4. 

I. MULTIVARIATE AND UNlVARlATE FORECASTS 
OF COINTEGRATED SERIES 

In this section we establish notation, recall standard re- 
sults on multivariate forecasts of cointegrated variables. add 
new results on univariate forecasts of cointegrated vari- 
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ables, and compare the two. First, let us establish some 
notation. 

Assume that the x i vector process o f  interest is gener- 
ated by (1 - L)z t  = p + C(L)c t ,  where /L is a constant drift 
term? C ( L )  is an llT x Y matrix lag operator polynomial 
o f  possibly infinite order, and ct is a vector o f  iid innova- 
tions. Then, under reguiarlly conditions, the existence o f  r 
linearly independent coinlegrating vectors is equivalent to 
rank(C(1)) = iLT - r ,  and the cointegrating vectors are given 
by the rows o f  the r XN matrix a', where a'C(1) = a'p = 0. 
That is, zt = a'zt is an r-dimensional stationary zero- 
rnean time series. W e  will assume that the system is in fact 
cointegrated, with (4 < rank(C(1)) < iV. For future ref- 
erence, note that, following Stock and Watson (1988), we 
can w.se the decomposition C ( L )  = C ( 1 )  + (1 - L)C*(L) ,  
where c; = = CzJ+,  Cz, to write the system in "common- 
t:rendsU for=, zt = ,ut + C(l)Et + Ce(L)c t>  where & = x;=I E i .  

W e  will compare the accuracy o f  two forecasts o f  a multi- 
variate cointegrated system that are polar extremes in terms 
olf cointegrating restrictions imposed-first, forecasts from 
tlhe multivariate model and, second, forecasts from the im- 
plied univariaee models. Both forecasting models are cor- 
rectly specified from a wnlvariate perspective, but one im- 
poses the cointegrating restrictions and allows for corre- 
lated error terms across equations and the other does not. 

-We will make heavy use o f  a ubiquitous forecast accu- 
racy measure, mean squared error (MSE), the multivariate 
version of which is MSE = E(ei+ht(et,h), where K is an 
1'J x N positive definite symmetric matrix and et+h i s  the 
vector o f  h-step-ahead forecast errors. MSE of  course de- 
pends on the weighting matrix K .  9b is standard to set I( = 
1, in which case MSE = E(eiThet+h) = trace(Ch), where 
Ch = var(et+h). W e  call this the "trace MSE" accuracy 
measure. TO compare the accuracy o f  two forecasts, say 1 
to 2. it is standard to examine the ratio trace(Ck)/trace(Ci), 
vlhich we call the ""trace M S E  ratio." 

1 . I  Forecasts From the Multivariate Cointegrated 
System 

Now we revuew stanaarc results (required by our sub- 
sequent analysns) 00 multavarsale forecasting In colnte- 
grated systems. For expanded treatments, see Engle and Yoo 
( 1987) and Eln and Tscy (1996). 

From the mokmg average representallon, we can unrabel 
the vector process recursnvely from time t + lr to time 1 and 
write 

horn which the h-step-ahead forecasts are easily calculated 
as 

From the fact that 

lirn C, = C ( I ) .  
h-+m 

3 =o 

we get that 

so that the cointegrating relationshnp is satisfied exactly 
by the long-horizon system forecasts. This is the sense 
in which Eong-horizon forecasts from cointegrated systems 
preserve the long-run multivariate relationships exactly. 

&%'e define the h-step-ahead forecast error from the mul- 
tivariate system as et+h = zt_h - Zt+h. The forecast ersors 
from the multrvariate system satisfy 

so the variance o f  the h-step-ahead forecast error is 

where R is the variance o f  st. 
From the definition o f  i?t+h, we can also see chat the 

system forecast errors satisfy 

where the Bast equality holds i f  we take ~j = 0 for all j < t. 
That is, when we view the system forecast-error process as a 
function o f  the forecast horizon, h, it has the same stochas- 
tic structure as the original process, z t ,  and therefore is in- 
tegrated and cointegrated. Consequently, the va~iance of  the 
h-step-ahead forecast errors from the cointegrated system is 
of  order h that is increasing at the rate 11. = O(h) .  
In contrast, the cointegrating combinations o f  the system 
forecast errors, just as the error-correction process zt,  will 
have finite variance for Barge h, 

lim varlalGt,h] = a'@ < x. 
h i m  

where the matrax Q i s  a constant function o f  the stationary 
component o f  the forecast error. Although indavidual se- 
ries can only be forecast with increasingly wide confidence 
intervals, the cointegrating combination has a confidence 
~nrerval o f  finite width, even as the forecast horizon goes 
to infinity. 

1.2 Forecasts From the Implied Univariate 
RepresenPations 

Now consider ignoring the multivariate features o f  the 
system, forecasticg instead using the implied univariaie rep- 
resentations. W e  can use Wold's decomposition theorem 
and write for any series (the nth, say), 
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where H,,,o = 1 and u,,, is white noise. It follows from this 
expression that the univariate time t forecast for period t+h 
1s 

h-1 

+ en, ,  u,,t-1 - . .  . . L2 1 
Using obvious notation, we can write Z n l t T h  = hpn -xn.t + 
Q,(L)u, ,~ ,  and stacking the 2V series we have ICt+h = hp + 
xt + @ ( L ) u t ,  where O ( L )  is a diagonal matrix polynomial 
with the individual B,(L)'s on the diagonal. 

Now let us consider the errors from the univariate fore- 
casts. W e  will rely on the following convenient orthogonal 
decomposition: E t T h  -- xtrh - Zt+h = (zt+h - xt+h) + 
(itth - Zt-h) = g t t h  + - ;C t+h) .  Recall that the sys- 
tem forecast is 

where the approximation holds as h gets large. Using uni- 
variate forecasts, the decomposition for ZtTh, and the ap- 
proximate long-horizon system forecast. we get Et+h '= 

5 t + i L + ( p ( t + l z ) - C ( 1 ) ( ~ ) - ( ~ ~ - p h + O ( L ) ~ ) .  NOW insert the 
common trends representation for .ct to get Et th  '= etLh + 
p(t + h )  + C(l)Et - (pi! + C ( l ) t t  + C 2 ( L ) z t  + ph f @ ( L ) u t ) ,  
and finally cancel terms to get x EL+!, - ( C ? ( L ) E ~  + 
O(L)u , ) .  

Notice that the E ~ ' S  are serially uncorrelated and the ut's 
only depend on current and past ~ ~ ' s ;  thus, &+,, is orthog- 
onal to the terms in the parentheses. Notice also that the 
parenthesis term is just a sum o f  stationary series and is 
therefore stationary; furthermore. its variance is constant 
as the forecast horizon h changes. W e  can therefore write 
the long-horizon variance o f  the univariate forecasts as 
var(Ft+h) = v a ~ ( & + ~ )  - O(1)  = O ( h )  + O(1)  = O ( h ) ,  
which is o f  the same order o f  magnitude as the variance o f  
the systern forecast errors. Thus, in the simple MSE sense. 
the system and univariate forecasts are equally poor: The 
MSE losse~ o f  both sets o f  forecasts diverge as the hori- 
zon increases. Furthermore. because the dominating terms 
in the numerator and denominator are identical, the trace 
MSE ratio goes to 1 as formalized in the following propo- 
sition: 

Proposition I .  

When comparing accuracy using the trace MSE ratio, 
the univariate forecasts perform as well as the cointegrated 
system forecasts as the horizon gets large. This is the op- 
posite o f  the folk wisdom-it turns out that imposition o f  
cointegrating restrictions helps at short, but not long, hori- 
zons. Quite simply, when accuracy is evaluated with the 
trace MSE ratio, there is no long-horizon benefit from im- 

posing cointegration; all that matters is getting the level o f  
integration right. 

Proposition 1 provides the theoretical foundation for the 
results o f  Hoffman and Rasche (1996), who found in an 
extensive empirical application that imposing cointegration 
does little to enhance long-horizon forecast accuracy, and 
Brandner and Kunst (1990), who suggested that, when in 
doubt about how many unit roots to impose in a multivari- 
ate long-horizon forecasting model, it is less harmful to im- 
pose too many than to impose too few. A similar result can 
be obtained by taking the ratio o f  Clements and Hendry's 
(1995) formulas for the MSE at horizon h from the sys- 
tem forecasts and the MSE o f  forecasts that they construct 
that correspond approximately to those from a misspecified 
V A R  in differences. 

Now let us consider the variance o f  cointegrating com- 
binatiorls o f  univariate forecast errors. Previously we re- 
counted the Engle-Yoo (1987) result that the cointegrating 
combinations o f  the system forecast errors have finite vari- 
ance as the forecast horizon gets large. Now we want to 
look at the same cointegrating combinations o f  the univari- 
ate forecast errors. From our earlier derivations, it follows 
that a'Ztth '= atkith - ( ( Y ' C ~ ( L ) E ~  + a'O(L)ut) .  Again we 
can rely on the orthogonality o f  a'et+h to the terms in the 
parentheses. The first term, afEt+h, has finite variance, as 
discussed previously. So too do the terms in the parenthe- 
ses because they are linear combinations o f  stationary pro- 
cesses. Thus, we have the following proposition. 

Proposition 2. 

The cointegrating combinations o f  the long-horizon er- 
rors from the univariate forecasts. which completely ignore 
cointegration, also have jinite variance. Thus, it is in fact 
not imposition o f  cointegration on the forecasting system 
that yields the finite variance o f  the cointegrating combi- 
nation o f  the errors: rather it is the cointegration property 
inherent in the systern itself, which is partly inherited by 
the correctly specified univariate forecasts. 

In our study thus far, to guarantee a fair comparison 
o f  the forecasting performance o f  the nlultivariate (cointe- 
grated system) and univariate forecasts, the univariate fore- 
cast model was chosen as the one implied from the un- 
derlying true multivariate model, thus inevitably inheriting 
certain o f  its features. Because all analysis was in popula- 
tion, estimation error played no part in the results, but in 
Section 3 we will incorporate the effects o f  parameter esti- 
mation uncertainty. To guarantee a fair comparison there as 
well, the univariate forecast model order [e.g., ARIMA(2, 
1 ,  l)] will continue to be the one implied by the underly- 
ing true multivariate model, but the actual parameters will 
be estimated separately by maximizing the univariate like- 
lihood. 

2. ACCURACY MEASURES AND COINTEGRATION 

2.1 Accuracy Measures I: Trace MSE 

W e  have seen that long-horizon univariate forecasts o f  
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cointegrated varia'oles (which ignore coinhegrating restric- 
tions) are just as accurate as their system counterparts 
(which explicitly impose cointegrating restrictions) \arken 
accur2.cy is evaluated using the standard trace MSE crite- 
rion. So on lraditional gro~lnds there is no reason to prefer 
iong-horizon forecasts from the cointegrated system. 

One might argue, however, that the system forecasts 
are nevertheless more appealing because "the forecasts of 
levels of co-integrated variables will 'hang together' in 
a way likely to be viewed as sensible by an economist, 
whereas forecasts produced En some other way, such as 
by a group of individual, univariate Box-Jenkins mod- 
els, may well not do so" (Granger and Newbold 1986. p. 
226). Bnt as we have seen, univariate Box-Jenkins fore- 
casts do hang together if the variables are cointegrated- 
the cointegrating combinations, and only the cointegral- 
ing combinations, of univariatc forecast errors have iinite 
variance. 

2 2 Aceuracl Measures 11 Trace MSE in ForecasP~ng 
t h e  Cointegrat~ng Csmblnal~ons 

The long-horizon system forecasts, however, do a bet- 
tier job of satisfying the cointegraiing restrictions than 
dio the univariate forecasts-the long-horizon system fore- 
casts alwa?;s satisfj the cointegrating restrictions, whereas 
t.ne long-horizon ~anivariate forecasts do so only on av- 
erage. From Proposition 2 it is clear that although the 
cointegrating combinations of both the univariate and sys- 
tem forecast errors have finite variance. the variance ou' 
the cointegrating combination of the univariate errors is 
larger. 

Such effects are lost on standard accuracy measures like 
trace MSE. however. because the loss functions that under- 
ij~e them do not explicitly value maintaining the multivari- 
ate long-run relationships of long-horizon forecasts. The 
sola~tion is ob~~iocs-if .we value maintenance of the coin- 
tegrating relationship, then so too should the loss functions 
underlying our forecast accuracy measures. One approach, 
in the spisit of Granger (1996), is to focus on forecasting 
the cointegraring combinations of the variables and to eval- 
uate forecasts ia terns of the variability of the cdntegrating 
combinations of the errors, alel+/,. 

Accuracy aneasua-es based on cointegrating combinations 
of the forecast errors require that the cointegrating vector 
be Itnown. Fortunately, such is often the case. The recent 
literature has emphasized repeatedly that economic and fi- 
nancial models frequently imply cointegration with simple 
and known cointegrating vectors (e.g., Watson 1994; Hor- 
vaeh and Watson 1995; Eivot 1996). Thus, although the as- 
sosnprion of a known cointegrating vector certainly involves 
a loss of generality, it is nevertheless legitimate in a variety 
of economically relevant cases. We will maintain the as- 
sumption of a known cointegration vector for the remainder 
of this article. 

Interestingly, evaluation of accuracy in terms of the trace 
MSE of the cointegrating combi~ations of forecast errors 
is a special case of the general MSE measfire. To see this, 
consider the general ;I7-variate case with r cointegrahing 

relationships and consider again the MSE. 

where Ch is the variance of et+h Evaluating accuracy in 
terms of trace MSE of the cointegrating combinations of 
the forecast errors amounts to evaluating 

= trace E((alet-h)'(oletLh)) = trace(KCh). 

where K = aa'. Thus the trace MSE of the cointegrat- 
ing combinations of the forecast errors is in fact a par- 
ticular variant of MSE formulated on the raw forecast er- 
rors. E(elKe) = trace(KCh), where the weighting matrix 
K = uu' is of (deficient) rank r ( <  I'ij, the cointegrating 
rank of the system. 

2.3 Accuracy Measures 1 9 1 :  Trace MSE From the 
Triangular Wepvesenlatisn 

The problem with the traditional E(krKe)  approach ~ 6 t h  
K = I is that, although it values small MSE, it fails to 
value the long-run fwrecasts9 hanging together correctby. 
Conversely, a problem with the E ( e f K e )  approach with 
K = act.' is that it values only the long-run forecasts' hang- 
ing together correctly, whereas both pieces seem clearly 
relevant. The challenge is to incorpo~ate both pieces icto 
an overall accuracy measure in a natural way. and an ar- 
tractive approach for doing so follows from the triangular 
representation of cointegrated systems exploited by Camp- 
bell and Shiller- (1 987) and Phillips (1991). Clements and 
Hendry (1995) provided a numerical example that illustrates 
the appeal of the triangular representation for forecasting. 
Hn the following, we provide a theoretical result that ea- 
rablishes the general validity of the triangular approach for 
distinguishing between naive univariate and fully specified 
system forecasts. 

From the fact that a' has rank r ,  it is possible to rewrite 
the system so that the jV !eft-side variables are the r error- 
correction terms followed by the differences of Ib' - r in- 
tegrated but not cointegrated variables. That is, we revv,rite 
the system in terms of 

where the variables have been rearranged and partitioned 
into z1 = ( x ; ~ .  - 7 . h t ) 1 9  where r - T(u)  and the variables In 
Lat are ~ntegrated but not cointegrated. %9be then evaluate 
accuracy in terms of the trace MSE of forecasts from ilze 
hiarzgular system, 
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which we denote trace MSEtri. Notice that the trace MSEtrj 
accuracy measure is also of E(e iKe)  form, with 

Recall Proposition 1, which says that under trace MSE, 
long-horizon forecast accuracy from the cointegrated sys- 
tem is no better than that from univariate models. We now 
show that, under trace MSEtri, long-horizon forecast accu- 
racy from the cointegrated system is always better than that 
from univariate models. 

Proposition 3. 

lim 
t r a c e ~ s ~ ~ , i  > 1. 

h i m  t r a c e ~ y ~ ~ , i  

Prooj! Consider a cointegrated system in triangular 
form-that is. a system such that a' = [I - TI]. We need to 
show that, for large h, 

and 

To establish the first inequality, it is sufficient to show that 

We showed earlier that, for large h: 

where Q - ~ a r ( & , ~ ) ,  S r v a r ( C * ( L ) ~ ~  + O(L)ut) ,  and 
from which it follows that 

because S is positive definite. To establish the second in- 
equality, recall that 

so that 

Let CIVaT(l) be the last I'\;-r rows of C(1); then altogether 
we have 

and the proof is complete. 
In summary, although the long-horizon performances of 

the system and univariate forecasts are identical under the 
conventional trace MSE ratio, they differ under the trace 
MSEtri ratio. The system forecast is superior to the univari- 
ate forecast under trace MSEtri because the system forecast 
is accurate in the conventional "small MSE" sense and it 
makes full use of the information in the cointegrating rela- 
tionship(~). We stress, however, that abandoning MSE and 
adopting MSE+,,, marks a change of loss function, and thus 
preferences. If the forecaster's loss function truly is trace 
MSE, then using trace MSE,,-i might not make sense. On 
the other hand trace MSE is often adopted without much 
thought, and an underlying theme of our analysis is pre- 
cisely that thought shoz~ld be given to the choice of loss 
function. 

3. UNDERSTANDING EARLIER 
MONTE CARL0 STUDIES 

Here we clarify the interpretation of earlier influential 
Monte Carlo work, in particular Engle and Yoo (1987), 
as well as Reinsel and Ahn (1992), Clements and Hendry 
(1993), and Lin and Tsay (1996), among others. We do so 
by performing a Monte Carlo analysis of our own: which 
reconciles our theoretical results and the apparently con- 
flicting Monte Carlo results reported in the literature, and 
we show how the existing Monte Carlo analyses have been 
misinterpreted. Throughout, we use a simple bivariate coin- 
tegrated system: 

where the disturbances are orthogonal at all leads and lags. 
The moving average representation is 

and the error-correction representation is 

We set to X = 1, p = 0, and 02 = a: = 1; we use a sample 
size of 100; and we perform 4,000 Monte Carlo replications. 
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This slmpPe desagn a1lovv.s us to make our point forcefully 
and with a minimum of clutter. 

First c o ~ ~ s ~ d e r  Wiener-HColmogorov forecasting from the 
multrvana~e co~niegrated system. Write the rime i - l z  values 
in terms of time t values and luture ~nnovations as 

h 

tvhich makes clear that the 11-step-ahead forecasts are 

Now consider forecasting from the implied univariate rep- 
resentations; this, of course, first requires jnding the uni- 
variate representations. The univariate representation for x 
is of course a rarvdom walk with drift, exactly as given in the 
first equation of the system, .xt = p + x t - ~  + E+ Hence the 
nnivariate forecast for x is the same as the system forecast, 
Ft+,, = ;lh + xl. Derivation of the univariate representation 
for y is a bit more involved. From the n~oving average rep- 
resentation of the system, rewrite the process for yt as a 
univariate two-shock process, yt = X,!L f gt-I  + ztr where 
zt = (I  - Ljl:t f XE+ Simple but tedious algebra reveals that 
zt is an MA(l)  process zt = ut  + But-ls  where B depends 
en the underlying parameters A; C T ~ ,  and a:. [See Christof- 
fersen and Diebold (8997a) for details of this and related 
calculations that appear in this section.] Thus y is an inte- 
grated moving average of order 1. To form the univariate 
forecast for y. write 

= h - i h  Y, + out + U t + l  - :zt+&. 

avhich makes clear that tketsibne t forecast for period t + h 
is Y t f h  = Xiuh + yi + But 

Now let us proceed to the Monte Carlo analysis. The 
Wiener-Kolmogoro-(/ forecasts derived previously assume 
known parameters, but in practice the parameters must be 
estimated. Hence we replace population parameters with 
estimates to construct operational forecasts at each Monte 
CarBo replication, with the exception of the cointegrating 
.vector. whiclh, fo8lov~ing the discussion of Section 2 ,  is as- 
sumed known. Hn particular, for the univariate forecast we 
estimate 6 ,  but for the multivariate forecast we assume X 
Is known, h Figure i we plot the trace MSE ratio and the 
trace MSEtri ratio against the forecast horizon, 11. Using es- 
timated pasaneters changes none of our theoretical results 
reached earlier under the assumption of known parameters. 
111 particular, use of the trace MSE ratio obscures the long- 
horizon benefits of imposing cointegration, whereas use of 
mice MSEtri reveals those benefits clearly. 

Hov~  then can we reconcile our results with those of En- 
gle and 1700 (1987) and the many subsequent authors who 

Trace MSE 
I 
I 

5 40 45 20 25 30 35 40 45 50 
F~recast Horizon 

Figure 1. Trace USE Ratio and Trace IWSE:, Ratio of Univariate 
Versus System Forecasts Plotted Against Forecast Horizon, Bivariate 
System With Estimated Parameters. 

concluded that imposing cointegration produces superior 
long-horizon forecasts? The answer is two-part-that liter- 
ature makes a different and harder-to-interpret comparison 
than we do and it misinterprets the outcoines of the Monte 
Carlo experiments. 

First consider the forecast co~nparison. We have thus 
faxcompared forecasts from univariate models (which im- 
pose integration) to forecasts from the cointegrated system 
(which impose both integration and cointegration). Thus, 
a comparison of the forecasting results isolates the efkcts 
of imposing cointegration. Engle and Yoo et al,, in con- 
trast, compare forecasts from a VAR in Bevels (which im- 
pose izeither integration nor cointegration) to forecasts from 
the coinlegrated system (which impose both integration and 
cointegration). Thus, differences in forecasting performance 
in the Engle-"Joo et al. setup cannot necessarily be at- 
tributed to the imposition of cointegration-instead, they 
may simply be due to imposition of integration: irrespec- 
tive of whether cointegration is imposed. 

Now consider the interpretation of the results. The VAR 
in levels is, of course, integrated, but estimating the system 
in levels entails estimating the unit root. Although many 
estimators are consistent, an exact finite-sample unit root 
is a zero-probability event. Unfortunately, even a slight and 
inevitable deviation of the estimated root from unity pol- 
lutes forecasts from the estimated model: and the pollution 
increases with 12. This in turn causes the MSE ratio to in- 
crease in h when comparing a levels VAR forecast to a 
system forecast or any other forecast that explicitly im- 
poses unit roots. The problem is exacerbated by bias of the 
Dickey-Fuller-Hurwicz type; see Seine and Shaman (1989): 
Pope (1990), Abadir (19931, and Abadir, Hadri and Tzavalis 
(1996) for detailed treatments. 

It is no surprise that forecasts from the VAR estimated 
in leveis perform poorly, with performance worsening with 
horizon, as shown in Figure 2. It is tempting to attribute 
the poor performance of the VAR in levels to its failure to 
impose cointegradon, as do Engle and Yoo et al. The fact 
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Figure 2. Trace MSE Ratio of Levels VAR Versus Co~ntegrated Sys- 
tem Forecasts Plotted Against the Forecast Horizon, Bivariate System 
With Estimated Parameters. 

is, however. that the VAR in levels performs poorly because 
it fails to impose integration, not because it fails to impose 
cointegvation-estimation of the cointegrated system sim- 
ply imposes the correct level of integration a priori. To see 
this, consider Figure 3, in which we compare the forecasts 
from an estimated VAR in diffevences to the forecasts frorn 
the estimated cointegrated system. At long horizons, the 
forecasts from the VAR in differences, which impose in- 
tegration but completely ignore cointegration, perform just 
as well. In contrast, if we instead evaluate forecast accu- 
racy with the trace MSEtri ratio that we have advocated, 
the forecasts from the VAR in differences compare poorly 
at all horizons to those from the cointegrated system, as 
shown in Figure 4. 

In the simple bivariate system, we are restricted to study- 
ing models with exactly one unit root and one cointegra- 
tion relationship. It is also of interest to examine richer 
systems; conveniently, the literature already contains rele- 
vant (but unnoticed) evidence, which is entirely consistent 
with our theoretical results. Reinsel and Ahn (1992) and 
Ein and Tsay (1996), in particular, provided Monte Carlo 
evidence on the comparative forecasting performance of 
competing estimated models. Both studied a four-variable 
VAR(2), with two unit roots and two cointegrating rela- 
tionships. Their results clearly suggest that, under the trace 
MSE accuracy measure, one need only worry about impos- 
ing enough unit roots 011 the system. Imposing three (one 
too many) unit roots is harmless at any horizon, and im- 
posing four unit roots (two too many so that the VAR is in 
differences) is harmless at long horizons. As long as one im- 
poses enough unit roots, at least two in this case, the trace 
MSE ratio will invariably go to 1 as the horizon increases. 

Forecast Horizon 

Figure 3. Trace MSE Ratio of Differenced VAR Versus Cointegrated 
System Forecasts Plotted Against Forecast Horizon, Bivariate System 
With Estimated Parameters. 

implies restrictions on low-frequency dynamics, imposing 
cointegration is helpful for short- but not long-horizon fore- 
casting, in contrast to the impression created in the litera- 
ture. Imposition of cointegration on an estimated system, 
when the system is in fact cointegrated, helps the accuracy 
of long-horizon forecasts relative to those from systems es- 
timated in levels with no restrictions, but that is because of 
the imposition of integration, not cointegration. Univariate 
forecasts in differences do just as well! We hasten to add, 
of course, that the result is conditional on the assumption 
that the univariate representations of all variables do in fact 
contain unit roots. Differencing a stationary variable with 
roots close to unity has potentially dire consequences for 
long-horizon forecasting, as argued forcefully by Lin and 
Tsay (1996). 

Second, we have shown that the variance of the cointe- 
grating combination of the long-horizon forecast errors is 

I 
I 
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First, we have shown that imposing cointegration does Forecast Horizon 

not improve long-horizon forecast accuracy when forecasts 
Figure 4. Trace M S E ,  Ratio of Differenced VAR Versus Cointegrated 

of are using the standard System Forecasts Plotted Against Forecast Horizon, Bivariate System 
trace MSE ratio. Ironically enough, although cointegration with Estimated Parameters. 


