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To Lawrence Klein, Marc Nerlove, and Peter Pauly,
who taught me forecasting.



Most good texts arise from the desire to leave one’s stamp on a discipline by
training future generations of students, coupled with the recognition that ex-
isting texts are inadequate in various respects. My motivation is no different.

There is areal need for a concise and modern introductory forecasting text.
A number of features distinguish this book. First, although it uses only ele-
mentary mathematics, it conveys a strong feel for the important advances
made since the work of Box and Jenkins more than 30 years ago. In addition
to standard models of trend, seasonality, and cycles, it touches—sometimes
extensively—upon topics such as

data mining and in-sample overfitting

statistical graphics and exploratory data analysis
model selection criteria

recursive techniques for diagnosing structural change
nonlinear models, including neural networks
regime-switching models

unit roots and stochastic trends

smoothing techniques in their relation to stochastic-trend unobserved-
components models

vector autoregressions

cointegration and error correction

predictive causality

forecast evaluation and combination

simulation and simulation-based methods

volatility measurement, modeling, and forecasting

M YY POy vy

Y WY VY Y




Preface

Much of that material appears in the “Exercises, Problems, and Comple-
ments” following each chapter, which form an integral part of the book.
The Exercises, Problems, and Complements are organized so that instruc-
tors and students can pick and choose according to their backgrounds and
interests.

Second, the book does nat atrtempt to be exhaustive in coverage. In fact,
the coverage is intentionally selective, focusing on the core techniques
with the widest applicability. The book is designed so that it can be covered re-
alistically in a one-semester course, Core material appears in the main text,
and additional material that expands on the depth and breadth of coverage is
provided in the Exercises, Problems, and Complements, as well as the Biblio-
graphical and Computational Notes, at the end of each chapter.

Third, the book is applications-oriented. It illustrates all methods with de-
tailed real-world applications designed to mimic rypical forecasting situations.
In many chapters, the application is the centerpiece of the presentation. In
various places, the book uses applications not simply to illustrate the methods
but also to drive home an important lesson, the limitations of forecasting, by
presenting truly realistic examples in which not everything works perfectly!

Fourth, the book is in touch with modern modeling and forecasting
software, It uses Eviews, which is a good modern computing environment for
forecasting, throughout. At the same time, I am not a software salesman, so
the discussion is not wed to any particular software. Students and instructors
can use whatever computing environment they like best.

The book has found wide use among students in a variety of fields, includ-
ing business, finance, economics, public policy. statistics, and even engineer-
ing. The book is directly accessible at the undergraduate and master's levels;
the only prerequisite is an introductory statistics course that includes linear re-
gression. To help refresh students’ memories, Chapter 2 reviews linear regres-
stion from a forecasting perspective. The book is also of interest to those with
more advanced preparation, because of the hard-to-find direct focus on fore-
casting (as opposed, for example, to general statistics, econometrics, or time
series analysis). I have used it successtully for many years as the primary text in
my undergraduate forecasting course, as a background text for various other
undergraduate and graduate courses, and as the primary text for master’s-
level Executive Education courses given to professionals in business, finance,
economics, and government.

SUPPLEMENTS

Data Sets and Eviews Programs

Selected data and Eviews programs, as used both in the text chapters and in
the Exercises, Problems, and Complements at the end of each chapter, are
available on the text Web site at www.thomsonedu.com/economics/diebold.


http://www.thomsonedu.com/economics/diebold

Preface

Text Web Site

The text Web site at www.thomsonedu.com/economics diebold provides
teaching resources, including the solutions manual for instructors; learning
resources, including data sets and Eviews programs; and many more features.

Solutions Manual

Prepared by Francis Diebold, University of Pennsylvania, the solutions manual
contains remarks, suggestions, hints, and solutions for many of the end-of-
chapter exercises, problems, and complements. It is available on the text
Web site and may be downloaded for use by adopting instructors.

Eviews Software

Upon the instructor’s request, Eviews Student Version can be bundied with
the text. With Eviews, students can do homework anvwhere they have access
to a PC. For more information on this special Eviews offer, contact vour
Thomson South-Western representative or call the Academic Resource Center
at 1-800-423-0563.

Economic Applications

Economic Applications includes South-Western's dynamic Web features:
EconNews, EconDebate, and EconData Online. Organized by pertinent eco-
nomic topics and searchable by topic or feature, these features are easy o
integrate into the classroom. EconNews, EconDebate, and EconData all
deepen students” understanding of theoretical concepts through hands-on ex-
ploration and analvsis for the latest economic news stories, policy debates, and
data. These features are updated on a regular basis. For more information,
visit www.thomsonedu.com,

InfoTrae

With InfoTrac College Edition. students can receive anytime, anywhere online
access to a database of full-text articles from thousands of popular and schol-
arly periodicals. such us Newsweek, Fortune, and Nation'’s Business, among others.
InfoTrac is a great way to expose students to online research techniques, with
the securitv that the content is academically based and reliable. For more in-
formation, visit www.thomsonedu.com,

You can start using many of these resources right away bv following the di-
rections on the access card that came with the purchase of a new book. Get
started today at www.thomsonedu.com!
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The fourth edition maintains the emphasis of earlier editions on providing an
intuitive building-block approach to the development of modern and practi-
cal methods for producing, evaluating, and combining forecasts. Within that
framework, several improvements have been implemented, including

1. Enhanced and extended discussion of the elements of probability and sta-
tistics of maximal relevance to forecasting, now included as a separate
Chapter 2,

2. Many new exercises, problems, and complements, which emphasize practi-
cal implementation of the methods developed in the text, including sim-
ple drills to check understanding,

3. Selectively reworked and/or rearranged material, to maximize clarity and
pedagogical effectiveness.

Throughout, my intent has been to insert and delete where needed, sparingly,
avoiding the temptation to fix parts “that ain’t broke.” Hopefully I have moved
forward.

EX.D
August 2006
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Introduction to

Forecasting:
Applications, Methods,
Books, Journals,

and Software

Forecasting is important. Forecasts are constantly made in business, finance,
economics, government, and many other fields, and much depends on them.
As with anything else, there are good and bad ways to forecast. This book is
about the good ways—modern, quantitative, statistical/econometric methods
of producing and evaluating forecasts.

NEREEER
|. Forecasting in Action

Forecasts are made to guide decisions in a variety of fields. To develop a feel
for the tremendous diversity of forecasting applications, let’s sketch some of
the areas where forecasts are used and the corresponding diversity of deci-
sions aided by forecasts.

a. Operations planning and control. Firms routinely forecast sales to help guide
decisions in inventory management, sales force management, and pro-
duction planning, as well as strategic planning regarding product lines,
new market entry, and so on. Firms use forecasts to decide what to pro-
duce (What product or mix of products should be produced?), when to



Chapter 1

produce (Should we build up inventories now in anticipation of high fu-
ture demand? How many shifts should be runr), how much to produce
and how much capacity to build (What are the trends in market size and
market share? Are there cyclical or seasonal effects? How quickly and with
what pattern will a newly built plant or a newly installed technology depre-
ciate?), and where to produce (Should we have one plant or many? If
many, where should we locate them?). Firms also use forecasts of future
prices and availability of inputs to guide production decisions.

Marketing. Forecasting plays a key role in many marketing decisions. Pric-
ing decisions, distribution path decisions, and advertising expenditure de-
cisions all rely heavily on forecasts of responses of sales to different mar-
keting schemes.

Economics. Governments, policy organizations, and private forecasting firms
around the world routinely forecast the major economic variables, such as
gross domestic product (GDP), unemployment, consumption, investment,
the price level, and interest rates. Governments use such forecasts to guide
monetary and fiscal policy. and private firms use them for strategic plan-
ning, because economy-wide economic fluctuations typically have industry-
level and firm-level effects. In addition to forecasting “standard” variables
such as GDP, economists sometimes make more exotic forecasts, such as
the stage of the business cycle that we'll be in 6 months from now (expan-
sion or contraction), the state of future stock market activity (bull or bear),
or the stare of future foreign exchange market activity (appreciation or de-
preciation). Again. such forecasts are of obvious use to both governments
and firms—if they’re accurate!

Financial asset management. Portfolio managers have an interest in forecast-
ing asset returns {stock returns, interest rates, exchange rates, and com-
modity prices), and such forecasts are made routinely. There is endless de-
bate about the success of forecasts of asset returns. On the one hand, asset
returns should be very hard to forecast; if they were easy to forecast, vou
could make a fortune easily, and any such “get rich quick” opportunities
would already have been exploited. On the other hand, those who ex-
ploited them along the way mav well have gotten rich! Thus, we expect that
simple, widely available methods for forecasting should have little success
in financial markets, but there may well be profits to be made from using
new and sophisticated techniques to uncover and exploit previously unno-
ticed patterns in financial data (at least for a short time, until other market
participants catch on or your own trading moves the market).

Financial risk management. The forecasting of asset return volatility is
related 10 the forecasting of asset verurns. In the last 10 years, practical
methods for volatility forecasting have been developed and widely applied.
Volatility forecasts are crucial for evaluating and insuring risks associated
with asset portfolios. Volatility forecasts are also crucial for firms and in-
vestors who need to price assets such as options and other derivatives.
Business and government budgeting. Businesses and governments of all sorts
must constantly plan and justify their expenditures. A major component of
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the budgeting process is the revenue forecast. Large parts of firms’ rev-
enues rypically come from sales, and large parts of governments’ revenues
typically come from tax receipts, both of which exhibit cyclical and long-
term variation.

g. Demography. Demographers routinely forecast the populations of countries
and regions all over the world, often in disaggregated form, such as by age,
sex, and race. Population forecasts are crucial for planning government
expenditure on health care, infrastructure. social insurance, antipoverty
programs, and so forth. Many private sector decisions, such as strategic
product line decisions by businesses, are guided by demographic forecasts
of particular targeted population subgroups. Population in turn depends
on births, deaths, immigration, and emigration, which are also forecasted
rourinely.

h. Crisis management. A variety of events corresponding to crises of various
sorts are frequently forecast. Such forecasts are routinely issued as proba-
bilities. For example, in both consumer and commercial lending, banks
generate default probability forecasts and refuse loans it the probability is
deemed too high. Similarly, international investors of various sorts are
concerned with probabilities of default, currency devaluations, military
coups, and so forth, and use forecasts of such events to inform their port-
folio allocation decisions.

The variety of forecasting tasks that we’ve just sketched was selected to
help you begin to get a feel for the depth and breadth of the field. Surely you
can think of many more situations in which forecasts are made and used to
guide decisions.

With so many different forecasting applications, you might think that a
huge variety of forecasting techniques exists and that you'll have to master all
of them. Fortunately, that's not the case. Instead, a relatively small number of
tools form the common core of almost all forecasting methods. Needless to
say, the details differ if one is forecasting Intel's stock price one day and the
population of Scotland the next, but the principles underlying the forecasts
are identical. Thus, we'll focus on the underlying core principles that drive all
applications.

T T T S R
2. Forecasting Methods: An Overview of the Book

To give you a broad overview of the forecasting landscape. let's sketch what's
to follow in the chapters ahead. If some of the terms and concepts seem unfa-
miliar, rest assured that we'll be studying them in depth in later chapters.
Forecasting is inextricably linked to the building of statistical models.
Before we can forecast a variable of interest, we must build a model for it and
estimate the model’s parameters using observed historical data. Typically, the
estimated model summarizes dvnamic patterns in the data; that is, the est-
mated model provides a statistical characterization of the links between the
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present and the past. More formally, an estimated forecasting model provides
a characterization of what we expect in the present, conditional on the past,
from which we infer what to expect in the future. conditional on the present
and past. Quite simply, we use the estimated forecasting model to extrapolate
the observed historical data.

In this book, we focus on core modeling and forecasting methods that are
very widelv applicable; variations on them can be applied in almost any fore-
casting situation. The book is divided into two parts. The first provides back-
ground and introduces vartous fundamental issues relevant to anv forecasting
exercise. The second treats the construction, use, and evaluation of modern
forecasting models. We give special attention to basic methaods of forecasting
trend, seasonality, and cvcles, in both univariate and multivariate contexts.!
We also discuss special topics in forecasting with regression models, as well as
forecast evaluation and combination. Along the way, we introduce a number
of modern developments, sometimes in the text and sometines in the Exer-
cises, Problems, and Complements that follow each chapter. These include
model selection criteria, recursive estimation and analvsis, ARMA and ARIMA
models, unit roots and cointegration. volatility models, simulation, vector auto-
regressions, and nonlinear forecasting models. Every chapter contains a de-
tailed application; examples include forecasting retail sales, housing starts,
employvment, liquor sales, exchange rates, and shipping volwne.

In this chapter, we provide a broad overview of the forecasting landscape.
In Chapter 2 we review probability, statistics, and regression from a forecasting
perspective. In Chapter 3, we highlight six considerations relevant to all fore-
casting tasks: the decision-making environment, the nature of the object to be
forecast, the way the forecast will be stated. the forecast horizon, the informa-
tion on which the forecast will be based, and the choice of forecasting method.

In Chapter 4, we introduce certain aspects of statistical graphics relevant for
forecasting. Graphing data is a useful first step in any forecasting project, as it
can often reveal features of the data relevant for modeling and forecasting. We
discuss a variety of graphical techniques of nse in modeling and forecasting,
and we conclude with a discussion of the elements of graphical style—what
makes good graphics good and bad graphics bad.

After Chapter 4, the chapters proceed differently—each treats a specific
set of tools applicable in a specific and important forecasting situation. We ex-
ploit the fact that a useful approach to forecasting consists of separately mod-
eling the unobserved components underlying an observed time series—trend
components, seasonal components, and cyclical components.® Trend is that
part of a series’ movement that corresponds to long-term, slow evolution.

! See the Exercises, Problems, and Complements at the end of this chapter for a discussion of the
meanings of univariate and arudtivariate.

2 We'll define the idea of a time series more precisely in subsequent chapters, but for now just
think of a time sevies as a variable of interest that has been recorded over time. For example, the an-
nual rainfall in Brazil from 1950 to 2006, a string of 37 numbers, is 4 ime series. On the basis of
that historical data, one might want to forecast Brazilian rainfall for the vears 2007-2010.
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Seasonality is that part of a series’ movement that repeats each year. Cycle is a
catchall term for various forms of dynamic behavior that link the present to
the past and hence the future to the present.

In Chapter 3., we discuss rend—what it is. where it comes from, why it’s im-
portant, how to model it, and how to forecast it. We do the same for seasonality
in Chapter 6. Next we provide an extensive discussion of cvcles: indeed, cvcles
are so important that we split the discussion into three parts. In Chapter 7, we
introduce the idea of a cycle in the context of analysis of covariance stationary
timne series, and we discuss methods for the quantitative characterization of
cyclical dynamics. In Chapter 8. we describe explicit models for cyclical series,
focusing on autoregressive (AR), moving average (MA), and mixed (ARMA)
processes. Relying heavily on the foundation built in Chapters 7 and 8, we ex-
plicitly treat the model-based torecasting of cvclical series in Chapter 9. Finallv,
in Chapter 10, we assemble what we learned in earlier chapters, modeling and
forecasting series with trend. seasonality. and cycles simultaneously present.

In Chapter 11, we consider multiple regression models in greater deuail.
focusing on nuances of particular relevance for forecasting. In particular, we
make the distinction between “conditional” forecasting models, useful for an-
swering “what if * questions (e.g., What will happen to my sales if I lower my
price by 10%7) but not directly useful for forecasting, and “unconditional”
forecasting models, which are directly useful for forecasting. We also treat is-
sues concerning the proper dvnamic specification of such models, including
distributed lags, lagged dependent variables, and serially correlated errors,
and we study and apply vector autoregressive models in detail.

In Chapter 12, in contrast to our earlier development of methods for con-
structing and using various forecasting models, we consider the evaluation of
forecasting performance once a track record of forecasts and realizations has
been established. That is, we show how to assess the accuracy of forecasts and
how to determine whether a forecast can be improved. We also show how to
combine a set of forecasts to produce a potentially superior composite forecast.

Chapters 1-12 form a coherent whole, and some courses mav end with
Chapter 12. depending on time constraints and course emphasis. For those so
inclined to proceed to more advanced material, we include two such chapters.

First, in Chapter 13, we introduce the idea of stochastic rend, meaning
that the trend can be affected by random disturbances.* We show how to fore-
cast in models with stochastic trends and highlight the differences between
forecasts from stochastic trend and deterministic trend models. Finally, we dis-
cuss “smoothing™ methods for producing forecasts, which turn out to be opti-
mal for forecasting series with certain types of stochastic trend.

Second, in Chapter 14. we introduce models of time-varving volatility,
which have found wide application. especially in financial asset management
and risk management. We focus on the so-called ARCH family of volatility
models, including several important variations and extensions.

not stochastic.



Chapter 1

NERER
3. Useful Books, Journals, Software,
and Online Information

As you begin vour study of forecasting, it's important that you begin to develop
an awareness of a variety of useful and well-known forecasting textbooks, pro-
fessional forecasting journals where original forecasting research is published,
and forecasting software.

BOOKS

A number of good books exist that complement this one: some are broader,
some are more advanced, and some are more specialized. Here we’ll discuss a
few that are more broad or more advanced, in order to give you a feel for the
relevant literature. More specialized books will be discussed in subsequent
chapters when appropriate.

Wonnacott and Wonnacott (1990) is a well-written and popular statistics
book, which you may wish to consult to refresh your memory on statistical dis-
tributions, estimation, and hypothesis testing. It also contains a thorough and
very accessible discussion of linear regression, which we use extensively
throughout this book.! Another good source is Anderson, Sweeney, and
Williams (2006).

Pindyck and Rubinfeld (1997) is a well-written general statistics and econo-
metrics text, and you'll find it a very useful refresher for basic statistical topics,
as well as a good introduction to more advanced econometric models. Simi-
larly useful books include Maddala (2001) and Kennedy (1998).

As a student of forecasting, you'll want to familiarize yourself with the
broader time series analysis literature.? Chatfield (1996) is a good introduc-
tory book, which vou’ll find useful as a background reference. More advanced
books, which you may want to consult later, include Granger and Newbold
(1986) and Harvey (1993). Granger and Newbold, in particular, is packed with
fine insights and explicitly oriented toward those areas of time series analysis
that are relevant for forecasting. Hamilton (1994) is a more advanced book
suitable for Ph.D-level study.

1 You'll also want o explore Chapter 2, which pravides a concise review of the regression model
as relevant for forecasting.

* Most forecasting methods are concerned with forecasting time series. The modeling and fore-
casting of time series are so important that an entire field called time series analysis has arisen. Al-
though the origins of the field go back hundreds of years, major advances have occurred in the
last 50 years. Time series analysis is intimately related to forecasting, because quantitative time se-
ries forecasting techniques require that quantitative time series models first be fit to the series of
interest. Thus, forecasting requires knowledge of time series modeling techniques. A substantial
portion of this book is therefore devoted to time series modeling,.
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A number of specialized books are also of interest. Makridakis and
Wheelwright (1997) and Bails and Peppers (1997) display good business
sense, with interesting discussions, for example, of the different forecasting
needs of the subunits of a wpical business firm, and of communicating fore-
casts to higher management. Taylor (1996) provides a nice introduction to
modeling and forecasiing techniques of particular relevance in finance.

Finally, Makridakis and Wheelwright (1987), Armstrong (2001]), Clements
and Hendry (2002), and Elliott, Granger, and Timmermann (2003) are infor-
mative and well-written collections of articles by experts in various subfields of
forecasting, dealing with both forecasting applications and methods. They pro-
vide a nice complememn: to this book, with detailed descriptions of forecasting
in action in various business, economic, financial, and governmental settings.

JOURNALS

A number of journals cater to the forecasting community. The leading acade-
mic forecasting journals, which contain a mixture of newly proposed methods,
evaluation of existing methods, practical applications, and book and software
reviews, are fournal of Forecasting and International fournal of Forecasting. In ad-
dition, Journal of Business Forecasting is a good source for case studies of fore-
casting in various corporate and government environments.

Although a number of journals are devoted to forecasting, its interdisci-
plinary nature results in a rather ironic outcome: A substantial fraction of the
best forecasting research is published not in the forecasting journals but
rather in the broader applied econometrics and statistics journals, such as
Journal of Business and Economic Statistics, Review of Economics and Statistics, and
Journal of Applied Econometrics, among manvy others. Several recent journal sym-
posia have focused on forecasting—see, for example, Diebold and Watson
(1996); Diebold and West (1998); Diebold, Stock, and West (1999): Diebold
and West (2001); and Diebold, Engle, Favero, Gallo, and Schorfheide (2003).

SOFTWARE

Just as some journals specialize exclusively in forecasting,. so 100 do some soft-
ware packages. But just as important forecasting articles appear regularly in
journals much broader than the specialized forecasting journals, so, too, are
forecasting tools scattered throughout econometric/statistical software pack-
ages with capabilities much broader than forecasting alone.®

One of the best such packages is Eviews, a modern Windows environment
with extensive timne series, modeling, and forecasting capabilities.” Eviews can
implement almost all of the methods described in this book (and many more}.
Most of the examples in this book are done in Eviews, which reflects a balance
of generality and specialization that makes it ideal for the sorts of tasks that

b Ryeroft (1993) provides a tharvugh comparison of several forecasting software environments.
7 The Eviews web page is at www.eviews.com.
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will concern us.” If you feel more comfortable with another package, however,
that's fine—none of our discussion is wed to Eviews in anv way. and most of
our techniques can be implemented in a variety of packages, including
Minitab, SAS. and many others.”

If you go on to more advanced modeling and forecasting. vou'll probably
want to have available an open-ended high-level computing environment in
which yvou can quicklv program. evaluate, and applv new tools and techniques.
Matlab is one very good such environment.!" Madab is particularly well suited
for time series modeling and forecasting.'!

Although most forecasting is done in time series environments, some is
done in “cross sections,” which refers to examination of & population at one
point in time. Stata is an outstanding package for cross-section modeling, with
strengths in areas such as qualitative response modeling, Poisson regression,
quantile regression, and survival analysis.!?

Before proceeding. and at the risk of belaboring the obvious, it is impor-
tant to note that no software is perfect. In fact, all software is highly imperfect!
The results obtained when modeling or forecasting in different software envi-
ronments may differ—somertimes a little and sometimes a lor—for a variety of
reasons. The details of implementation may differ across packages, for exam-
ple, and small differences in details can sometimes produce large differences
in results. Hence, it is important that vou understand precisely what vour soft-
ware is doing (insofar as possible, as some software documentation is more
complete than others). And, of course, quite apart from correctly imple-
mented differences in details. always remember that deficient implementa-
tions occur: There is no such thing as bug-free software.

ONLINE INFORMATION

A variety of information of interest to forecasters is available on the web. The
best way to learn about what's our there in cyberspace is to spend a few hours
searching the web for whaiever interests vou. However. any list of good web
sites for forecasters is likely to be outdated shortly after its compilation.
Hence, we mention just one, which is regularly updated and tremendously au-
thoritative: Resources for Economists, at www.rfe.org. It contains hundreds of
links to data sources, journals, professional organizations, and so on. Frankly,
the Resources for Economists page is all you need to start on your way.

* A number of other good software packages are reviewed by Kim and Trivedi (1993).
¥ S+ also deserves mention as a fine computing environment with special strengths in graphical

data analysis and modern statistical methods. See Hallman (1993) tor a review.

" Matlab maintains a web page that contains material on product availabilitv, user-written add-

ons, and more. at waw.mathworks.com.

' Rust (1993) provides a comparative review of Mattab and one of its competitors, Gauss.

12 For a review of Stata. see Ferrall (1994). The Stata web page is at www.stata.com. The page has
product information, user-supplied rourines, course informarion, and so forth, as well as links 1o
other statistical software products, many of which are useful for forecasting.
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4. Looking Ahead

A forecast is little more than a guess about the future. Because forecasts guide
decisions, good forecasts help 1o produce good decisions. In the remainder of
this book, we’'ll motivate, describe, and compare modern forecasting meth-
ods. You'll learn how to build and evaluate forecasts and forecasting models,
and you'll be able to use them to improve your decisions. Enjoy!

Exercises, Problems, and Complements

1. (Forecasting in daily life: We are all forecasting, all the time)

a.

Sketch in detail three forecasts thal you make routinely, and probably
informallv. in vour dailv life. What makes vou believe that the forecast object
is predictable? What factors might introduce error into vour forecasts?

What decisions are aided by vour three forecasts? How might the degree of
predictability of the forecast object affect vour decisions?

How might you measure the "goodness” of your three forecasts?

For each of vour forecasts, what is the value to vou of a “good™ as opposed to a
*bad” forecast?

2. (Forecasting in business, finance, economics, and government) What sorts of
forecasts would be usetul in the following decision-making situations? Whyz What
sorts of data might vou need to produce such forecasts?

a.

Shop-All-The-Time Network (SATTN) needs to schedule operators to receive
incoming calls. The volume of calls varies depending on the time of day, the
quality of the TV advertisement, and the price of the good being sold. SATTN
must schedule siaff to minimize the loss of sales (tvo few operators leads o
long hold times, and people hang up it put on hold) while also considering
the loss associated with hiring excess emplovees.

You're a U.S. investor holding a portfolio of Japanese, British, French, and
German stocks and government bonds. You're considering broadening vour
portfolio to include corporate stocks of Tambia. a developing cconomy with
a risky emerging stock market. You're only willing to do so if the Tambian
stocks produce higher portfolio returns sufficient to compensate you for the
higher risk. There are rumors of an impending military coup, in which case
your Tambiun stocks would likelv become worthless. There is also a chunce of
a major Tambian currency depreciation, in which case the dollar value of
your Tambian stock returns would be greatly reduced.

You are an executive with Grainworld, a huge corporate farming
conglomerate with grain sales both domestically and abroad. You have no
control over the price of your grain, which is determined in the competitive
market, but vou must decide what to plant and how much, over the next

2 years. You are paid in foreign currency for all grain sold abroad, which you
subsequently convert to dollars. Until now, the government has bought all
unsold grain to keep the price vou receive stable, but the agricultural lobby
is weakening, and vou are concerned that the government subsidy may be
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reduced or eliminated in the next decade. Meanwhile, the price of fertilizer
has risen because the government has restricted production of ammonium
nitrate, a key ingredient in both fertilizer and terrorist bombs.

d. You run BUCO, a British utilitv supplving electriciny 1o the London
metropolitan area. You need to decide how much capacity to have on line,
and two conflicting goals must be resolved in order to make an appropriate
decision. On the one hand, vou obviously want to have enough capacity o
meet average demand, but that's not enough, because demand is uneven
throughout the year. In particular, demand skyrockets during summer heat
waves—which occur randomly—as more and more people run their air
conditioners constantly. If you don’t have sufficient capacity to meet peak
demand, vou get bad press. On the other hand, if you have a large amount of
excess capacity over most of the vear, you also get bad press.

(The hasic forecasting framework) True or false (explain vour answers):

a. The underlving principles of time series forecasting differ radically
depending on the time series being forecast.

b. Ongoing improvements in forecasting methods will eventually enable perfect
prediction.

c. There is no way 1o learn from a forecast’s historical performance whether and
how it could be improved.

(Degrees of forecastability) Which of the following can be forecast perfectly?
Which cannot be forecast at all? Which are somewhere in between? Explain your
answers, and be caretul!

a. The direction of change tomorrow in a country’s stock market

b. The eventual lifetime sales of a newly introduced automobile model

c¢. The outcome of a coin flip

d. The date of the next full moon

e. The outcome of a (fair) lottery

(Data on the web) A huge amount of data of all sorts is available on the web.
Frumkin (2004) and Baumohl (2005) provide useful and concise introductions
to the construction, accuracy, and interpretation of a variewv of economic and
financial indicators, inany of which are available on the web, Search the web for
information on U.S. rerail sales, U.K. stock prices, German GDP, and Japanese
federal government expenditures. (The Resources for Economists page is a fine
place to start: www.rie.org.) Using graphical methods. compare and contrast the
movements of each series and speculate about the relationships that may be
present.

(Univariate and multivariate forecasting models) In this book. we consider both
univariate and multivariate forecasting models. In a univariate model, a single
variable is modeled and forecast solely on the basis of its own past. Univariate
approaches to forecasting may seem simplistic, and in some situations thev are,
but they are tremendously important and worth studying for at least two reasons.
First, although theyv are simple, they are not necessarily simplistic, and a large
amount of accumulated experience suggests that they often perform admirably.
Second, it’s necessary to understand univariate forecasting models betore tackling
more complicated multivariate models.

In a multivariate model, a variable (or each member of a set of variables) is
modeled on the basis of its own past, as well as the past of other variables, thereby
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accounting for and exploiting crosswvariable interactions. Multivariate models
have the potential to produce forecast improvements relative to univariate models,
because they exploit more information to produce forecasts.
a. Dectermine which of the following are examples of univariate or multivariate
forecasting:
¢ Using a stock’s price history to forecast its price over the next week
¢ Using a stock’s price history and volatility history to forecast its price over
the next week
* Using a stock’s price history and volatility history to forecast its price and
volatility over the next week
b. Keeping in mind the distinction between univariate and multivariate models,
consider a wine merchant seeking to forecast the price per case at which 1990
Chateau Latour, one of the greatest Bordeaux wines ever produced, will sell in
2013, at which time it will be fully mature.
®  What sorts of univariate forecasting approaches can you imagine that
might be relevant?
¢ What sorts of multivariate forecasting approaches can vou imagine that
might be relevant? What other variables might be used to predict the
Latour price?
® What are the comparative costs and benefits of the univariate and
multivariate approaches to forecasting the Latour price?
*  Would you adopt a univariate or multivariate approach to forecasting the
Latour pricez Why?

Concepts for Review

Forecasting Deterministic
Statistical model Econometric model
Forecasting model Time series analvsis
Time series Univariate model
Stochastic Multivariate model

References and Additional Readings

Anderson, D. R., Sweeney, D. J., and Williams, T. A. (2006). Statistics for Bustness and Economics.
4th ed. Cincinnati: South-Western.

Armstrong, J. S., ed. (2001). The Principles of Forecasting. Norwell, Mass.: Kluwer Academic
Forecasting.

Bails, DD. G., and Peppers, L. C. (1997). Business Fluctuations. 2nd ed. Englewood Cliffs, N J.:
Prentice Hall.

Baumohl, B. (2003). Secrets of Economic Indicators: The Hidden Clues to Future Economic Trends and
Investment Opportunities. Philadelphia: Wharton School Publishing.

Chatfield, C. (1996). The Analysis of Time Series: An Introduction, 5th ed. l.ondon: Chapman and
Hall.

Clements, M. P, and Hendry, D. F,, eds. (2002). A Companion to Economic Forecasting. Oxford:
Blackwell.

Diebold, F. X., Engle, R. F.. Favero. C.. Gallo, G.. and Schorfheide, F. (2005). The Econometrics of
Macroeconomics. Finance, and the Interface. Special issue of fournal of Econometrics,

11



Chapter 1

Diebold, F. X., and Watson, M. W, eds. (1996). New Developments in Evonowmic Forecasting. Special
issue of Journal of Applied Econometrics, 11, 453-594.

Diebold, F. X,, Stock, J. H., and West, K. D., eds. (19991, Forecasting and Ewmpivical Methods in
Macroeconomics and Finance, H. Special issue of Review of Econamics and Stalistics. 81, 533-673.

Diebold, F. X., and West, K. D., eds. (1998). Forecasting and Empirical Methods in Macroeconvmics
and Finance. Special issue of Internationaf Economic Rrsew, 39, 811-1144.

Diebold, ¥. X., and West, K. D., eds. {2001). Forecasting and Empirical Methods in Macroeconomics
and Finance 111. Special issue of Journal of Econometrics, 105, 1-308.

Elliott, G., Granger, C. W._ )., and Timmermann. A.. eds. {2003), Handbook of Economic Forecasting.
Amsterdani: North-Holland.

Ferrall, C. (1994). A Review of Stata 3.1." Journal of Applied Econometrics, 9. 469-478,

Frumkin, N. (2004). Tracking America’s Econumy. 4th ed. Armonk, N.Y.: Sharpe.

Granger, C. W. ]., and Newbold, P. (1986). Ferecasting Economic Time Series. 2nd ed. Orlando, F1.:
Academic Press.

Halliman, J. (1993). “Review of S+.” Journal of Applied Econometrics, 8. 213-220.

Hamilton, J. D. (1994). Time Series Analysis. Princeton, N.J.: Princeton University Press.

Harvey, A. C. (1993). Time Series Models. 2nd ed. Cambridge, Mass.: MIT Press.

Kennedy, P. (1998). A Guide te Econometrics. 41th ¢d. Cambridge, Mass.: MIT Press.

Kim, ], and Trivedi, P. (1993). “Econometric Time Series Analvsis Software: A Review.” American
Statistician. 48, 336-346.

Maddala, G. S. (2001). Introduction to Econometrics. 3rd ed. New York: Macmillan.

Makridakis, S., and Wheelwright S. (1987). The Handbook of Forecasting: A Manager's Guide. 2nd
ed. New York: Wiley.

Makridakis, S., and Wheelwright S. C. (1997). Forecasting: Methods and Applications. 3rd ed. New
York: Wiley.

Pindyck, R. S.. and Rubinfeld, D. L. (1997). Econometric Modets and Economic Forecasts. 4th ed. New
York: McGraw-Hill.

Rust. J. (1993). “Gauss and Matlab: A Comparison.” Journal of Applied Econvmetrics, 8, 307-324.

Rycroft, R. 8. (1993). *Microcomputer Software of Interest to Forecasters in Comparative
Review: An Update.” International Journal of Forecasting, 9. 331-575.

Tavlor, S. (1996). Modeling Financial Time Sertes. 2nd ¢d. New York: Wilev.

Wonnacott, T. H., and Wonnacott, R. J. (1990). futroductory Statistics. 5th ed. New York: Wilev.



A Brief Review of
Probability, Statistics,
and Regression

for Forecasting

NS T O R O -

I. Why This Chapter?

The role of this chapter is threefold. First, it reviews some familiar material.
You’ve already studied some probability and statistics, but chances are that you
could use a bit of review, so this chapter supplies it.!

Second, although this chapter largely reviews familiar material, it does so
from a new perspective. That is, it begins developing the material from the
explicit perspective of forecasting, which involves special considerations and
nuances. For example, we motivate the regression model as a model of a
conditional expectation, which turns out to be an intuitive and appealing
forecast.

Third, the chapter foreshadows new material subsequently developed in
greater detail. It begins to introduce tools that are new but that are related to
things you learned earlier and very important for building forecasting models,
such as information criteria for model selection. Hence, you should not worry
if some of the material looks unfamiliar!

! Be warned, however: This chapter is no substitute for a full-course introduction to probability
and statistics. If the bulk of it looks unfamiliar to you, you're in trouble and should speak with your
instructor immediately.
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2. Random Variables, Bistributions, and Moments

Consider an experiment with a set O of possible outcomes. A random variable
Y is simply a mapping from O to the real numbers. For example. the experi-
ment might be flipping a coin twice, in which case O = |(Heads, Heads),
(Tails, Tails), (Heads, Tails), (Tails, Heads)}. We might define a random vari-
able Y to be the number of heads observed in the two flips, in which case ¥
could assume three values, y=0,y=1,and y = 2.

Discrete random variables—that is, random variables with discrete proba-
bility distributions—can assume only a countable number of values y, i = 1,
2, ..., each with positive probability p; such that 3~ p, = 1. The probability
distribution f{y) assigns a probability p, to each such value y;. In the example at
hand, Y is a discrete random variable, and f(y) = 0.25 for y = 0. f{y) = 0.50 for
y=1, fiy) = 0.25 for y = 2, and f(y) = 0 otherwise.

In contrast, continuous random variables can assume a continuum of val-
ues, and the probability density function f(y) is a nonnegative continuous
function such that the area under f{y) between anv points a and b is the prob-
ability that Y assumes a value between a and b.?

In what follows we will simply speak of a “distribution™ f{y). It will be clear
from context whether we are in fact speaking of a discrete random variable
with probability distribution f{y) or a continuous random variable with proba-
bility density fy).

Moments provide important summaries of various aspects of distributions.
Roughly speaking, moments are simply expectations of powers of random vari-
ables, and expectations of different powers convey different sorts of informa-
tion. You are already familiar with two crucially important moments, the mean
and variance. In what follows we shall consider the first four moments: mean,
variance, skewness, and kurtosis.*

The mean, or expected value, of a discrete random variable is a probability-
weighted average of the values it can assume,?

E(_y) = Z Pi)’/ .

Often we use the Greek letter w 1o denote the mean. The mean measures the
location, or central tendency, of y.

The variance of y is its expected squared deviation from its mean,
2

o’ =var(y) = E(y — p)

[t measures the dispersion, or scale, of y around its mean.

* Note that we use capitals for random variables () and lowercase letters for their realizations (y).
We will often neglect this formalism, however, as the meaning will be clear trom context.

% In addition, the total area under fy) must be 1.

! In principle, we could of course consider moments bevond the fourth, butin practice, only the
first four are typically examined,

* A similar formula holds in the continuous case.
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Often we assess dispersion using the square root of the variance, which is
called the standard deviation,

o=std(y)=VE( - pn).

The standard deviation is more easily interpreted than the variance, because it
has the same units of measurement as y. That is. if y is measured in dollars
(say), then var(y) is in dollars squared, but std(y) is again in dollars.

The skewness of y is its expected cubed deviation from its mean (scaled by
a* for technical reasons),

Skewness measures the amount of asymmetry in a distribution. The larger the
absolute size of the skewness, the more asyinmetrical is the distribution. A
large positive value indicates a long right tail, and a large negative value indi-
cates a long left tail. A zero value indicates symmetry around the mean.

The kurtosis of yis the expected fourth power of the deviation of y from its
mean (scaled by o),
_Ep-—w!

0—4

Kurtosis measures the thickness of the tails of a distribution. A kurtosis above
3 indicates “fat tails,” or leptokurtosis, relative to the normal, or Gaussian,
distribution that you studied in earlier course work. Hence, a kurtosis above
3 indicates that extreme events are more likely to occur than would be the case
under normality.

DL
3. Multivariate Random Variables

K

Suppose now that instead of a single random variable Y, we have two random
variables ¥ and X.® We can examine the distributions of Y or X in isolation,
which are called marginal distributions. This is effectivelvy what we've already
studied. But now there's more: Y'and X may be related and therefore move to-
gether in various ways, characterization of which requires a joint distribution.
In the discrete case, the joint distribution f{y, x) gives the probability associ-
ated with each possible pair of yand x values; in the continuous case, the joint
density fly, x) is such that the area under it in any region is the probability of a
(¥ x) realization in that region.

We can examine the moments of yor xin isolation, such as mean, variance,
skewness, and kurtosis. But, again, there’s more: To help assess the dependence
between yand x, we often examine a key moment of relevance in multivariate
environments, the covariance. The covariance between y and x is simply the
expected product of the deviations of yand x from their respective means,

cov(y, x) = E((y, — py) (% — ),

* We could of course consider more than two variables, but for pedagogical reasons, we presently
limit ourselves to two.

15
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A positive covariance means that y and x are positively related. That is, when y
is above its mean, x tends to be above its mean: and when y is below its mean,
x tends to be below its mean. Conversely, a negative covariance means that y
and x are inversely related: When jy is below its mean x tends to be above its
mean, and vice versa. The covariance can take any value in the real numbers.

Frequently, we convert the covariance to a correlation by standardizing by
the product of o, and o,

cov(y, x)

corr(y, x) = pp
vy

The correlation takes values in [—1, 1]. Note that covariance depends on units
of measurement (such as dollars, cents, and billions of dollars), but correla-
tion does not. Hence, correlation is more immediately interpretable, which is
the reason for its popularity.

Note also that covariance and correlation measure only linear depen-
dence: in particular, a zero covariance or correlation between yand x does not
necessarily imply that y and x are independent. That is, they may be nontin-
early related. If, however, two random variables are jointly normally distributed
with zero covariance, then they are independent.

Our multivariate discussion has focused on the joint distribution f{y. x). In
later chapters we will also make heavy use of the conditional distribution
fly | x)—that is, the distribution of the random variable Y conditionalon X = x.
Conditional distributions are tremendously important for forecasting, in
which a central concern is the distribution of future values of a series condi-
tional on past values, Conditional moments are similarly important. In particular,
the conditional mean and conditional variance play key roles in forecasting, in
which attention often centers on the mean or variance of a series conditional
on its past values.

NEREE
4, Statistics

Thus far, we’ve reviewed aspects of known population distributions of random
variables. Often, however, we have a sample of data drawn from an unknown
population distribution

Iy, ~ f(»,

and we want to learn from the sample about various aspects of f, such as its mo-
ments. To do so, we use various estimators.” We can obtain estimators by re-
placing population expectations with sample averages, because the arithmetic
average is the sample analog of the population expectation. Such “analog
estimators” turn out to have good properties quite generally,

7 An estimator is an example of a statistic, or sample statistic, which is simply a function of the
sample observations.
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The sample mean is simply the arithmetic average,

It provides an empirical measure of the location of y.
The sample variance is the average squared deviation from the sample

mean,
r
532
Z(J’v =)
~y =1
0= ——— .
T
It provides an empirical measure of the dispersion of yaround its mean.
We commonly use a slightly different version of 62, which corrects for the
1 degree of freedom used in the estimation of y, thereby producing an

unbiased estimator of o2, ,
=2
DI )
y =

T =

T-—1

Similarly, the sample standard deviation is defined as either

or

It provides an empirical measure of dispersion in the same units as y.
The sample skewness is ;
1 -
7 > =5
1=1

§= 3
It provides an empirical measure of the amount of asymmetry in the distribu-
tion of y.
The sample kurtosis is ;
1 _
T Z(y, -5?
k= =1
T

It provides an empirical measure of the fatness of the tails of the distribution
of y relative to a normal distribution.

17
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Many of the most famous and important statistical sampling distributions
arise in the context of sample moments, and the normal distribution is the fa-
ther of them all. In particular, the celebrated central limit theorem establishes
that under quite general conditions, the sample mean y will have a normal dis-
tribution as the sample size gets large. The x* distribution arises from squared
normal random variables, the ¢ distribution arises from ratios of normal and
x? variables, and the F distribution arises from ratios of x* variables.

Because of the fundamental nature of the normal distribution as estab-
lished by the central limit theorem, it has been studied intensively, a great deal
is known about it, and a variety of powertul tools have been developed for use
in conjunction with it. Hence, it is often of interest to assess whether the nor-
mal distribution governs a given sample of data. A simple strategy is to check
various implications of normality, such as § = 0 and K = 3, via informal exam-
ination of $ and K. Alternatively and more formally, the Jarque-Bera test (]B)
effectively aggregates the information in the data about both skewness and
kurtosis to produce an overall test of the hypothesis that § = 0 and K = 3,
based on S and K.® The test statistic is

Tla 1 5 o
_g(s+;<x 3)).

where T is the number of observations.? Under the null hypothesis of inde-
peudent normally distributed observations, the Jarque-Bera statistic is distrib-
uted in large samples as a x* random variable with 2 degrees of freedom. We
will use the Jarque-Bera test in various places throughout this book.

P
9. Regression Analysis

Ideas that fall under the general heading of “regression analysis” are crucial
for building forecasting models, using them to produce forecasts, and evalu-
ating those forecasts. Here we provide a brief review of linear regression to re-
fresh your memory and provide motivation from a forecasting perspective.
Suppose that we have data on two variables, y and x, as in Figure 2.1, and
suppose that we want to find the linear function of x that gives the best fore-
cast of y, where “best forecast” means that the sum of squared forecast errors,
for the sample of data at hand, is as small as possible. This amounits to finding
the line that best fits the data points, in the sense that the sum of squared ver-
tical distances of the data points from the fitted line is minimized. When we
“run a regression” or “fit a regression line,” that's what we do. The estimation

¥ Other tests of conformity to the normal distribution exist and may of course be used, such as the
Kolmogorov-Smirnov test. We use the Jarque-Bera test in this book because of its simplicity and be-
cause of its convenient and inwitive decomposition into skewness and leptokurtasis components,
¥ The formula given is for an observed time series. If the series being tested for normality is the
residual from a model, then Tshould be replaced with T — k, where kis the number of paramne-
ters estimated.
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strategy is called least squares. The least squares estimator has a well-known
mathematical formula. We won’t reproduce it here: suffice it to say that we
simply use the computer to evaluate the formula.

In Figure 2.2, we illustrate graphically the results of regressing y on x. The
best-fitting line slopes upward, reflecting the positive correlation between y
and x. Note that the data points don’t satisfv the fitted linear relationship ex-
actly; rather, they satisfy it on average. To forecast y for any given value of x, we
use the fitted line to find the value of y that corresponds to the given value of x.

Thus far, we haven't postulated a probabilistic model that relates y and x;
instead, we simply ran a mechanical regression of y on x to find the best
forecast of y formed as a linear function of x. It's easy, however, to construct a
probabilistic framework that lets us make statistical assessments about the

FIGURE 21
Scatterplot of y

Versus x

FIGURE 2 2
Scatterplot of y
versus x, Regression
Line Superimposed
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propernes of the fitted line and the corresponding forecasts. We assume that
yis linearly related to an exogenously determined variable x. and we add an in-
dependent and identically distributed (iid) disturbance with zero mean and
constant variance:

»= B(b+ ler +E
id
< 0,0%),
t =1,..., T. The intercept of the line is By, the slope is By, and the variance
of the disturbance is o2.'"" Collectively, By, Bi. and o are called the model's
parameters. The index ¢ keeps track of time; the data sample begins at some
time we’ve called *1” and ends at some time we've called *7."
If the regression model postulated here holds true, then the expected
value of y conditional on x taking a particular value, say x", is

E(ylx") = Bo+Bix

That is, the regression function is the conditional expectation of y. As we’'ll see
in detail later in the book, the expectation of future y conditional on available
information is a particularly good forecast. In fact, under fairly general condi-
tions, it is the best possible forecast. The intimate connection between regres-
sion and optimal forecasts makes regression an important tool for forecasting.

We assume that the model sketched here is true in population. If we
knew By and By, we could make a forecast of y for any given value of X", and
the variance of the corresponding forecast error would be o®. The prob-
lem, of course, is that we don’t know the values of the model’s parameters.
When we run the regression, or “estimate the regression model,” we use
a Computer to estimate the unknown parame(ers by solving the problem

mm}:(y, — Bix,)? (or, equivalently. mén}: e,, because y, — Bo— Bix = &),

t=1
where B is shorthand notation for the set of two parameters, By and B;. 1 We

denote the set of estimated parameters by B and its elements by B., and B,
Each estimated coefficient gives the weight put on the corr espondmg variable
in forming the best linear forecast of y. We can think of B, as the coefficient on
a “constant” variable that's always equal to 1. The estimated coefficient on the
constant variable is the best forecast in the event that xis 0. In that sense. it's a
baseline forecast. We use the set of estimated parameters. B, and ﬁ,, to make
forecasts that improve on the baseline. The fitted values, or in-sample
forecasts, are

M= Bu+ lel ’
t=1,...,T.
Forecasts are rarely perfect; instead, we make errors. The residuals, or
in-sample forecast errors, are
e =5y 5} s

I We speak of the regression intercept and the regression slope.
H Shortlv we'll show how 1o estimate o~ as well.
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t=1...., T. Forecasters are keenly interested in studying the properties of

their forecast errors. Svstematic patterns in forecast errors indicate that the
forecasting model is inadequate; forecast errors from a good forecasting
model must be unforecastable!

Now suppose we have a second exogenous variable, z, which we could also
use 1o forecast 1. In Figure 2.3, we show a scatterplot of y against z, with the re-
gression line superimposed. This time the slope of the fitted line is negative.
The regressions of yon x and yon 2 are called simple linear regressions; they
are potentially useful, but ultimately we'd like to regress y on both x and z For-
runately, the idea of linear regression readily generalizes to accommodate
more than one right-hand-side variable. We write

;VI=BU+BIX1+B‘_’ZI+EI,

t=1,..., T. This is called a multiple linear regression model. Again, we use
the computer to find

nd (O 0 )
the values of By, B1, and Be that ploduce the best forecast of y; that is, we find
the B values that solve the problem mmZ(,, By — Bix, — Baz,)?, where B

denotes the set of three model parameters. V\e denote the set of estimated para-
meters by B with elements B... B,. and Bu The fitted values are

¥ = Bu + lel + ler .

and the residuals are

=% ﬁl '
t=1,..., T. Extension to the general multiple linear regression model, with
an arbitrary number of right-hand-side variables (4 including the constant), is
immediate.

FIGURE 2.3
Seatterplol of y
versus z, Regression
Line Superimposed
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TABLE 21
Regression of y on
xand z

LS // Dependent variable is y.

Sample: 1960 2007
Included observations: 48

Variable Coefficient  Std. Error  t-Statistic Prob.
C 9.884732 0.190297 ALY455Y L0000
X 1.073140 0.150341 7.138031 20000
z —0.638011 0172499  —3.698642 0006
Resquared 0.552928 Mean dependent var. 10.08241
Adjusted Rsquared .533059 SD dependent var, 1908842
SE of regression 1.304371 Akaike info criterion 3.429780

76.56223
—79.31472
1.506278

3.546730
27.82752

000000

Sum squared resid. Schwarz criterion

Log likelihood Fstatistic
Durbin-Watson stat. Prob(F-statistic)

This time. let’s do more than a simple graphical analysis of the regression fit.
Instead, let’s look in detail at the computer output. which we show in Table 2.1.
We do so dozens of times in this book, and the output format and interpreta-
tion are always the same, so it's important to get comfortable with it quickly.
The output is in Eviews format. Other software will produce more or less the
same information, which is fundamental and standard.

The printout begins by reminding us that we're running a leastsquares
(LS) regression and that the lef-hand-side variable (the "dependent variable™—
see the Exercises, Problems. and Complements at the end of this chapter) is .
1t then shows us the sample range of the historical data, which happens to be
1960 10 2007, for a total of 48 observations.

Next comes a table listing each right-hand-side variable together with four
statistics. The right-hand-side variables x aned z need no explanation, but the
variable C does. C is notation for the earlier-mentioned constant variable. The
C variable always equals 1, so the estimated coefficient on C is the estimated
intercept of the regression line.'

The four statistics associated with each right-hand-side variable are the esti-
mated coefficient (“Coefficient™), its standard error (“Std. Error™), a t-statistic,
and a corresponding probability value (“Prob.”). The standard errors of the es-
timated coefficients indicate their likelv sampling variability and hence their
reliability. The estimated coefficient plus or minus 1 standard error is approxi-
mately a 68% confidence interval for the true but unknown population
parameter, and the estimated coefficient plus or minus 2 standard errors is ap-
proximately a 95% confidence interval, assuming that the estimated coeflicient

12 Sometimes the population coeffictent on € is called the constant term. and the regression esti-
mate, the estimated constant term.



A Brief Review of Prababilin, Suistics, and Regression for Forecasting

is approximately normalh distributed.'® Thus, large, coefficient standard errors

translate into wide confiderice intervals.

Each #statistic provides a test of the hypothesis of variable irrelevance: that
the true but unknown population parameter is 0, so that the corresponding
variable contributes nothing to the forecasting regression and can therefore
be dropped. One way to test variable irrelevance, with, say, a 5% probability of
incorrect rejection, is to check whether 0 is outside the 95% confidence inter-
val for the parameter. If so, we reject irrelevance. The ¢statistic is just the ratio
of the estimated coefficient to its standard error, so if 0 is outside the 95% con-
fidence interval, then the tstatistic must be bigger than 2 in absolute value.
Thus, we can quickly test irrelevance at the 5% level by checking whether the
tstaristic is greater than 2 in absolute vahe. !

Finally. associated with each tstatistic is a probability value, which is the
probability of getting a value of the #statistic at least as large in absolute value
as the one actually obained, assuming that the irrelevance hypothesis is true.
Hence, if a #statistic were 2. the corresponding probability value would be ap-
proximately .05. The smaller the probability value, the stronger the evidence
against irrelevance. There's no magic cutoff. but typicallv probability values
less than .l are viewed as strong evidence against irrelevance, and probability
values below .03 ave viewed as very strong evidence against irrelevance. Proba-
bility values are useful because thev eliminate the need for consulting tables of
the ¢ distribution. Effectively the computer does it for us and tells us the sig-
nificance level at which the irrelevance hypothesis is just rejected.

Now let's interpret the actual estimated coefficients, standard errors,
#statistics, and probability values. The estimated intercept is approximately 10,
so that conditional on x and z both being 0, our best forecast of y would be 10.
Moreover, the intercept is very precisely estimated, as evidenced by the small
standard ervor of .19 relative to the estimated coefficient. An approximate
95% confidence interval for the true but unknown population intercept is
10 £ 2(0.19), or [9.62, 10.38]. Zero is far outside that interval, so the corre-
sponding tstatistic is huge. with a probability value that's zero to four decimal
places.

The estimated coefficient on x is 1.07, and the standard error is again
small in relation to the size of the estimated coefficient, so the fstatistic is
large, and its probability value small. The coetficient is positive, so that y tends
to rise when x rises. In fact, the interpretation of the estimated coefficient of
1.07 is that, holding everything else constant, we forecast that a one-unit
increase in xwill produce a 1.07-unit increase in y.

The estimated coefticient on zis —0.64. Its standard error is larger relative
to the estimated parameter, and its #statistic smaller, than those of the other

13 The coefficient will be normally distributed if the regression disturbance is normally distrib-
uted, or it the sample size is large.

M 1f the sample size is small. or if we want a significance leve) other than 3%. we must refer to a
table of critical values of the ¢ distribution. It should also be pointed out that use of the { distribu-
tion in small samples also requires an assumption of normally distributed disturbances.

23
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coefficients. The standard error is nevertheless small. and the absolute value
of the #statistic is still well above 2, with a small probability value of .06%.
Hence, at conventional levels we reject the hypothesis that = contributes noth-
ing to the forecasting regression. The estimated coefficient is negative, so y
tends to fall when z rises. We forecast that a one-unit increase in z will produce
a 0.64-unit decrease in y.

A variety of diagnostic statistics follow: they help us to evaluate the ade-
quacy of the regression. We provide detailed discussions of many of them else-
where. Here we introduce them very briefly.

MEAN DEPENDENT VAR. 10.08

The sample mean of the dependent variable is

.1
y—‘.i:;)'t-

[t measures the central tendency, or location, of y.

SD DEPENDENT VAR. 1.91

The sample standard deviation of the dependent variable is

It measures the dispersion, or scale, of ¥.

SUM SQUARED RESID. 76.56

Minimizing the sum of squared residuals is the objective of least-squares esti-
mation. It’s natural, then., to record the minimized value of the sum of
squared residuals. In isolation it’s not of much value, but it serves as an input
to other diagnostics that we’ll discuss shortly. Moreover, it’s useful for com-
paring models and testing hypotheses. The formula is

.

SSR=) ¢ .

=1

Loc LIKELIHOOD —79.31

The likelihood function is the joint density function of the data, viewed as a
function of the model parameters. Hence, a natural estimation strategy,
called maximum likelihood estimation, is to find (and use as estimates) the
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parameter values that maximize the likelihood function. After all, by con-
struction, those parameter values maximize the likelihood of obtaining the
data that were actually obtained. In the leading case of normally distributed
regression disturbances, maximizing the likelihood function turns out to be
equivalent to minimizing the sum of squared residuals, hence the maximum
likelihood parameter estimates are identical to the least-squares parameter
estimates. The number reported is the maximized value of the log of the like-
lihood function.!” Like the sum of squared residuals, it's not of direct use, but
it's useful for comparing models and testing hypotheses. We will rarely use
the likelihood function directly; instead, we'll focus for the most part on the
sum of squared residuals.

F-STATISTIC 27.83

We use the F-statistic to test the hypothesis that the coefficients of all variables
in the regression except the intercept are jointly 0.1% That is, we test whether,
taken jointly as a set, the variables included in the forecasting model have any
predictive value. This contrasts with the tstatistics, which we use to examine
the predictive worth of the variables one at a time.'” If no variable has predic-
tive value, the Fstatistic follows an Fdistribution with k— 1 and T — kdegrees
of freedom. The formula is

Fe (SSR,., —8SR)/(k — 1)
- SSR/(T — k)

»

where SSR,.; is the sum of squared residuals from a restricted regression that
contains only an intercept. Thus, the test proceeds by examining how much
the SSR increases when all the variables except the constant are dropped. If it
increases by a great deal, there’s evidence that at least one of the variables has
predictive content.

ProB(F-sTATISTIC) .000000

The probability value for the Fstatistic, or Prob(F-statistic), gives the signifi-
cance level at which we can just reject the hypothesis that the set of right-hand-
side variables has no predictive value. Here, the value is indistinguishable from
0, so we reject the hypothesis overwhelmingly.

13 Throughout this book, log refers 1o a natural (base e) logarithm.

18 We don’t want to restrici the intercept to be U, because under the hypothesis that all the other
coefficients are 0, the intercept wounld equal the mean of y, which in general is not 0.

17 In the degenerate case of only one right-hand-side variable, the # and Fstatistics contain exactly
the same information. and /= £. When there are two or more right-hand-side variables, however,
the hypotheses tested differ, and F = £.
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SE oF REGRESSION 1.30

If we knew the elements of B, then our forecast errors would be the g,'s, with
variance a2. We'd like an estimate of 02, because it tells us whether our fore-
cast errors are likelv to be large or small. The observed residuals, the ¢'s, are
effectively estimates of the unobserved population disturbances, the €’s. Thus
the sample variance of the ¢'s, which we denote s* (read “ssquared™), is a nat-
ural estimator of ¢*:

§ is an estimate of the dispersion of the regression disturbance and hence is
used to assess goodness of fit of the model, as well as the magnitude of forecast
errors that we're likely to make. The larger s° is . the worse the model’s fit, and
the larger the forecast errors we're likely to make, s involves a degrees-of-
freedom correction (division by 7 — krather than by Tor T~ 1), which isan
attempt to get a good estimate of the out-of-sample forecast error variance on
the basis of the in-sample residuals.

The standard error of the regression (SER) conveys the same information;
it's an estimator of ¢ rather than ¢?, so we simply use s rather than s°. The
formula is

The standard error of the regression is easier to interpret than £, because its
units are the same as those of the ¢'s, whereas the units of s° are not. If the ¢'s
are in dollars, then the squared ¢'s are in dollars squared, so s* is in dollars
squared. By taking the square root at the end of it all, SER converts the units
back to dollars.

It’s often informative to compare the standard error of the regression with
the mean of the dependent variable. As a rough rule of thumb, the SER of a
good forecasting model shouldn’t be more than 10% or 15% of the mean of
the dependent variable. For the present model, the SER is about 13% of the
mean of the dependent variable, so it just squeaks by,

Sometimes it’s informative to compare the standard error of the regres-
sion (or a close relative) with the standard deviation of the dependent variable
(or a close relative). The standard error of the regression is an estimate of the stan-
dard deviation of forecast errors from the regression model, and the standard
deviation of the dependent variable is an estimate of the standard deviation of
the forecast errors from a simpler forecasting model, in which the forecast
of each period is simply . If the ratio is small, the variables in the model
appear very helpful in forecasting y. R-squared measures, to which we now
turn, are based on precisely that idea.
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R-SQUARED 0.55

If an intercept is included in the regression, as is almost always the case,
Rsquared must be between 0 and 1. In that case, Rsquared, usually written R,
is the percent of the variance of y explained by the variables included in the
regression. AZ measures the in-sample success of the regression equation in
forecasting y; hence, it is widely used as a quick check of goodness of fit, or
forecastability of y based on the variables included in the regression. Here the
R? is about 55%-—good but not great. The formula is

T
2
2 e

=]

We can write R® in a more roundabout way as

1 <&
7L

o =1
=Y (3 -5
T{:l

which makes clear that the numerator in the large fraction is very close to s,
and the denominator is very close to the sample variance of y.

ADJUSTED R-SQUARED 0.53

The interpretation is the same as that of R?, but the formula is a bit different.
Adjusted R? incorporates adjustments for degrees of freedom used in fitting
the model, in an attempt to offset the inflated appearance of good fit, or
high forecastability of y, if a variety of right-hand-side variables are tried and
the “best model” selected. Hence, adjusted R®is a more trustworthy
goodness-of-fit measure than R®. As long as there is more than one right-
hand-side variable in the model fitted, adjusted R% is smaller than RZ; here,
however, the two are quite close (53% versus 55%). Adjusted R® is often de-
noted R?: the formula is

where k is the number of right-hand-side variables, including the constant
term. Here the numerator in the large fraction is precisely %, and the denom-
inator is precisely the sample variance of y.

27
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AKAIKE INFO CRITERION 3.43

The Akaike information criterion, or AIC, is effectivelv an estimate of the out-of-
sample forecast error variance, as is s, but it penalizes degrees of freedom more
harshly. Itis used to select among competing forecasting models. The formula is
.
2
]
=1

AIC=¢ T -

SCHWARZ CRITERION 3.55

The Schwarz information criterion, or SIC, is an alternative to the AIC with
the same interpretation but a still harsher degrees-of-freedom penalty. The

formula is
T
2
€
=1

SIC = T{%)

As they arise in the course of our discussion, we will discuss in detail the
sum of squared residuals. the standard error of the regression, R, adjusted R,
the AIC, and the SIC, the relationships among them, and their role in select-
ing forecasting models. Thus, we’ll say no more here. It is worth noting, how-
ever, that other formulas, slightly different from the ones given here, are
sometimes used for AIC and SIC, as discussed in greater detail in Chapter 5.

DURBIN-WATSON STAT. 1.51

We mentioned earlier that we're interested in examining whether there are
patterns in our forecast errors, because errors from a good forecasting model
should be unforecastable. The Durbin-Watson statistic tests for correlation
over time, called serial correlation, in regression disturbances. If the errors
made by a forecasting mode! are serially correlated, then they are forecastable,
and we could improve the forecasts by forecasting the forecast errors. The
Durbin-Watson test works within the context of the model

yr=PBo+Bix+ Bz + €
€ = Q&) + Vs
iid 2
v N(0,0’ ).
The regression disturbance is serially correlated when ¢ # 0. The hypothesis
of interest is that ¢ = 0. When ¢ = 0, the ideal conditions hold, but when

¢ # 0, the disturbance is serially correlated. More specifically, when ¢ # 0, we
say that €, follows an autoregressive process of order 1, or AR(I) for short.!® If

18 The Durbin-Watson test is designed to be very good at detecting serial corretation of the AR(1)
type. Manvy other tvpes of serial correlation are possible: we'll discuss them extensively in Chapter 8.



A Brief Review of Probabilin, Statstics, and Regression for Forecasting

N AN
-2 [ Residual

_4Il]l|||ll|||lllllll|llllll|llll‘lllj | S N S |

5 10 15 20 25 30 35 40 45

¢ > 0, the disturbance is positively serially correlated, and if ¢ < 0, the distur-
bance is negatively serially correlated. Positive serial correlation is typically the
relevant alternative in the applications that will concern us. The formula for
the Durbin-Watson (DW) statistic is

T
12
Z(el =€)
=2
—_—
2
> e

=1
DW takes values in the interval [0, 4], and if all is well, DW should be around 2.
If DW is substantially less than 2, there is evidence of positive serial correla-
tion, As a rough rule of thumb, if DW is less than 1.5, there may be cause for
alarm, and we should consult the tables of the DW statistic, available in many
statistics and econometrics texts. Here the DW statistic is very close to 1.5. A
look at the tables of the DW statistic reveals, however, that we would not reject
the null hypothesis at the 5% level.

After running a regression, it’s usually a good idea to assess the adequacy
of the model by plotting and examining the actual data (y/s), the fitted values
(3/'s), and the residuals (¢'s). Often we’ll refer 1o such plots, shown together
in a single graph, as a residual plot..llJ In Figure 2.4, we show the residual plot
for the regression of y on x and = The actual (short-dashed line) and fitted
(long-dashed line} values appear at the top of the graph; their scale is on the
right. The fitted values track the actual values fairly well. The residuals appear
at the bottom of the graph (solid line): their scale is on the left. It's important
to note that the scales differ; the ¢'s are in fact substantially smaller and less
variable than either the y,'s or the y,'s. We draw the zero line through the resid-
uals for visual comnparison. There are no obvious patterns in the residuals,

DW=

¥ Sometimes, however, we'll use residual Plot wo refer 1o a plot of the residuals alone. The intended
meaning will be clear from context.

FIGURE 2 4
Restdual Plot,
Regression of y on x
and z
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Exercises, Problems, and Complements

(Interpreting distributions and densities) The Sharpe Pencil Company has a strict

quality control monitoring program. As part of that program, it has determined

that the distribution of the amount of graphite in each batch of 100 pencil leads

produced is continuous and uniform between 1 and 2 grams. That is, fiy) = 1

for yin [1, 2], and 0 otherwise, where y is the graphite content per batch of

100 leads.

a. Is yadiscrete or continuous random variable?

b. Is fiy) a probability distribution or a density?

¢. What is the probability that y is between 1 and 27 Between 1 and 1.37 Exactly
equal to 1.672

d. For high-quality pencils, the desired graphite content per batch is 1.8 grams,
with low variation across batches. With that in mind, discuss the nature of the
density f{y).

(Covariance and correlation) Suppose that the annual revenues of the world’s

two top oil producers have a covariance of 1,735,492,

a. Based on the covariance, the claim is made that the revenues are “very
strongly positively related.” Evaluate the claim.

b. Suppose instead that, again based on the covanance, the claim is made that
the revenues are “positively related.” Evaluate the claim,

c. Suppose vou learn that the revenues have a correlation of 0.93. In light of that
new information, reevaluate the claims in parts a and b.

(Conditional expectations versus linear projections) It is important to note the

distinction between a conditional mean and a linear projection.

a. The conditional mean is not necessarily a linear function of the conditioning
variable(s). In the Gaussian case, the conditional mean is a linear functon of
the conditioning variables, so it coincides with the linear projection. In non-
Gaussian cases, however, linear projections are best viewed as approximations
to generally nonlinear conditional mean functions.

b. The U.S. Congressional Budget Office (CBO) is helping the president to set
tax policy. In particular, the president has asked for advice on where to set the
average tax rate to maximize the tax revenue collected per taxpaver. For each
of 23 countries, the CBO has obtained data on the tax revenue collected per
taxpaver and the average tax rate. Is tax revenue likely related to the tax rate?
Is the relationship likely linearz (Hint: How much revenue would be collected
at tax rates of 0% or 100%7) If not, is a linear regression nevertheless likely to
produce a good approximation to the true relationshipz

{Conditional mean and variance) Given the regression model,

Y =PBo+Bix + Bux; +Bats +&
iid "
g, ~ (0.0%),
find the mean and variance of y, conditional on x, = v, and =, = z,". Does the
conditional mean adapt to the conditioning information: Does the conditional
variance adapt to the conditioning information?

(Scauterplots and regression lines) Draw qualitative scatterplots and regression
lines for each of the following two-variable datasets, and state the R? in each case:
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a. Dataset 1: yand x have correlation 1.
b. Dawset 2: yand v have correlation —1.
c. Dataset 3: yand x have correlation 0.

6. (Desired values of regression diagnostic statistics) For each of the diagnostic
statistics listed here, indicate whether, other things the same, “bigger is better,”
“smaller is better,” or neither. Explain your reasoning. (Hint: Be careful, think
before vou answer, and be sure to qualify vour answers as appropriate.)

a. Coefhicient

b. Standard error

C. tstatistic

d. Probability value of the #statistic
e. K

. Adjusted B

g. Standard ervor of the regression
h. Sum of squared residuals

i. Loglikelihood

i~ Durbin-Watson statistic

k. Mean of the dependent variable
1. Standard deviation of the dependent variable
m. Akaike information criterion

n. Schwarz information criterion
o. Fstatisiic

p- Probability value of the Fsiatistic

(Mechanics of fitting a linear regression) On the book’s web page, you will find a
second set of data on y, x, and = similar 10, but different from, the data that
underlie the analysis performed in this chapter. Using the new data, repeat the
analvsis and discuss vour resulrs.

8. (Regression with and without a constant term) Consider Figure 2.2, in which we
showed a scatterplot of yversus x with a fitted regression line superimposed.
a. In fitting that regression line, we included a constant term. How can you tell?
b. Suppose that we had not included a constant term. How would the figure look?
c.  We almost always include a constant term when estimating regressions. Why?
d. When, it cver, might vou explicitly want to exclude the constant term?

Y. (Interpreting coefficients and variables) Let ¥, = By + B1x, + Buzs + €, where v, is
the number of hot dogs sold 4t an amusement park on a given day, x, is the
number of admission tickets sold that day, z,is the dailv maximum temperature,
and g, is a random error.

a. State whether each of y, x,, =, Ba, By, and By is a coefficient or a variable.

b. Determine the units of By, By, and By, and describe the phvsical meaning of
each.

c.  What does the sign of a coefficient tell vou about how its corresponding
variable affects the number ot hot dogs sold? What are your expectations for
the sigms of the various coefficients—negative, zero, positive, or unsure?

d. Is it sensible to entertain the possibility of a nonzero intercept—that is,

Bo # 02 By > 02 By < 0F

10. (Nonlinear least squares) The leastsquares estimator discussed in this chapter is
often called “ordinarv” least squares. The adjective ordinary distinguishes the
ordinary least-squares estimator from fancier estimators, such as the nonlinear
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least-squares estimator. When we estimate by nonlinear least squares, we use a
computer to find the minimum of the sum of squared residual function directly,
using numerical methods. For the simple regression model discussed in this
chapter, ordinary and nonlinear least squares produce the same result, and
ordinary least squares is simpler to implement, so we prefer ordinary least
squares. As we will see, however, some intrinsically nonlinear forecasting models
can’t be estimated using ordinary least squares but can be estimated using
nonlinear least squares. We use nonlinear least squares in such cases.

For each of the following models, determine whether ordinary least squares
may be used for estimation (perhaps after transforming the data).
a. y=PBo+PBix+¢
b. y= BoePive,
. y=PRo+eP™ +g

L1. (Regression semantics) Regression analysis is so important, and used so often by
so many people, that a variety of associated terms have evolved over the years, all
of which are the same for our purposes. You may encounter them in your
reading, so it's important to be aware of them. Some examples:

a. Ordinary least squares, least squares, OLS, LS

b. 3, left-hand-side variable, regressand, dependent variable, endogenous variable

c. x's, right-hand-side variables, regressors, independent variables, exogenous
variables, predictors

d. Probability value, prob-value, pvalue, marginal significance level

e. Schwarz criterion, Schwarz information criterion, SIC, Bayes information
criterion, BIC

Bibliographical and Computational Notes

See any good introductory statistics or econometrics book for much more thorough
discussions of probability, statistics, and regression and for tables of significance
points of the normal, ¢, F, and Durbin-Watson distributions. Possibilities include
Anderson, Sweeney, and Williams (2006), Maddala (2001), Pindyck and Rubinfeld
(1997), and Wonnacott and Wonnacott (1990).

The Jarque-Bera test is developed in Jarque and Bera (1987).

Dozens of software packages—including spreadsheets—implement various statistical
and linear regression analyses. Most automatically include an intercept in linear
regressions unless explicitly instructed otherwise. That is, they automatically create
and include a Cvariable.

Concepts for Review

Discrete random variable Expected value
Discrete probability distribution Location
Continuous random variable Central tendency
Probability density function Variance
Moment Dispersion

Mean Scale
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Standard deviation
Skewness

Asymmetry

Kurtosis
Leptokurtosis
Normal distribution
Gaussian distribution
Marginatl distribution
Joint distribution
Covaniance
Correlation
Conditional distribution
Conditional moment
Conditional mean
Conditional variance
Population distribution
Sample

Estimator

Statistic

Sample siatistic
Sample mean
Sample variance
Sample standard deviation
Sample skewness
Sample kurtosis

x? distribution

¢ distribution
Fdistribuition
Jarque-Bera test
Regression analysis
Least squares
Disturbance
Parameter
Regression function

Conditional expectation

Fitted value

In-sample forecast

Residual

In-sample forecast error

Regression intercept

Regression slope

Simple linear regression

Multiple linear regression model

Standard error

-statistic

Probability value

Constant term

Sample mean of the dependent variable

Sample standard deviation of the
dependent variable

Sum of squared residuals

Likelihood function

Maximum likelihood estimation

Fguatistic

Prob(F-suatistic)

Standard error of the regression

R‘Z

Goodness of fit

Adjusted R?

Akaike information criterion

Schwarz information criterion

Durbin-Watson statistic

Serial correlation

Positive serial correlation

Residual plot

Linear projection

Nonlinear least squares
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Six Considerations
Basic to Successful
Forecasting

In Chapter 1, we sketched a variety of areas where forecasts are used routinely,
and we took a brief tour of the basic forecasting tools that you'll master as you
progress through this book. Now let’s back up and consider six types of ques-
tions that are relevant for any forecasting task.!

Decision environment and loss function. What decision will the forecast
guide, and what are the implications for the design, use, and evaluation of
the forecasting model? Related, how do we quantify what we mean by a
“good” forecast and, in particular, the cost or loss associated with forecast
errors of various signs and sizes? How should we define optimality of a
forecast in a particular situation? How do we compute optimal forecasts?
Forecast object. What is the object that we need to forecast? Is it a time se-
ries, such as sales of a firm recorded over time, or an event, such as deval-
uation of a currency? And what is the quantity and quality of the data? How
long is the sample of available data? Are we forecasting one object or many
(such as sales of each of 350 products)? Are there missing observations?
Unusual observations?

Forecast statement. How do we wish to state our forecasts? If, for example,
the object to be forecast is a time series, are we interested in a single “best

! There are of course many possible variations, combinations, and extensions of the questions; you
should try to think of some as you read through them.
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guess” forecast, a “reasonable range” of possible future values that reflects
the underlying uncertainty associated with the forecasting problem, or a
probability distribution of possible future values? What are the associated
costs and benefits?

¢ Forecast horizon. What is the forecast horizon of interest, and what deter-
mines itz Are we interested, for example, in forecasting 1 month ahead,
1 year ahead, or 10 vears ahead? The best modeling and forecasting strat-
egy will likely vary with the horizon.

¢ Information set. On what information will the forecast be based? Are the
available data simply the past history of the series to be forecast, or are
other series available that may be related to the series of interest?

® Methods and complexity, the parsimony principle, and the shrinkage prin-
ciple. What forecasting method is best suited to the needs of a particular
forecasting problem? How complex should the forecasting model be?
More generally, what sorts of models, in terms of complexity. tend to do
best for forecasting in business, finance, economics, and government? The
phenomena that we model and forecast are often tremendously complex,
but does it necessarily follow that our forecasting models should be
complex?

NENEEEN
|. The Decision Environment and Loss Function

Forecasts are not made in a vacuum. The key to generating good and useful
forecasts, which we will stress now and throughouit, is recognizing that forecasts
are made to guide decisions. The link between forecasts and decisions sounds
obvious—and it is—but it’s worth thinking about in some depth. Forecasts are
made in a wide variety of situations, but in every case forecasts are of value be-
cause they aid in decision making. Quite simply, good forecasts help to produce
good decisions. Recognition and awareness of the decision-making environ-
ment is the key to effective design, use, and evaluation of forecasting models.

Consider the following stylized problem: You have started a firm and must
decide how much inventory to hold going into the next sales period. If you
knew that demand would be high next period, then you'd like to have a lot of
inventory on hand. If vou knew that demand would be slack, then you would
like to deplete your inventories because it costs money to store unnecessary in-
ventories. Of course, the problem is that you don’t know next period's de-
mand, and you've got to make vour inventory stocking decision now!

There are four possible combinations of inventory decisions and demand
outcomes: in two we make the correct decision, and in two we make the in-
correct decision. We show the four possible outcomes in Table 3.1. Each entry
of the table contains a “cost” or “loss” to you corresponding to the associated
decision/outcome pair. The good pairs on the diagonal have zero loss—you
did the right thing, building inventory when demand turned out to be high or
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TABLE 3 Demand High Demand Low

Decision Making

with Symmetric Loss  Build Inventory 0 $10,000
Reduce Inventory $10,000 0

contracting inventory when demand turned out to be low. The bad pairs off
the diagonal have positive loss—you did the wrong thing, building inventory
when demand turned out to be low or contracting inventory when demand
turned out 1o be high.

In Table 3.1, the loss associated with each incorrect decision is $10,000. We
call such a loss structure symmelric, because the loss is the same for both of the
bad outcomes. In many important decision environments, a symmetric loss
structure closely approximates the true losses of the forecaster. In other deci-
sion environments, however, symmetric loss may notf be realistic; in general,
there’s no reason for loss to be symmetric.

In Table 3.2, we summarize a decision environment with an asymmetric
loss structure. As before, each entry of the table contains a loss corresponding
to the associated decision/outcome pair. The good pairs on the diagonal have
zero loss for the same reason as before—when vou do the right thing, you
incur no loss. The bad pairs off the diagonal again have positive loss—when
vou do the wrong thing, vou suffer—but now the amount of the loss difters de-
pending on what sort of mistake you make. If you reduce inventories and de-
mand turns out to be high, then you have insufficient inventories to meet
demand, and vou miss out on a lot of business, which is very costly ($20,000).
If you build inventories and demand turns out to be low, then you must carry
unneeded inventories, which is not as costly ($10,000).

To recap: For every decision-making problem, there is an associated loss
structure; for each decision/outcome pair, there is an associated loss. We can
think of zero loss as associated with the correct decision and positive loss as as-
sociated with the incorrect decision.

Recall that forecasts are made to help guide dedisions. Thus, the loss structure
associated with a particular decision induces a similar loss structure for fore-
casts used to inform that decision. Continuing with our example, we might fore-
cast sales to help us decide whether to build or reduce inventory, and the loss we
incur depends on the divergence between actual and predicted sales. To keep
things simple, imagine that sales forecasts and sales realizations are either
“high” or “low.” Table 3.3 illustrates a symmetric forecasting loss structure, and

TARBLE 3.2
Drrision Making
with Asymmetric
Loss

Demand High Demand Low

Build Inventory 0 $10,000
Reduce Inventory $20,000 0
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High Actual Sales Low Actual Sales
High Forecasted Sales 0 $10,000
Low Forecasted Sales $10,000 0

Table 3.4 illustrates an asymmetric forecasting loss structure. Note that a fore-
cast of high sales implies the decision “build inventory” (likewise for low sales
and “reduce inventory”); thus, we derive the loss structure associated with a
forecast from the loss structure of decisions based on the forecasts.

This examnple is highly simplified: Forecasts are either “up” or “down,” and
realizations are similarly “up” or “down.” In the important case of time series
forecasting, both the forecast and the realization can typically assume a con-
tinuous range of values, so a more general notion of loss function is needed.

Let ydenote a series and y its forecast. The corresponding forecast error, ¢,
is the difference between the realization and the previously made forecast:

e=y—35.
We consider loss functions of the form L(e). This means that the loss associ-

ated with a forecast depends only on the size of the forecast error. We require
the loss function L(e) to satisfy three conditions:

e [(0) = 0. Thatis, no loss is incurred when the forecast error is 0. (A O fore-
cast error, after all, corresponds to a perfect forecast!)

® [.(¢) is continuous. That is, nearly identical forecast errors should produce
nearly identical losses.

e (¢ is increasing on each side of the origin. That is, the bigger the ab-
solute value of the error, the bigger the loss.

Apart from these three requirements, we impose no restrictions on the form
of the loss function.

The quadratic loss function is tremendously important in practice, both
because it is often an adequate approximation to realistic loss structures and
because it is mathematically convenient. Quadratic loss is given by

L(e) = ¢é°,

and we graph it as a function of the forecast error in Figure 3.1. Because of the
squaring associated with the quadratic loss function, it is symmetric around
the origin; in addition, it increases at an increasing rate on each side of the ori-
gin, so that large errors are penalized much more severely than small ones.

TABLE 3 3
Forecasting with
Symmelric Loss

High Actual Sales Low Actual Sales

High Forecasted Sales 0 $10,000
Low Forecasted Sales $20,000 0

TARILE 3 4
Forecasting with
Asymmetric Loss
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FIGURE 3y
Quadratic Loss

FICGURE 3.2
Absolute Loss
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Another important symmetric loss function is absolute loss, or absolute
error loss, given by

Le) = | .

Like quadratic loss, absolute loss is increasing on each side of the origin. but
loss increases at a constant (linear) rate with the size of the error. We illustrate
absolute loss in Figure 3.2.

In certain contexts, symmetric loss functions may not be an adequate dis-
tillation of the forecast/decision environment. In Figure 3.3, for example, we
show a particular asymmetric loss function for which negative forecast errors
are less costly than positive errors.

Loss

04}

0.2+

0.0 ] ! * + !
-15 -10 -0.5 0.0 0.3 1.0 15

Error




Six Considerations Basic tu Successful Forecasting

39

0.6 -

Loss

0.4 -

T \
L " It 1 :

-1.0 =05 0.0 0.5 1.0 15
Error

|
—
B

In some situations, even the /.(¢) form of the loss function is too restrictive.
Although loss will always be of the form L(y, ), there’s no reason that y and j
should necessarily enter as y — ¥. In predictions of financial asset returns, for
example, interest sometimes focuses on direction of change. A direction-of-
change forecast takes one of two values—up or down. The loss function asso-
ciated with a direction of change forecast might be?

Ly, ) = 0. if sign(A)‘) = s?gn(Ai)

- 1. if sign{Ay) #sign(Ay).
With this loss function, if you predict the direction of change correctly, you
incur no loss; but if your prediction is wrong. you're penalized.

Much of this book is about how to produce optimal forecasts. What pre-
cisely do we mean by an optimal forecast? That's where the loss function
comes in. We'll work with a wide class of symmetric loss functions, and we'll
learn how to produce forecasts that are optimal in the sense that they mini-
mize expected loss for any such loss function.®

RN
2. The Forecast Object

There are many objects that we might want to forecast. In business and eco-
nomics, the forecast object is typically one of three types: event outcome, event
timing, or time series.

“ The vperator A means “change.” Thus, Ay, is the change in y from period t — 1 to period 1, or
AV i FES B

¥ As noted earlier, not all relevant loss functions need be symmetric. Symmetric loss, however, is
usually a reasonable approximation, and symmetric loss is used routinely for practical forecasting.

FIGUPNE I 3
Asymmetric Loss
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Event outcome forecasts are relevant to situations in which an event is cer-
tain to take place at a given time but the outcome is uncertain. For example,
many people are interested in whether the current chairman of the Board of
Governors of the U.S. Federal Reserve System will eventually be reappointed.
The “event” is the reappointment decision; the decision will occur at the end
of the term. The outcome of this decision is confirmation or denial of the
reappointiment.

Event timing forecasts are relevant when an event is certain to take place
and the outcome is known, but the timing is uncertain. A classic example of an
event timing forecast concerns business cycle turning points. There are two
types of turning points: peaks and troughs. A peak occurs when the economy
moves from expansion into recession, and a trough occurs when the economy
moves from recession into expansion. If, for example, the economy is cur-
rently in an expansion, then there is no doubt that the next turning point will
be a peak, but there is substantial uncertainty as to its timing. Will the peak
occur this quarter, this year, or 10 vears from nows

Time series forecasts are relevant when the future value of a time series
is of interest and must be projected. As we’ll see, there are many ways fo make
such forecasts, but the basic forecasting setup doesn’t change much. Based
on the history of the time series (and possibly a variety of other types of in-
formation as well, such as the histories of related time series or subjective
considerations), we want to project future values of the series. For example,
we may have data on the number of Apple computers sold in Germany in
each of the last 60 months, and we mayv want to use that data to forecast the
number of Apple computers to be sold in Germany in each month of the
next year.

Time series forecasts are by far the most frequently encountered in prac-
tice for at least two reasons. First, most business, economic, and financial data
are time series; thus, the general scenario of projecting the future of a series
for which we have historical data arises constantly. Second, the technology for
making and evaluating time series forecasts is well developed, and the typical
time series forecasting scenario is precise, so time series forecasts can be made
and evaluated routinelv. In contrast, the situations associated with event out-
come and event timing forecasts arise less frequently and are often less
amenable to quantitative treatment.

NEREE
3. The Forecast Statement

When we make a forecast, we must decide whether the forecast will be (1) a
single number (a “best guess™), (2) a range of numbers, into which the future
value can be expected to fall a certain percentage of the time, or (3) an entire
probability distribution for the future value. In short, we need to decide on the
forecast type.
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More precisely, we must decide whether the forecast will be (1) a point fore-
cast, (2) an interval forecast, or (3) a density forecast. A point forecast is a sin-
gle number. For example, one possible point forecast of the growth rate of the
total number of web pages over the next year might be +23.3%: likewise, a point
forecast of the growth rate of LS. real GDP over the next year might be +1.3%.
Point forecasts are made routinely in numerous applications, and the methods
used to construct them vary in difficulty from simple to sophisticated. The
defining characteristic of a point forecast is simply that it is a single number.

A good point forecast provides a simple and easily digested guide to the tu-
ture of a time series. However, random and unpredictable “shocks™ affect all of
the series that we forecast. As a result of such shocks, we expect nonzero fore-
cast errors, even from very good forecasts. Thus, we may want to know the de-
gree of confidence we have in a particular point forecast. Stated differently, we
may want to know how much uncertainty is associated with a particular point
forecast. The uncertainty surrounding point forecasts suggests the usefulness
of an interval forecast.

An interval forecast is not a single number; rather, it is a range of values in
which we expect the realized value of the series 1o fall with some (prespeci-
fied) pr()bubilily.4 Continuing with our examples, a 90% interval forecast for
the growth rate of web pages might be the interval [11.3%, 35.3%] (23.3%
+ 12%). That is, the forecast states that with probability 90%. the future growth
rate of web pages will be in the interval [11.3%, 35.3%]. Similarly, 2 90% in-
terval forecast for the growth rate of U.S. real GDP might be [—2.3%, 4.3%]
(1.3% =+ 3%): that is, the forecast states that with probability 90% the future
growth rate of U.S. real GDP will be in the interval [—2.3%, 4.3%].

A number of remarks are in order regarding interval forecasts. First, the
length (size) of the intervals conveys information regarding forecast uncer-
tainty. The GDP growth rate interval is much shorter then the web page
growth rate interval; this reflects the fact that there is less uncertainty associ-
ated with the real GDP growth rate forecast than the web page growth rate
forecast. Second, interval forecasts convey more information than point fore-
casts. Given an interval forecast, you can construct a point forecast by using
the midpoint of the interval.> Conversely, given only a point forecast, there is
no wayv to infer an interval forecast.

Finally, we consider density forecasts. A density forecast gives the entire
density (or probability distribution) of the future value of the series of inter-
est. For example, the density furecast of future web page growth might be
normally distributed with a mean of 23.3% and a standard deviation of 7.32%.

! An interval forecast is very similar to the more general idea of a confidense interval that you stud-
icd in statistics. An interval forecast is simply a confidence interval for the true (but unknown) fu-
ture value of a series, computed using a sample of historical data. We'll say that [a, b] is a
10(1 — )% interval forecast if the probability of the future value being less than a is /2, and
the probability of the future value being greater than b is also /2.

* An interval forecast doesn’t have to be symmetric around the point forecast, so thar we wouldn’t
necessarily infer a point forecast as the midpoint of the interval forecast, but in many cases such a
procedure is appropriate,
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FIGURE 3.4

Web Page Growth:

Point, Interval,
and Density
Forecasts

Probability
density

Density forecast
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23.3
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Web page growth

Likewise, the density forecast of future real GDP growth might be normally
distributed with a mean of 1.3% and a standard deviation of 1.83%.

As with interval forecasts, density forecasts convey more information than
point forecasts. Density forecasts also convey more information than interval
forecasts, because given a density, interval forecasts at any desired confidence
level are readily constructed. For example, if the future value of some series x
is distributed as N(., o) then a 95% interval forecast of xis u. + 1.96¢, a 90%
interval forecast of xis p + 1.640, and so forth. Continuing with our example,
the relationships among density, interval, and point forecasts are made clear
in Figure 3.4 (web page growth) and Figure 3.5 (U.S. real GDP growth).

FIGURE 3.5
U.S. Real GDP
Growth: Point,
Interval, and
Density Forecasts

Probability
density

Density forecast

1.3
Point forecast

90% Interval forecast

GDP growth
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To recap, there are three time series forecast types: point, interval, and
density. Density forecasts convey more information than interval forecasts,
which in turn convey more information than point forecasts. This may seem to
suggest that density forecasts are always the preferred forecast, that density
forecasts are the most commonly used forecasts in practice, and that we
should focus most of our attention in this book on density forecasts.

In fact, the opposite is true. Point forecasts are the most commonly used
forecasts in practice, interval forecasts are a rather distant second. and density
forecasts are rarely made—for at least two reasons. First, the construction of
interval and density forecasts requires either (1) additional and possibly in-
correct assumptions relative to those required for construction of point fore-
casts or (2) advanced and computer-intensive methods involving—for exam-
ple, extensive simulation. Second, point forecasts are often easier to
understand and act on than interval or density forecasts. That is, the extra in-
formation provided by interval and density forecasts is not necessarily an ad-
vantage when information processing is costly.

Thus far, we have focused exclusively on types of time series forecasts, be-
cause time series are so prevalent and important in numerous fields. It is worth
mentioning another forecast type of particular relevance to event outcome and
event timing forecasting, the probability forecast. To understand the idea of a
probability forecast, consider forecasting which of two politicians, Mr. Liar or
Ms. Cheat, will win an election. (This is an event outcome forecasting situa-
tion.) If our calculations tell us that the odds favor Mr. Liar, we might issue the
forecast simply as “Mr. Liar will win.” This is roughly analogous to the time se-
ries point forecasts discussed earlier, in the sense that we're not reporting any
measure of the uncertainty associated with our forecast. Alternatively, we could
report the probabilities associated with each of the possible outcomes; for ex-
ample, “Mr. Liar will win with probability .6. and Ms. Cheat will win with proba-
bility .4.” This is roughly analogous to the time series interval or density fore-
casts discussed earlier, in the sense that it explicitly quantifies the uncertainty
associated with the future event with a probability distribution.

Event outcome and timing forecasts, although not as common as time se-
ries forecasts, do nevertheless arise in certain important situations and are
often stated as probabilities. For example, when a bank assesses the probabil-
ity of default on a new loan or a macroeconomist assesses the probability that
a business cycle turning point will occur in the next 6 months, the banker or
macroeconomist will often use a probability forecast.

NEREEEN
4. The Forecast Haorizon

The forecast horizon is defined as the number of periods between today and
the date of the forecast we make. For example, if we have annual data, and it’s
now year 7, then a forecast of GDP for vear 7'+ 2 has a forecast horizon of
2 steps. The meaning of a step depends on the frequency of observation of the
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FIGURE 3.8
4-Step-Ahead Point
Forecast

Series or
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data. For monthly data, a step is one month; for quarterly data, a step is one
quarter (3 months); and so forth. In general, we speak of an hA-step-ahead
forecast, where the horizon A is at the discretion of the user.®

The horizon is important for at least two reasons. First, of course. the fore-
cast changes with the forecast horizon. Second, the best forecasting model will
often change with the forecasting horizon as well. All of our forecasting mod-
els are approximations to the underlying dynamic patterns in the series we
forecast; there’s no reason why the best approximation for one purpose (such
as short-term forecasting) should be the same as the best approximation for
another purpose (such as long-term forecasting).

In closing this section, let’s distinguish between what we've called /-step-
ahead forecasts and what we'll call h-step-ahead extrapolation forecasts. In
hstep-ahead forecasts, the horizon is always fixed at the same value, h. For
example, every month we might make a $month-ahead forecast. Alternatively,
in extrapolation forecasts, the horizon includes all steps from 1-step-ahead to
hsteps-ahead. There’s nothing particularly deep or difficult about the distinc-
tion, but it’s useful to make it, and we’ll use it subsequently.

Suppose, for example, that you observe a series from some initial time 1
to some final time 7, and you plan to forecast the series.” We illustrate the dif-
ference between hstep-ahead and fstep-ahead extirapolation forecasts in
Figures 3.6 and 3.7. In Figure 3.6, we show a 4-step-ahead point forecast;
in Figure 3.7, we show a 4-step-ahead extrapolation point forecast. The

6 The choice of h depends on the decision that the forecast will guide. The nature of the decision
environment typically dictates whether shortterm, medium-term, or long-term forecasts are
needed.

7 For a sample of data on a series y, we'll typically write (."I,Ll . This notation means, “We observe
the series y from some beginning time = 1 to some ending time i = "
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extrapolation forecast is nothing more than a set consisting of 1-, 2-, 3-, and
4-step-ahead forecasts.

P . o
3. The Information Set

The quality of our forecasts is limited by the quality and quantity of informa-
tion available when forecasts are made. Any forecast we produce is conditional
on the information used to produce it, whether explicitly or implicitly.

The idea of an information set is fundamental to constructing good fore-
casts. In forecasting a series, y, using historical data from time 1 to time T,
sometimes we use the univariate information set, which is the set of historical
values of y up to and including the present,

Qi;—ﬂl\"d"lalt = ‘)'T’ yT_] veens yl] .
Alternatively, sometimes we use the multivariate information set
Qr;u"mnm = !yr, XTy ¥T-1s XT=15 -« -1 J1» xl} y
where the x's are a set of additional variables potentially related to y. Regard-
less, it’s always important to think hard about what information is available,
what additional information could be collected or made available, the form of
the information (for example, quantitative or qualitative), and so on.

The idea of an information set is also fundamental for evaluating forecasts.
When evaluating a forecast, we're sometimes interested in whether the fore-
cast could be improved by using a given set of information more efficiently,
and we’re sometimes interested in whether the forecast could be improved by
using more information. Either way, the ideas of information and information
sets play crucial roles in forecasting.

FIGURE 3.7
4‘Slfp-Ah€U(l
Extrapolation Point
Forecast
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B. Methods and Complexity, the Parsimeny Principle,
and the Shrinkage Principle

It’s crucial to tailor forecasting tools to forecasting tasks, and doing so is partly
a matter of judgment. Typically the specifics of the situation (such as decision
environment, forecast object, forecast statement, forecast horizon, intforma-
tion set, and so forth) will indicate the desirability of a specific method or
modeling strategy. Moreover, as we'll see. formal statistical criteria exist to
guide model selection within certain classes of models.

We've stressed that a variety of forecasting applications use a small set of
common tools and models, You might guess that those models are tremen-
dously complex, because of the obvious complexity of the real-world phenom-
ena that we seek to forecast. Fortunately, such is not the case. In fact, decades of
professional experience suggest just the opposite: Simple, parsimonious models
tend to be best for out-of-sample forecasting in business, finance, and econom-
ics. Hence. the parsimony principle: Other things being the same, siinple models
are usually preterable to complex models.

A number of reasons explain why smaller, simpler models are often more
attractive than larger, more complicated ones. First, by virtue of their parsi-
mony, we can estimate the parameters of simpler models more precisely. Sec-
ond, because simpler models are more easily interpreted, understood, and
scrutinized, anomalous behavior is more easily spotted. Third, it's easier to
communicate an intuitive feel for the behavior of simple models, which makes
them more useful in the decision-making process. Finally. enforcing simplicity
lessens the scope for “data mining "—tailoring a model to maximize its fit to
historicat data. Data mining often results in models that fit historical data
beautifully (by construction) but perforny miserably in out-of-sample forecast-
ing, because it tailors models in part 10 the idinsyncracies of historical data,
which have no relationship to unrealized fuiture data.

The parsimony principle is related to, but distinct from, the shrinkage
principle, which codifies the idea that imposing restrictions on forecasting
models often improves forecast performance. The name shrinkage comes
from the notion of coaxing, or “shrinking,” forecasts in certain directions by
imposing restrictions of various sorts on the models used 1o produce the fore-
casts.® The reasoning behind the shrinkage principle is subtle, but it perme-
ates forecasting. By the time you've completed this book, vou'll have a firm
grasp of it.

Finally, note that simple models should not be confused with naive mod-
els. All of this is well formalized in the KISS principle (appropriately modified
for forecasting): “Keep It Sophisticatedly Simple.” We'll attempt to do so
throughout.

* One such possible restriction is that, loosely speaking, forecasting mnodels be simple. hence the
link to the parsimom principle.
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NEREEEN
1. Concluding Remarks

This chapter, like Chapter 1. deals with broad issues of general relevance.
For the most part, it avoids detailed discussion of specific modeling or fore-
casting techniques. In the next chapter, we begin to change the mix toward
specific tools with specific applications. In the broad-brush tradition of Chap-
ters 1, 2, and 3, we focus on principles of statistical graphics, which are relevant
in any forecasting situation, but we also introduce a variety of specific graphi-
cal techniques, which are useful in a variety of situations.

Exercises, Problems, and Complements

1. (Data and forecast timing conventions) Suppose that, in a particular monthly

dataset, time ¢ = 10 corresponds to September 1960.

a. Namec the month and vear of each of the following times: (+ 5, 1+ 10,
1+ 12, 1 + 60,

b. Suppose that a series of interest follows the simple process y, = y,_) + 1, for
t=1,2,3, ..., meaning that each successive month’s value is one higher than
the previous month’s. Suppose that y, = 0, and suppose that at present
t = 10. Calculate the forecasts y.45.¢,» ¥r+10.1+ V14121, Yro60,1 Where, for example,
¥i+5.¢ denotes a forecast made at time { for future time 7 + 5, assuming that
t =10 at present.

2. (Properties of loss functions) State whether the following potential loss functions
meet the criteria introduced in the wext and, if so, whether they are symmetric or
asymmetric;

a. Le)y=e+
b. Lie)=¢t+2¢2
c. L(H=32+1

Ve if e>0

lef if e<0O

3. (Relationships among point, interval, and density forecasts) For each of the
following density forecasts, how might vou infer “good” point and 90% interval
forecasts? Conversely, if you started with your point and interval forecasts, could
you infer “good” density forecasis? Be sure 10 defend your definition of “good.™
a. Future yis distributed as N(10, 2).

d. L) =

— 5
’? if h<y<l0
b=l y-15
b PM=1-2"2 i 10<y<15
0 otherwise ,

4. (Forecasting at short through long horizons) Consider the claim “The distant
future is harder to forecast than the near future.” Is it sometimes true? Usually
true? Always true? Why or why not? Discuss in detail. Be sure to define “harder.”
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(Forecasting as an ongoing process in organizations) We could add another very
important item to this chapter’s list of considerations basic to successful
forecasting: Forecasting in organizations is an ongoing process of building, using,
evaluating, and improving forecasting models. Provide a concrete example of a
forccasting model used in business, finance, economics, or government, and
discuss ways in which each of the following questions might be resolved prior to,
during, or after its construction.

a.

Are the data “dirtv”? For example, are there “ragged edges™ That is, do the
starting and ending dates of relevant series differ? Are there missing
observations? Are there aberrant observations, called outliers, perhaps due
to measurement error? Are the data stored in a format that inhibits
computerized analysis?

Has software been written for importing the data in an ongoing forecasting
operation?

Who will build and maintain the model?

Are sufficient resources available (time, money, staff) to facilitate model
building, use, evaluation, and improvement on a routine and ongoing basis?
How much time remains before the first forecast must be produced:

How many series must be forecast, and how often must ongoing forecasts be
produced?

What level of data aggregation or disaggregation is desirable?

To whom does the forecaster or forecasting group report, and how will the
forecasts be communicated?

How might vou conduct a “forecasting audit™

(Assessing forecasting situations) For each of the following scenarios, discuss the
decision environment, the nature of the object to be forecast, the forecast type,
the forecast horizon, the loss function, the information set, and what sorts of
simple or complex forecasting approaches you might entertain.

a.

b.

C.

You work for Airborne Analytics, a highly specialized mutual fund investing
exclusively in airline stocks. The stocks held by the fund are chosen based on
vour recommendations. You learn that a newly rich oil-producing country has
requested bids on a huge contract to deliver 3() state-of-the-art fighter plancs,
but that only two companies submitted bids. The stock of the successful
bidder is likely to rise.

You work for the Office of Management and Budget in Washington, D.C.,
and must forecast tax revenues for the upcoming fiscal vear. You work for a
president who wants to maintain funding for his pilot social programs, and
high revenue forecasts ensure that the programs keep their tunding.
However, if the forecast is too high, and the president runs a large deficit at
the end of the yeur, he will be seen as fiscally irresponsible, which will lessen
his probabilitv of reelection. Furthermore, your forecast will be scrutinized by
the more conservative members of Congress; if they find fault with vour
procedures, they might have fiscal grounds to undermine the president’s
planned budget.

You work for D&D. a major Los Angeles advertising firm, and you must create
an ad for a client’s product. The ad must be targeted toward teenagers,
because thev constitute the primary market for the product. You must
(somehow) find out what kids currently think is cool, incorporate that
information into vour ad, and make your client’s product attractive to the new
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generation. If your hunch is right, your firm basks in glory, and you can
expect multiple future clients from this one advertisement. If you miss,
however, and the kids don't respond to the ad, then your client’s sales fall,
and the client may reduce or even close its account with you.

Bibliographical and Computational Notes

Klein (1971) and Granger and Newbold (1986) contain a wealth of insighdful (but
more advanced) discussion of many of the topics discussed in this chapter. The links
between forecasts and decisions are clearly displaved in many of the chapters of
Makridakis and Wheelwright (1987). Armstrong (1978) provides entertaining and
insighttul discussion of many of the specialized issues and techniques relevant in
long-horizon forecasting. Several of the essays in Diebold and Watson (1996) con-
cern the use of loss functions tailored to the decision-making situation of interest,
both with respect to the forecast horizon and with respect to the shape of the loss
function, as does Christoffersen and Diebold (1997). Zellner (1992) provides an in-
sightful statement of the KISS principle, which is very much related to the parsimony
principle of Box and Jenkins (see Box, Jenkins, and Reinsel, 1994), Levenbach and
Cleary (1984) contains useful discussion of forecasting as an ongoing process.

Concepts for Review

Decision environment
Loss function

Forecast object

Forecast statement
Forecast horizon
Information set
Methods and complexity
Parsimony principle
Shrinkage principle
Symmetric loss
Asymmetric loss
Forecast error
Quadratic loss

Absolute loss

Absolute error loss
Direction-of-change forecast
Optimal forecast

Event outcome forecast
Event timing forecast
Time series forecast
Point forecast

Interval forecast
Density forecast
Probability forecast
k-step-ahead forecast
kstep-ahead extrapolation forecast
KISS principle

Ragged edges

Missing observations
Outlier

Measurement error
Aggregation
Disaggregation
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Statistical Graphics
for Forecasting

It's almost always a good idea to begin forecasting projects with graphical data
analysis. When compared with the modern array of statistical modeling meth-
ods, graphical analysis might seem trivially simple, perhaps even so simple as
to be incapable of delivering serious insights into the series to be forecast.
Such is not the case: In many respects the human eye is a far more sophisti-
cated tool for data analysis and modeling than even the most sophisticated
modern modeling techniques. That’s certainly not to say that graphical analy-
sis alone will get the job done—certainly, graphical analysis has its limitations—
but it’s usually the best place to start. With that in mind, we introduce in this
chapter some simple graphical techniques, and we consider some basic ele-
ments of graphical style.

NEREEEN :
|. The Power of Statistical Graphics

The four datasets shown in Table 4.1, known as Anscombe’s quartet, provide
stark illustration of the power of statistical graphics. Each dataset consists of 11
observations on two variables. Simply glancing at the data—or even studying it
with some care—yields little insight. Of course, you say, but that’s why we have
powerful modern statistical techniques, such as the linear regression model.
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TABLE 4
Anscombe’s Quarlet W @ & @
x1 yl x2 y2 x$ y3 x4 y4
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 18.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

So let’s regress y on x for each of the four datasets. The results appear in
Table 4.2. Interestingly enough, although the four datasets certainly contain
different numerical data values, the standard linear regression output is iden-
tical in each case. First, the fitted regression line is the same in each case,
y =3 + %x. Second, the uncertainty associated with the estimated parameters,
as summarized by standard errors, is also the same in each dataset. Hence, the
tstatistics, which are simply ratios of estimated coefficients to their standard
errors, are also identical across datasets. Third, R®, which is the percentage of
variation in y explained by variation in x, is identical across datasets. Fourth,
the sum of squared residuals, and hence the standard error of the regression
(the estimated standard deviation of the stochastic disturbance to the linear
regression relationship), is the same in each dataset.

That’s all fine, to0. you say—the relationship between y and x is simply the
same in each dataset, even though the specific data differ due to random in-
fluences. The assertion that the relationship between y and x is the same in
each dataset could be correct, but graphical examination of the data reveals im-
mediately that it's not correct. In Figure 4.1, we show graphs of y versus x
(called pairwise scatterplots or bivariate scatterplots) for each of the four
datasets, with fitted regression lines superimposed. Although the fitted regres-
sion line is the same in each case, the reasons differ greatly, and it's clear that
for most of the datasets the linear regression model is not appropriate.

In dataset 1, all looks well. We see that y1 and xI are clearly positively cor-
related, and they appear to conform rather well to a linear relationship, al-
though the relationship is certainly not perfect. In short, all the conditions of
the classical linear regression model appear satisfied in dataset 1.

In dataset 2, the situation is very different. The graph reveals that there’s
certainly a relationship between )2 and x2—perhaps even a deterministic
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Thus, the use of the linear regression model is not desirable in dataset 2.

In dataset 3, the graphics indicate that although y and x do seem to con-
form to a linear relationship, there is one kev (33, x3) pair that doesn’t con-
form well to the linear relationship. Most likely you never noticed that data
point when vou simply examined the raw data in tabular form, in spite of the

fact that it’s visually obvious when we make use of graphics.

Dataset 4 is rather odd—the (y4, x4) pairs are all stacked vertically, with the
exception of one point, which exerts a huge influence on the fitted regression
line. At any rate, the graphics once again make the anomalous nature of this

situation innmediately apparent.

Let's summarize what we've learned about the power of graphics:

a.  Graphics helps us to summarize and reveal patterns in data, as, for example, with
linear versus nonlinear functional form in the first and second Anscombe

datasets. That's key in anv forecasting project.

b.  Graphics helps us identify anomalies in data, as in the third Anscombe dataset.
That's also key in forecasting. because we’ll produce our forecasts from
models fit to the historical data, and the dictum “garbage in, garbage out”

most definitely applies.

TAELE 4.2
Anscombe’s
Quartet:
Regressions of y; on
xpi=1....4
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FIGLRE 4.1
Anscombe’s
Quartet: Bivariate
Scatterplots
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Less obvious, but most definitely relevant, is the fact that graphies facilitates
and encourages comparison of different pieces of data. That's why, for example,
we graphed all four datasets in one big figure. By doing so, we facilitate ¢f-
fortless and instantaneous cross~lataset comparison of statisrical relation-
ships. This technique is called multiple comparisons.

There’s one more aspect of the power of statistical graphics. It comesinto play
in the analysis of large datasets, so it wasn't revealed in the analysis of the
Anscombe datasets. which are not large, but it's nevertheless tremendously
important. Graphics enables us lo presen! a huge ainount of data in a small space, and
it enables us to make huge datasets coherent. We might. for example, have super-
market scanner data, recorded in 5-minute intervals for a vear. on the quanti-
ties of goods sold in each of four food categories: dairy, meat. grains, and veg-
etables. Tabular or similar analysis of such data is simply out of the question,
but graphics is still straightforward and can reveal important patterns.
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2. Simple Graphical Techniques

As we discussed in Chapter 3, time series are by far the most common objects
for which forecasts are made. Thus, we will focus primarily on graphics useful
for modeling and forecasting time series. The dimensionality of the data—the
number of tiine series we wish to examine—plays a key role. Because graphi-
cal analysis “lets the data speak for themselves,” it is most useful when the di-
mensionality of the data is low. We will segment our discussion into two parts:
univariate and multivariate.

UNIVARIATE GRAPHICS

First and foremost, graphics is used to reveal the patterns in time series data.
We use graphical analysis to get a preliminary and informal idea of the nature
of trend, seasonality, and cvcles, as well as the nature and location of any un-
usual or aberrant observations, structural breaks, and so forth. The great
workhorse of univariate time series graphics is the simple time series plot, in
which the series of interest is graphed against time.

In Figure 4.2, for example. we present a time series plot of the I-vear U.S.
Treasury bond rate, 1960.01-2005.03." A number of important features of the
series are apparent. Among other things, its movements appear sluggish and
persistent, it appears to trend gently upward until about 1980, and it appears
to trend gently downward thereafter.
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! The notation *1960.01-2005.03" means the first month of 1960 through the third month of 2005.
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FIGURE 4 3
Change in 1-Year
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Figure 4.3 provides a different perspective: we plot the changein the 1-vear
T-bond rate, which highlights volatility fluctuations. Interest rate volatility ap-
pears low in the 1960s, a bit higher in the 1970s, and very high from late 1979
through late 1982 (the period during which the Federal Reserve targeted a
monetary aggregate, which had the side effect of increasing interest rate
volatility), after which volatility gradually declines.

Time series plots are helpful for learning about other features of time se-
ries as well. In Figure 4.4, for example, we show a time series plot of U.S. liquor
sales, 1960.01-2001.03. Clearly they're trending upward, but the plot indicates
that a break in the trend may occur sometime during the 1980s. In addition,

FIGURE 4.4
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FIGURE 4.5
Histogram and Descriptive Statistics: Change in 1-Year Treasury Bond Rale
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the plot makes clear the pronounced seasonality in the series—liquor sales
skyrocket every December—and moreover that the volatility of the seasonal
fluctuations grows over time as the level of the series increases.

Univariate graphical techniques are also routinely used to assess distribu-
tional shape. A histogram, for example, provides a simple estimate of the prob-
ability density of a random variable. The observed range of variation of the
series is split into a number of segments of equal length, and the height of the
bar placed at a segment is the percentage of observations falling in that
segment.? Figure 4.5 shows a histogram for the change in the 1-year T-bond
rate with related diagnostic information. The histogram indicates that the se-
ries is roughly symmetrically distributed, and the additional statistics such as
the sample mean, median, maximum, minimum, and standard deviation con-
vey important additional information about the distribution.

For example, a key feature of the distribution of T-bond rate changes,
which may not have been immediately apparent from the histogram, is that it
has fatter tails than would be the case under normality. This is at once appar-
ent from the kurtosis statistic, which would be approximately 3 if the data were
normally distributed. Instead, it’s about 10, indicating much fatter tails than
the normal, which is very common in high-frequency financial data. The skew-
ness statistic is modestly negative, indicating a rather long left tail. The Jarque-
Bera normality test rejects the hvpothesis of independent normally distributed

2In some software packages (for example, Eviews), the height of the bar placed at a segment is
simply the number, not the percentage. of observations falling in that segment. Strictly speaking,
such histograms are not densin estimators. because the “area under the curve™ doesn’t add to 1,
but they are equally useful for summarizing the shape ot the density.
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observations. The rejection occurs because the interest rate changes are not
independent, not normally distributed, or both. It's likely both, and the devi-
ation from normality is due more to leptokurtosis than to asymmerry.?

MULTIVARIATE GRAPHICS

When two or more variables are available, the possibility of relations between
the variables becomes important, and we use graphics to uncover the exis
tence and nature of such relationships. We use relational graphics to display
relationships and flag anomalous observations. You already understand the
idea of a bivariate scatterplot—we used it extensively to uncover relationships
and anomalies in the Anscombe data.? In Figure 4.6, for example, we show a
bivariate scatterplot of the l-yvear U.S. Treasury bond rate versus the 10-year
U.S. Treasury bond rate, 1960.01-2005.03. The scatterplot indicates that the
two move closely together. Although each of the rates is individually highlv
persistent, the deviations from the superimposed regression line appear tran-
sient. You can think of the line as perhaps representing long-run equilibrium
relationships, to which the variables tend to cling.

The regression line that we superimpose on a scatterplot of y versus x is an
attempt to summarize how the conditional mean of y (given x) varies with x.

*The rejection could also occur because the sample size is too small w invoke the large-sample
theory on which the Jarque-Bera test is based, but that’s not likely in the present application, for
which we have quite 4 large sample of data.

! Just as in our analysis of the Anscombe data. we often make bivariate scatterplots with fitted re-
gression lines superimposed, to help us 1o visually assess the adequacy of a linear model. Note that
although superimposing a regression line is helpful in bivariate scatterplots, “connecting the dots”
is not. This contrasis 1o 1ime series plots, for which connecting the dots is fine and is typically done.
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Under certain conditions that we'll discuss in later chapters, this conditional
mean is the best point forecast of y. Thus, you can think of the regression line
as summarizing how our best point forecast of y varies with x. The linear re-
gression model involves a lot of structure (it assumes that E(ylx) is a linear
function of x), but less structured approaches exist and are often used 10 pro-
vide potentially nonlinear estimates of conditional mean functions for super-
imposition on scatterplots.

Thus far, all our discussion of multivariate graphics has been bivariate.
That's because graphical techniques are best suited to low-dimensional data.
Much recent research has been devoted to graphical techniques for high-
dimensional data, but all such high-dimensional graphical analysis is subject
to certain inherent limitations. Here we’ll discuss just one simple and popu-
lar scatterplot technique for high-dimensional data—and one that's been
around for a long time—the scatterplot matrix, or multiway scatterplot. The
scatterplot matrix is just the set of all possible bivariate scatterplots, arranged
in the upper-right or lower-left part of a matrix to facilitate multiple compar-
isons. If we have data on N variables, there are 2= such pairwise scatter-
plots. In Figure 4.7, for example, we show a scatterplot matrix for the l-vear,
10-year, 20-year, and 30-year U.S. Treasury bond rates, 1960.01-2005.03.
There are a total of six pairwise scatterplots, and the multiple comparison
makes clear that although the interest rates are closely related in each case,
with a regression slope of approximately 1, the relationship is more precise
in some cases (such as 20- and 30-vear rates) than in others (such as 1- and
30-year rates).

P
3. Elements of Graphical Style

In the preceding section, we discussed various graphical tools. As with all tools,
however, graphical tools can be used effectively or ineffectively. In this section,
you'll learn what makes good graphics good and bad graphics bad. In doing
so, you'll learn to use graphical tools effectively.

Bad graphics is like obscenity: It's hard to define, but you know it when you
see it. Conversely. producing good graphics is like good writing: [t’s an itera-
tive, trial-and-error procedure and very much an art rather than a science. But
that’s not to say that anything goes; as with good writing, good graphics re-
quires discipline. There are at least three keys to good graphics:

a. Know your audience, and know your goals.

b. Understand and follow two fundamental principles: show the data, and ap-
peal to the viewer.

c. Revise and edit, again and again.

We can use a number of devices to show the data. First, avoid distorting
the data or misleading the viewer. Thus, for example, avoid changing scales
in midstream, use common scales when performing multiple comparisons,
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FIOURE 4.7 Scatterplot Matrix: 1-, 10-, 20+, and 30-Year Treasury Bond Rates
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and so on. Second, minimize, within reason, nondata ink.? Avoid chartjunk
(elaborate shadings and grids, decoration, and related nonsense), erase un-
necessary axes, refrain from use of artificial three-dimensional perspective,
and so forth.

® Nondata ink is ink used to depict anything other than data points.
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Other guidelines help us appeal to the viewer. First, use clear and modest type,
avoid mnemonics and abbreviations, and use labels rather then legends when
possible. Second, make graphics self-contained; a knowledgeable reader should
be able to understand your graphics without reading pages of accompanying
text. Third, as with our prescriptions for showing the data, avoid chartjunk.

An additional aspect of creating graphics that show the data and appeal to
the viewer is selection of a graph’s aspect ratio. The aspect ratio is the ratio of
the graph’s height, A, to its width, w, and it should be selected such that the
graph reveals patterns in the data and is visually appealing. One time-honored
approach geared toward visual appeal is to use an aspect ratio such that height
is to width as width is to the sum of height and width. Algebraically,

h w
-_——= = R
w h+w
Dividing numerator and denominator of the right side by wyields
1
a= a+1’
or
a@d+a-1=0.

The positive root of this quadratic polynomial is a = 0.618, the so-called
golden ratio. Graphics that conform to the golden ratio, with height a bit less
than two-thirds of width, are visualiv appealing. In Figure 4.8, for example, we
show a plot whose dimensions roughly correspond to the golden aspect ratio.

Other things the same, it’s a good idea to keep the golden ratio in mind
when producing graphics. Other things are not always the same, however. In
particular, the golden aspect ratio may not be the one that maximizes pattern
revelation. Consider Figure 4.9. for example, in which we plot exactly the

FIGLIRE 4 B
Time Series Plot,
Aspect Raliv 1:1.6
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FIBURE 4.9 Time Series Plot, Banked to 45 Degrees
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same data as in Figure 4.8, but with a smaller aspect ratio. The new plot reveals
an obvious pattern in the data, which you probably didn’t notice before, and
is therefore a superior graphic.

The improved aspect ratio of Figure 4.9 was selected to make the average
absolute slope of the line segments connecting the data points approximately
equal to 45 degrees. This procedure, banking to 45 degrees, is useful for se-
lecting a revealing aspect ratio. As in Figure 4.9, the most revealing aspect
ratio for time series—especially long time series—is often less than the golden
ratio. Sometimes, however, various devices can be used to maintain the golden
aspect ratio while nevertheless clearly revealing patterns in the data. In Fig-
ure 4.10, for example, we use the golden aspect ratio but connect the data
points, which makes the pattern clear.

FIGURE 410
Time Sertes Plot,
Aspect Ratio 1:1.6
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RN
4. Application: Graphing Four Companents of Real GDP

As with writing, the best way to learn graphics is to do it, so let’s proceed im-
mediately with an application that illustrates various points of graphical style.
We'll examine four key components of U.S. real GDP: manufacturing, retail,
services, and agriculture, recorded annually from 1960 to 2001 in millions of
current dollars.

We begin in Figure 4.11 with a set of bar graphs. The value of each series
in each year is represented by the height of a vertical bar, with different bar
shadings for the different series. It’s repugnant and unreadable, with no title,
no axis numbering or labels, bad mnemonics, and so on. The good news is
there’s plenty of room for improvement.

We continue in Figure 4.12 with a set of stacked bar graphs, which are a bit
easier to read because there's only one bar at each time point rather than four,
but otherwise they suffer from all the defects of the bar graphs in Figure 4.11.
Typically, bar graphs are simply not good graphical tools for time series. We
therefore switch in Figure 4.13 to a time series plot with different types of lines
and symbols for each series, which is a big improvement, but there’s still room
for additional improvement.

In Figure 4.14, we drop the symbols and add axis numbering. This figure
is a major improvement, but the plot is still poor. In particular, it still has bad
mnemonics, no title, and no axis labels. Moreover, it’s not clear that dropping
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the plotting symbols produced an improvement, even though they are
nondata ink. (Why?)

In Figure 4.15, we drop the different plotting lines and symbols altogether.
Instead, we simply plot all the series with solid lines and label them directly.
This approach produces a much more informative and appealing plot, in large
part because there’s no longer a need for the hideous legend and associated

FIGURE 4.14
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FIGURE 4.8
Components of Real
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mnemonics. However, a new annoyance has been introduced; the CAPITAL
series labeling repels the viewer.

In Figure 4.16, we attempt to remedy the remaining defects of the plot.
Both the horizontal and vertical axes are labeled, all labeling makes use of
both capital and lowercase type as appropriate, the northern and eastern box
lines have been eliminated (they're nondata ink and serve no useful purpose),
the plot has a descriptive title, and, for visual reference, we have added shad-
ing indicating recessions.

NEEER - o
3. Concluding Remarks

We've emphasized in this chapter that graphics is a powerful tool with a variety
of uses in the construction and evaluation of forecasts and forecasting models.
We hasten to add, however, that graphics has its limitations. In particular,
graphics loses a lot of its power as the dimension of the data grows. If we have
data in 10 dimensions, and we try to squash it into 2 or 3 dimensions to make a
graph, we're bound to lose some information. That’s also true of the models we
fit; a linear regression model with 10 right-hand-side variables, for example, as-
sumes that the data tend to lie in a small subset of 10-dimensional space.
Thus, in contrast to the analysis of data in two or three dimensions, in
which case learning about data by fitting models involves a loss of information
whereas graphical analysis does not, graphical methods lose their comparative
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advantage in higher dimensions. In higher dimensions, both graphics and
models lose information, and graphical analysis can become comparatively
laborious and less insightful. The conclusion, however, is straightforward:
Graphical analysis and model fitting are complements, not substitutes, and
when used together they can make valuable contributions to forecasting.

Exercises, Problems, and Complements

1. (Outliers) Recall the lower-left panel of the multiple comparison plot of the
Anscombe data (Figure 4.1), which made clear that dataset 3 contained a severely
anomalous observation. We call such data points outliers.

a. Outiers require special attention because they can have substantial influence
on the fitted regression line. Regression parameter estimates obtained by least
squares are particularly susceptible to such distortions. Why?

b. Outliers can arisc for a number of reasons. Perhaps the oudier is simply a
mistake because of a clerical recording error, in which case you'd want to
replace the incorrect data with the correct data. We'll call such outliers
measurement outliers, because they simply reflect measurement errors, If a
particular value of a recorded series is plagued by a measurement outlier,
there’s no reason that observations at other times should necessarily be
affected. But they might be affected. Why?

c. Alternatively, outliers in time series may be associated with large
unanticipated shocks, the effects of which mav linger. If, for instance, an
adverse shock hits the U.S. economy this quarter (for example, the price of
oil on the world market triples) and the U.S. plunges into a severe depression,
then it's likely that the depression will persist for some time. Such outliers are
called innovation outliers, because they're driven by shocks, or “innovations,”
whose effects naturally last more than one period because of the dynamics
operative in business, economic, and financial series.

d. How to identify und treat outliers is a time-honored problem in data analysis,
and there’s no easy answer. What factors would you, as a forecaster, examine
when deciding what to do with an outlier?

2. (Simple versus partial correlation) The set of pairwise scatterplots that comprises
a muhiway scatterplot provides useful information about the joint distribution of
the N variables, but it's incomplete information and should be interpreted with
care. A pairwise scatterplot sammarizes information regarding the simple
correlation betwcen, sav, x and y. But x and y may appear highly related in a
pairwise scatterplot even if they are in fact unrelated, if each depends on a third
variable—say, z. The crux of the problem is that there’s no way in a pairwise
scatterplot to examine the correlation between xand y controlling for z, which we
call partial correlation. When interpreting a scatterplot matrix, keep in mind that
the pairwise scatterplots provide information only on simple correlation.

3. (Graphical regression diagnostic 1: time series plot of y,, ¥, and ¢) After
estimating a forecasting model, we often make use of graphical techniques to
provide important diagnostic information regarding the adequacy of the model.
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Often the graphical techniques involve the residuals from the model.
Throughout, let the regression model be

&
= ZBIXH+EI .

i=]

and let the fitted values be

* ~
¥ = Z Bix; .

=1
The difference between the actual and fitted values is the residual,
€= Y1~ 5‘: .

a. Superimposed time series plots of y,and §; help us to assess the overall fit of a
forecasting model and to assess variations in its performance at different
times (for example, performance in tracking peaks versus troughs in the
business cycle).

b. A time series plot of ¢ (a so-called residual plot) helps to reveal patterns in the
residuals. Most important, it helps us to assess whether the residuals are
correlated over time—that is, whether the residuals are serially correlated, as
well as whether there are any anomalous residuals. Note that even though
there might be many right-hand-side vaniables in this regression model, the
actual values of y, the fitted values of y, and the residuals are simple univariate
series that can be plotied easily. We'll make use of such plots throughout
this book.

(Graphical regression diagnostic 2: time series plot of e;', or |e]} Plots of ("z or

|e,) reveal patterns (most notably serial correlation) in the squared or absolute
residuals, which correspond to nonconstant volatility, or heteroskedasticity, in the
levels of the residuals. As with the standard residual plot, the squared or absolute
residual plot is always a simple univariate plot, even when there are many right-
hand-side variables. Such plots feature prominently, for example, in tracking and
forecasting time-varying volatility.

(Graphical regression diagnostic 3: scatterplot of ¢, versus x,) This plot helps us 1o
assess whether the relationship between y and the set of x’s is truly linear, as
assumed in linear regression analysis. If not, the linear regression residuals will
depend on x. In the case where there is only one right-hand-side variable, as
earlier, we can simply make a scatterplot of ¢, versus x,, When there is more than
one right-hand-side variable, we can make separate plots for each, although the
procedure loses some of its simplicity and transparency.

(Graphical analysis of foreign exchange rate data) Magyar Select, a marketing
firm representing a group of Hungarian wineries, is considering entering into a
contract to sell 8,000 cases of premium Hungarian dessert wine to AMI Imports, a
worldwide distributor based in New York and London. The contract must be
signed now, but pavment and delivervy is 90 davs hence. Payment is to be in U.S.
dollars; Magyar is therefore concerned about U.S. dollar/Hungarian forint
(USD/HUF) exchange rate volatilitv over the next 90 days. Magvar has hired you
to analyze and forecast the exchange rate, on which it has collected data for the
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=]

10.

last 620 days. Nawuralls. vou suggest that Magyar begin with a graphical

examination of the data. (The USD/HUF exchange rate data is on the book's

web page.)

a. Why might we be interested in examining daia on the log rather than the
level of the USD."HUF exchange rater

b. Take logs and produce a time series plot of the log of the USD/HUF
exchange rate. Discuss.

c. Produce a scatterplot of the log of the USD/HLUTF exchange rate against the
lagged log of the USD/HUF exchange rate. Discuss.

d. Produce a time series plot of the change in the log USD/HUF exchange
rate, and also produce a histogram, normality test, and other descriptive
statistics. Discuss. (For small changes, the change in the logarithm is
approximately equal to the percent change, expressed as a decimal.) Do
the log exchange rate changes appear normally distributed? it not, what is
the nature of the deviation from normality? Why do vou think we computed
the histogram and so forth for the differenced log data, rather than for the
original series?

e. Produce a time series plot of the square of the change in the log USD/HUF
exchange rate. Discuss and compare with the earlier series of log changes.
What do vou conclude about the volatility of the exchange rate, as proxied by
the squared log changes?

(Common scales) Redo the muliiple comparison of the Anscombe data in
Figure 4.1 using common scales. Do you prefer the original or vour newly
created graphic? Why or why not?

{Graphing real GDP, continued from Section 4)

a. Consider the final plot at which we arrived when graphing four components
of U.S. real GDP. What do vou like about the plotz What do you dislike about
the plotr How could you make it still better? Do it!

b. To help sharpen vour eve (or so I claim), some of the graphics in this book
fail to adhere strictly to the elements of graphical style that we emphasized.
Pick and critique three graphs from anywhere in the book (apart from this
chapter), and produce improved versions.

(Color)

4. Color can aid graphics hoth in showing the data and in appealing to the
viewer. How?
Color can also confuse. How?

¢.  Keeping in mind the principles of graphical style, formulate as many
guidelines for color graphics as you can.

(Regression, regression diagnostics, and regression graphics in action) You're a
new financial analyst at a major investment house, tracking and forecasting
earnings of the health care industry. At the end of each quarter, vou forecast
industry earnings for the next quarter. Experience has revealed that your clients
care about vour forecast accuracv—that is, they want small errors—ba that they
are not particularly concerned with the sign of your error. (Your clients use vour
forecast 1o help to allocate their portfolins, and if vour forecast is way oft, they
lose money, regardless of whether vou're 1oo optimistic or too pessimistic.) Your
immediate predecessor has bequeathed to vou a forecasting model in which
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current earnings (¥) are explained by one variable lagged by one quarter (x,_;).

(Both are on the book’s web page.)

a. Suggest and defend some candidate x variables. Why might lagged x, rather
than current x, be included in the model?

b. Graph y, versus x,_; and discuss.

c. Regress y,on x,_ and discuss (including related regression diagnostics that
you deem relevant).

d. Assess the entire situation in light of the “six considerations basic 1o successtul
forecasting”™ emphasized in Chapter 3: the decision environment and loss
function, the forecast object, the forecast statement, the forecast horizon, the
information set, and the parsimony principle.

e. Consider as many variations as you deem relevant on the general theme. Ata
minimum, you will want to consider the following:
¢ Does it appear necessary to include an intercept in the regression?

* Does the functional form appear adequater Might the relationship be
nonlinear?

® Do the regression residuals seem random, and, in particular, do they
appear serially correlated or heteroskedastic?

® Are there any outliers? 1f so, does the estimated model appear robust to
their inclusion/exclusion?

® Do the regression disturbances appear normally distributed?

*  How might you assess whether the estimated model is structurally stable?

Bibliographical and Computational Notes

A subfield of statistics called exploratory data analysis (EDA) focuses on learning
about patterns in dawa withou pretending to have too much a priori theory. As you
would guess, EDA makes heavy use of graphical and related techniques. For an
introduction, see Tukey (1977), a well-kknown book by a pioncer in the area.

This chapter has been heavily influenced by Tufte (1983), as are all modern
discussions of statistical graphics. Tufte’s book is an insightful and entertaining
masterpiece on graphical stvle that | recommend enthusiastically. Our discussion of
Anscombe’s quartet follows Tufte’s; the original paper is Anscombe (1973).

Cleveland (1993, 1994) and Cook and Weisberg (1994) are fine examples of
modern graphical echniques. Cleveland (19493) stresses tools for revealing
information in high-dimensional data, as well as techniques that aid in showing the
dawa and appealing to the viewer in standard low-dimensional situations. It also
contains extensive discussion of banking to 45 degrees. Cook and Weisberg (1994)
develop powerful graphical tools useful in the specification and evaluation of
regression models.

Details of the Jarque-Bera test mav be found in Jarque and Bera (1987).

All graphics in this chapter were done using Eviews. S+ implements a variety of
more sophisticated graphical techniques and in many respects represents the cutting
edge of statistical graphics software.
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Cancepts for Review

Anscombe’s quartet
Pairwise scatterplot
Bivariate scatterplot
Multiple comparison
Time series plot
Histogram
Relational graphics
Scatterplot matrix
Multiway scatterplot
Nondata ink
Chartjunk

Aspect ratio

Golden ratio

Banking to 45 degrees
Outlier

Measurement outlier
Innovaton outlier
Simple correlation
Partial correlation
Common scales
Exploratory data analysis
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Modeling and

Forecasting Trend

N I I I

|. Madeling Trend

The series that we want to forecast vary over time, and we often mentally
attribute that variation to unobserved underlving components, such as trends,
seasonals, and cycles. In this chapter, we focus on trend.' Trend is slow, long-
run evolution in the variables that we want to model and forecast. In business,
finance, and economics, for example, trend is produced by slowly evolving
preferences, technologies, institutions, and demographics. We'll focus here
on models of deterministic trend, in which the trend evolves in a perfectly pre-
dictable way. Deterministic trend models are tremendously useful in practice.?

Existence of trend is empirically obvious. Numerous series in diverse fields
display trends. In Figure 5.1, we show the U.S. labor force participation rate
for females aged 16 and over, the trend in which appears roughly /inear; mean-
ing that it increases or decreases like a straight line. That is, a simple linear
function of time,

T = pBo+ B TIME, ,

! Later we'll define and study seasonals and cycles. Not all components need be present in all
observed series.

? Later we'll broaden our discussion to allow for stochastic trend.
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provides a good description of the trend. The variable TIME is constructed
artificially and is called a time frend or time dummy. Time equals 1 in the first
period of the sample, 2 in the second period, and so on. Thus, for a sample of
size T, TIME = (1, 2,3,..., T— 1, T); put differently, TIME, = ¢. f, is the re-
gression intercept; it's the value of the trend at time ¢ = 0. 3, is the regression
slope; it’s positive if the trend is increasing and negative if the trend is de-
creasing. The larger the absolute value of §;, the steeper the trend’s slope. In
Figure 5.2, for example, we show two linear trends, one increasing and one de-
creasing. The increasing trend has an intercept of By = —50 and a slope of
1 = 0.8, whereas the decreasing trend has an intercept of By = 10 and a gentler
absolute slope of §; = —0.25.
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FIGURE 8§ 3 88
Labor Force
Participation Rate, 86
Males 84 F
82 -
&
S5 80
78 -
76 -
74+

72_1_LJJ_L_uJ_Ll.LLIJA_u_U_LuJJ_LLLLLL_UJ_LU_LI_;J_Lu.LLLL_L

Time

In business, finance, and economics, linear trends are typically increasing,
corresponding to growth, but such need not be the case. In Figure 5.3, for ex-
ample, we show the U.S. labor force participation rate for males aged 16 and
over, which displays linearly decreasing trend.

To provide a visual check of the adequacy of linear trends for the labor
force participation rates, we show them with linear trends superimposed in
Figures 5.4 and 5.5.% In each case, we show the actual participation rate series

FIGURE 5.4
Linear Trend,
Female Labor Force
Participation Rate
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# Shortly we'll discuss how we estimated the trends. For now, just take them as given.
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90 FIGURE 5.5
Linear Trend, Male
85 Labor Force

f Fitted

-

Participation Rate

__2 IO R N0 TS N0 N O N N N U N W TN T Y U N SO SN B D A D S N U0 S U 2 S TN N N N T N e R
50 55 60 65 70 75 80 85 90
Year

together with the fitted trend, and we also show the residual—the deviation of
the actual participation rate from the trend. The linear trends seem adequate.
There are still obvious dynamic patterns in the residuals, but that’s to be
expected—persistent dynamic patterns are typically observed in the devia-
tions of variables from trend.

Sometimes trend appears nonlinear, or curved, as, for example, when a
variable increases at an increasing or decreasing rate. Ultimately, we don’t re-
quire that trends be linear, only that they be smooth. Figure 5.6 shows the
monthly volume of shares traded on the New York Stock Exchange (NYSE).
Volume increases at an increasing rate; the trend is therefore nonlinear.
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FIGURE 5.7 2
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Quadratic trend models can potentially capture nonlinearities such as
those observed in the volume series. Such trends are quadratic, as opposed to
linear, functions of time,

T, = o + B TIME, + B, TIME? .

Linear trend emerges as a special (and potentially restrictive) case when
B2 = 0. Higher-order polynomial trends are sometimes entertained, but it’s
important to use low-order polynomials to maintain smoothness,

A variety of different nonlinear quadratic trend shapes are possible,
depending on the signs and sizes of the coefficients; we show several in Fig-
ure 5.7. In particular, if B; > 0 and ; > 0 as in the upper-left panel, the trend
is monotonically, but nonlinearly, increasing, Conversely, if ; < 0 and By < 0,
the trend is monotonically decreasing. If B; < 0 and B, > 0, the trend has a
U shape; and if B; > 0 and B2 < 0, the trend has an inverted U shape. Keep in
mind that quadratic trends are used to provide local approximations; one
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rarely has a “U-shaped” trend, for example. Instead, all of the data may lie on
one or the other side of the U.
Figure 5.8 presents the stock market volume data with a superimposed
quadratic trend. The quadratic trend fits better than the linear trend, but it
still has some awkward features. The best-fitting quadratic trend is still a little
more U-shaped than the volume data, resulting in an odd pattern of devia-
tions from trend, as reflected in the residual series.
Other types of nonlinear trend are sometimes appropriate. Consider the
NYSE volume series once again. In Figure 5.9, we show the logarithm of vol-
ume, the trend of which appears approximately linear.* This situation, in
which a trend appears nonlinear in levels but linear in logarithms, is called
10 FIGURE 5.9
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New York Stock
8k Exchange
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o
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Time

1 Throughout this book, logarithms are ratural (base ¢) logarithms.
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FIGURE 5.10
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exponential trend, or log-linear trend, and is very common in business, fi-
nance, and economics. That's because economic variables often display
roughly constant growth rates (for example, 3% per year). If trend is charac-
terized by constant growth at rate B;, then we can write

T =B PP TIME,

The trend is a nonlinear (exponential) function of time in levels, but in loga-
rithms we have

In(7) = In(Ba) + By TIME, .

Thus, In(T,) is a linear function of time.

Figure 5.10 shows the variety of exponential trend shapes that can be
obtained depending on the parameters. As with quadratic trend. depending on
the signs and sizes of the parameter values, exponential trend can achieve a va-
riety of patterns, increasing or decreasing at an increasing or decreasing rate.
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1t's important to note that, although the same sorts of qualitative trend
shapes can be achieved with quadratic and exponential trends, there are sub-
tle differences between them. The nonlinear trends in some series are well
approximated by quadratic trend, whereas the trends in other series are bet-
ter approximated by exponential trend. We have already seen, for example,
that although quadratic trend looked better than linear trend for the NYSE
volume data, the quadratic fit still had some undesirable features. Let's see
how an exponential trend compares. In Figure 5.11, we plot the log volume
data with linear trend superimposed; the log-linear trend looks quite good.
Equivalently, Figure 5.12 shows the volume data in levels with exponential
trend superimposed; the exponential trend looks much better than did the
quadratic.
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2. Estimating Trend Models

Before we can estimate trend models, we need to create and store on the com-
puter variables such as TIME and its square. Fortunately, we don’t have to type
the trend values (1, 2, 3, 4, .. .) in by hand; in most good software packages, a
command exists to create the trend automatically, after which we can immedi-
ately compute derived variables such as the square of TIME, or TIME. Be-
cause, for example, TIME = (1, 2,..., T), TIME? = (1, 4,.... T?); that is,
TIME? = .

We fit our various trend models to data on a time series y using least-
squares regression. That is, we use a computer to find®

T
8 = argmin Z (v = T(®))*,
@ t=1

where 8 denotes the set of parameters to be estimated. A linear trend, for ex-
ample, has 7;(8) = By + B, TIME, and 6 = (f,, B:), in which case the computer
finds

T
(Bu B = argmin 3 (3 — Bo — BITIME,)*.
Bo.Bi 4=

Similarly, in the quadratic trend case, the computer finds

.
(Ba» By By) = arg;nin 3" (3 = By — BTIME, — B, TIME?)”
Bo.Bi.B2 /=)

We can estimate an exponential trend in two ways. First, we can proceed di-
rectly from the exponential representation and let the computer find

T
(ﬁo: ﬁ|) = argmin Z (y, - BoeﬂlTIME,)2 .

Bu.B1 =1

Alternatively, because the nonlinear exponential trend is nevertheless linear
in logs, we can estimate it by regressing log y on an intercept and TIME. Thus,
we let the computer find

T
(By, By) = argmin ) " (Iny, — InBy — Bi TIME, )*.
BB =1

Note that the fitted values from this regression are the fitted values of log y, so
they must be exponentiated to get the fitted values of y.

5 Argmin just means “the argument that minimizes.” Least squares proceeds by finding the argu-
ment (in this case, the value of 8) that minimizes the sum of squared residuals; thus, the least
squares estimator is the “argmin” of the sum of squared residuals function.
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3. Forecasting Trend

Consider first the construction of point forecasts. Suppose we're presently at
time 7, and we want to use a trend model to forecast the istep-ahead value of
a series y. For illustrative purposes, we'll work with a linear trend, but the pro-
cedures are identical with more complicated trends. The linear trend model,
which holds for any time ¢, is

¥ =PBo+ B TIME, + ¢, .
In particular, at time T + A, the future time of interest,
¥ren = Bo+ BITIME ., + €44y .

Two future values of series appear on the right side of the equation, TIME .,
and €,,. If TIME,,, and €;,, were known at time T, we could immediately
crank out the forecast. In fact, TIME . , is known at time T, because the arti-
ficially constructed time variable is perfectly predictable; specifically,
TIME,,, = T+ A. Unfortunately £, is not known at time 7, so we replace it
with an optimal forecast of €7, constructed using information only up to time
T.° Under the assumption that € is simply independent zero-mean random
noise, the optimal forecast of €r.,, for any future period is 0, yielding the point
forecast’

Yrenr=Bo+ B TIME ., .

The subscript “T'+ k,T" on the forecast reminds us that the forecast is for time
T + hand is made at time 7.

The point forecast formula just given is not of practical use, because it as-
sumes known values of the trend parameters B, and $;. But it’s a simple mat-
ter to make it operational—we just replace unknown parameters with their
least squares estimates, yielding

VrenT = éo + éxTIMET_H, .

To form an interval forecast, we assume further that the trend regression
disturbance is normally distributed, in which case a 95% interval forecast
ignoring parameter estimation uncertainty is yr447 * 1.960, where ¢ is the
standard deviation of the disturbance in the trend regression.® To make this

% More formally, we say that we're “projecting €744 on the time-T information set,” which we'll
discuss in detail in Chapter 9.

7 “Independent zero-mean random noise” is just a fancy way of saying that the regression distur-
bances satisfy the usual assumptions—they are identically and independently distributed.

¥ When we say that we ignore parameter estimation uncertainty, we mean that we use the esti-
mated parameters as if they were the true values, ignoring the fact that they are only estimates and
subject to sampling variabilitv. Later we'll see how to account for parameter estimation uncer-
tainty by using simulation techniques,

81
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operational, we use §,, 7+ 1.966, where @ is the standard error of the trend
regression, an estimate of o.

To form a density forecast, we again assume that the trend regression
disturbance is normally distributed. Then, ignoring parameter estimation
uncertainty, we have the density forecast N(yry.. 7. c?), where ¢ is the stan-
dard deviation of the disturbance in the rend regression. To make this oper-
ational, we use the density forecast N(§7.4,7, 62).

NEEEN - -
4, Selecting Forecasting Models Using the Akaike
and Schwarz Criteria

We've introduced a number of trend models, but how do we select among
them when fitting a trend to a specific series? What are the consequences, for
example, of fitting a number of trend models and selecting the model with
highest R% Is there a better way? This issue of model selection is of tremen-
dous importance in all of forecasting, so we introduce it now.

It turns out that model selection strategies such as selecting the model
with highest R do not produce good out-of-sample forecasting models. Fortu-
nately, however, a number of powerful modern tools exist to assist with model
selection. Here we digress to discuss some of the available methods, which will
be immediately useful in selecting among alternative trend models, as well as
many other situations.

Most model selection criteria attempt to find the model with the smallest
out-ofsample 1-step-ahead mean squared prediction error. The criteria we
examine fit this general approach; the differences among criteria amount to
different penalties for the number of degrees of freedom used in estimating
the model (that is, the number of parameters estimated). Because all of the
criteria are effectively estimates of out-of-sample mean square prediction
error, they have a negative orientation—the smaller, the better.

First, consider the mean squared error (MSL),

where T is the sample size and
e=y-5,
where
5 =B+ BITIME, .

MSE is intimately related to two other diagnostic statistics routinely computed
by regression software, the sum of squared residuals and R?. Looking at the
MSE formula reveals that the model with the smallest MSE is also the model
with smallest sum of squared residuals, because scaling the sum of squared
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residuals by 1/ 7T doesn’t change the ranking. So selecting the model with the
smallest MSE is equivalent to selecting the model with the smallest sum of
squared residuals. Similarly, recall the formula for R®,

The denominator of the ratio that appears in the formula is just the sum
of squared deviations of y from its sample mean (the so-called total sum of
squares), which depends only on the data, not on the particular model fit.
Thus, selecting the modcl that minimizes the sum of squared residuals—
which, as we saw, is equivalent to selecting the model that minimizes MSE—is
also equivalent to selecting the model that maximizes 2.

Selecting forecasting models on the basis of MSE or any of the equivalent
forms discussed—that is, using in-sample MSE to estimate the out-of-sample
1-step-ahead MSE—turns out to be a bad idea. In-sample MSE can 't rise when
more variables are added to a model, and typically it will fall continuously
as more variables are added. To see why, consider the fitting of polynomial
trend models. In that context, the number of variables in the model is linked
to the degree of the polynomial (call it p):

T = Bo + BiTIME, + B, TIME? + ... + B, TIME? .

We've already considered the cases of p = 1 (linear trend) and p = 2 (qua-
dratic trend), but there’s nothing to stop us from fitting models with higher
powers of time included. As we include higher powers of time, the sum of
squared residuals can 't rise, because the estimated parameters are explicidy
chosen to minimize the sum of squared residuals. The last-included power of
time could always wind up with an estimated coefficient of 0; to the extent that
the estimate is anvthing else, the sum of squared residuals must have fallen.
Thus, the more variables we include in a forecasting model, the lower the sum
of squared residuals will be, and therefore the lower MSE will be, and the
higher R will be. The reduction in MSE as higher powers of time are included
in the model occurs even if they are in fact of no use in forecasting the variable
of interest. Again, the sum of squared residuals can't rise, and because of sam-
pling error, it’s very unlikely that we’'d get a coetticient of exactly 0 on a newly
included variable even if the coefficient is 0 in population.

The effects described here go under various names, including in-sample
overfitting and data mining, reflecting the idea that including more variables
in a forecasting model won’t necessarily improve its out-of-sample forecasting
performance, although it will improve the model’s “fit” on historical data. The
upshot is that MSE is a biased estimator of out-of sample 1-step-ahead predic-
tion error variance, and the size of the bias increases with the number of
variables included in the inodel. The direction of the bias is downward—in-
sample MSE provides an overly optimistic (that is, too small) assessment of
out-of-sample prediction error variance.
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To reduce the bias associated with MSE and its relatives, we need to penal-
ize for degrees of freedom used. Thus, let’s consider the mean squared error
corrected for degrees of freedom,

T
2
2
=1

T-k’

4

§° =

where k is the number of degrees of freedom used in model fitting,? and §?
is just the usual unbiased estimate of the regression disturbance variance.
That is, it is the square of the usual standard error of the regression. So se-
lecting the model that minimizes 5 is also equivalent to selecting the model
that minimizes the standard error of the regression. Also, s° is intimately
connected to the R? adjusted for degrees of freedom (the adjusted R® or
R?). Recall that

o

s°

T x
e/ (T=h
=, t=1
R=1-— =1-— i
= FPNHT-1) D =FNT-1)
=1

1=

The denominator of the R? expression depends only on the data, not the par-
ticular model fit, so the model that minimizes s? is also the model that maxi-
mizes R2. In short, the strategies of selecting the model that minimizes 5%, or
the model that minimizes the standard error of the regression, or the model
that maximizes R?. are equivalent, and they do penalize for degrees of free-
dom used.

To highlight the degree-of-freedom penalty, let’s rewrite s> as a penalty fac-
tor times the MSE,

T

2
2

2 _ T t=1
SE\TR)TT O

Note in particular that including more variables in a regression will not neces-
sarily lower s or raise R*—the MSE will fall, but the degreesof-freedom
penalty will rise, so the product could go either way.

As with s?, many of the most important forecast model selection criteria
are of the form “penalty factor times MSE.” The idea is simply that if we want
to get an accurate estimate of the l-step-ahead out-of-sample prediction error
variance, we need to penalize the in-sample residual variance (the MSE) to re-
flect the degrees of freedom used. Two very important such criteria are the

¥ The degrees of freedom used in model fitting is simply the number of parameters estimated.
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Akaike information criterion (AIC) and the Schwarz information criterion
(SIC). Their formulas are

and

How do the penalty factors associated with MSE, s%, AIC, and SIC compare
in terms of severity? All of the penalty tactors are functions of &/ T, the num-
ber of parameters estimated per sample observation, and we can compare the
penalty factors graphically as k/ T'varies. In Figure 5.13, we show the penalties
as k/ T moves from 0 1o 0.25, for a sample size of T= 100. The s* penalty is
small and rises slowly with k/ T; the AIC penalty is a bit larger and still rises only
slowly with %/ 7. The SIC penalty. on the other hand, is substantially larger and
rises at a slightly increasing rate with &/ T.

It's clear that the different criteria penalize degrees of freedom differently.
In addition, we could propose many other criteria by altering the penalty.
How, then. do we select among the criteria? More generally, what properties
might we expect a “good” model selection criterion to have? Are &, AIC, and
SIC “good” maodel selection criteria?

We evaluate model selection criteria in terms of a key property called con-
sistency. A model selection criterion is consistent if the following conditions
are met;

a. when the true model—that is, the data-generating process (DGP)—isamong
the models considered. the probability of selecting the true DGP ap-
proaches 1 as the sample size gets large; and

FIGLIRE 513
Degrees-of-Freedom
Penalties, Various
Model Selection
Criteria
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b. when the true model is nof among those considered, so that it’s impaossible
to select the true DGP, the probability of selecting the best approximation 10
the true DGP approaches | as the sample size gets large.'"

Consistency is, of course, desirable. If the DGP is among those considered,
then we'd hope that as the sample size gets large, we'd eventually select it. Of
course, all of our models are false—they're intentional simplifications of a
much more complex reality. Thus, the second notion of consistency is the
more compelling.

MSE is inconsistent, because it doesn’t penalize for degrees of freedom:;
that’s why it’s unattractive. s° does penalize for degrees of freedom but, as it
turns out, not enough to render it a consistent model selection procedure.
The AIC penalizes degrees of freedom more heavily than s, but it, too, re-
mains inconsistent; even as the sample size gets large, the AIC selects models
that are too large (“overparameterized”). The SIC, which penalizes degrees of
freedom most heavily, is consistent.

The discussion thus far conveys the impression that SIC is unambiguously
superior to AIC for selecting forecasting models, but such is not the case. Until
now, we've implicitly assumed that either the true DGP or the best approxima-
tion to the true DGP is in the fixed set of models considered. In that case, SIC
isa superior model selection criterion. However. a potentially more compelling
view for forecasters is that both the true DGP and the best approximation to it
are much more complicated than any model we fit, in which case we may want
to expand the set of models we entertain as the sample size grows. We're then
led to a different optimality property, called asymptotic efficiency. An asymp-
totically efficient model selection criterion chooses a sequence of models,
as the sample size get large, whose I-step-ahead forecast error variances ap-
proach the one that would be obtained using the true model with known para-
meters at a rate at least as fast as that of any other model selection criterion. The
AIC, although inconsistent, isasymptotically efficient, whereas the SIC: is not.

In practical forecasting, we usually report and examine both AIC and SIC.
Most often they select the same model. When they don’t, and in spite of the
theoretical asymptotic efficiency property of AIC, [ recommend use of the
more parsimonious model selected by the SIC, other things being equal. This
approach is in accord with the KISS principle of Chapter 3 and with the results
of studies comparing out-of-sample forecasting performance of models se-
lected by various criteria.

The AIC and SIC have enjoved widespread popularity, but they are not
universally applicable, and we're still learning about their performance in spe-
cific situations. However, the general principle that we need to correct some-
how for degrees of freedom when estimating out-of-sample MSE on the basis
of in-sample MSE is universally applicable. Judicious use of criteria like the
AIC and SIC, in conjunction with knowledge about the nature of the system
being forecast, is helpful in a variety of forecasting situations,

" Most model selection criteria—including all of those discussed here—ussess goodness of
approximation in terms ot 1-step-ahead mean squared forecast errur.
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9. Application: Forecasting Retail Sales

We’ll illustrate trend modeling with an application to forecasting U.S. current-
dollar retail sales. The data are monthly from 1955.01 through 1994.12 and have
been seasonally adjusted.!’ We’ll use the period 1955.01-1993.12 to estimate
our forecasting models, and we'll use the “holdout sample” 1994.01-1994.12 to
examine their out-ot-sample forecasting performance.

In Figure 5.14, we provide a time series plot of the retail sales data, which
display a clear nonlinear trend and not much else. Cycles are probably present
but are not easily visible, because they account for a comparatively minor
share of the series’ variation.

In Table 5.1, we show the results of fitting a linear trend model by regressing
retail sales on a constant and a linear time trend. The trend appears highly sig-
nificant as judged by the pvalue of the tstatistic on the time trend, and the re-
gression’s R is high. Moreover, the Durbin-Watson statistic indicates that the
disturbances are positively serially correlated, so that the disturbance at any
time !is positivelv correlated with the disturbance at time £ — 1. In later chap-
ters, we'll show how to model such residual serial correlation and exploit it for
forecasting purposes, but for now we'll ignore it and focus only on the trend.'?
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" When we say that the data have been “seasonally adjusted,” we simply mean that they have
heen smoothed in a way thar eliminates seasonal variation. We'll discuss seasonality in detail in
Chapter 6.

¥ Such residual serial correlation mav, however, render the standard errors of estimated coeffi-
cients (and the associated Fstatistics) untrusmorthy. Here that's not a big problem, becatse it's vi-
sually obvious that wend is importan in retail sales, but in other situations it may well be. Tvpi-
caltv. when constructing forecasting models. we're concerned more with point estimation than
with inference,

FIGURE S5.14
Retail Sales
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TABLE 51t
Retail Sales, Linear
Trend Regression

Chapter 5
Dependent variable is RTRR.
Sample: 1955:01 1993:12
Included observations: 448
Variable Coefficient Std. Error t-Statistic Prob.
C —16391.25 1469.177 —11.15676 0.0000
TIME 349.7731 5.428670 64.43073 0.0000
R 0.899076 Mean dependent var, 65630.56
Adjusted B 0.898859 SD dependent var. 49889.26
SE of regression 15866.12 Akaike info criterion 19.34815
Sum squared resid. 1.17E+11 Schwarz criterion 19.36587
Log likelihood —5189.529 Festatistic 4151.319
Durbin-Watson stat. 0.004682 Prob (Fstatistic) 0.000000

The residual plot in Figure 5.15 makes clear what's happening. The linear
trend is simply inadequate, because the actual trend is nonlinear. That's one
key reason why the residuals are so highly serially correlated—first the data are
all above the linear trend, then below, and then above. Along with the residu-
als, we plot £1 standard error of the regression, for visual reference.

Table 5.2 presents the results of fitting a quadratic trend model. Both the
linear and quadratic terms appear highly significant.’® R is now almost 1.

FIGURE S 15
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"% The earlier caveat regarding the effects of serial correlation on inference applies. however.
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Dependent variable is RTRR.
Sample: 1955:01 1993:12
Included observations: 468

Variable Coefficient Std. Error t-Statistic Prob.

C 18708.70 379.9566 49.23905 0.0000

TIME -98.31130 3.741388 —26.27669 0.0000
TIME2 0.955404 0.007725 123.6754 0.0000

R 0.997022 Mean dependent var. 65630.56
Adjusted R 0.997010 SD dependent var. 49889.26
SE of regression 2728.205 Akaike info criterion 15.82919
Sum squared resid. 3.46E+09 Schwarz criterion 15.85578
Log likelihood —4365.093 Kstatistic 77848.80
Durbin-Watson stat. 0.151089 Prob(F-statistic) 0.000000

Figure 5.16 shows the residual plot, which now looks very nice, as the fitted
nonlinear trend tracks the evolution of retail sales well. The residuals still
display persistent dvnamics (indicated as well by the still-low Durbin-Watson
statistic), but there’s little scope for explaining such dynamics with trend, be-
cause they’re related to the business cycle. not the growth trend.

Now let's estimate a different type of nonlinear trend model, the expo-
nential trend. First, we'll do it by OLS regression of the log of retail sales on a
constant and linear time trend variable. We show the estimation results and

TABLE 5 2
Retail Sales,
Quadratic Trend
Regression
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TABLE 5 3 Dependent variable is LRTRR.

Retail Sales, Sample: 1955:01 1993:12

Log-Linear Trend Included observations: 468

RL’ Y ' )

gression Variable  Coefficient Std. Error tStatistic Prob.

c 9.389975 0.008508 1103.684 0.0000
TIME 0.005931 3.14E-05 188.6541 0.0000
R 0.987076 Mean dependent var. 10.78072
Adjusted R 0.987048 SD dependent var. 0.807325
SE of regression 0.091879 Akaike info criterion —4.770302
Sum squared resid. 3.933853 Schwarz criterion —-4.752573
Log likelihood 454.1874 FEsuaustic 35590.36
Durbin-Watson stat. 0.019949 Prob (F-statistic) 0.000000

residual plot in Table 5.3 and Figure 5.17. As with the quadratic nonlinear
trend, the exponential nonlinear trend model seems to fit well, apart from the
low Durbin-Watson statistic.

In sharp contrast to the resulis of fitting a linear trend to retail sales, which
were poor, the results of fitting a linear trend to the log of retail sales seem
much improved. But it's hard to compare the log-linear trend model with the
linear and quadratic models because they’re in levels, not logs, which renders
diagnostic statistics like R and the standard error of the regression incompa-
rable. One way around this problem is to estimate the exponential trend

FIGURE 517
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Dependent variable is RTRR. TABLE 5.4
Sample: 1955:01 1993:12 Retail Sales,
Included observations: 468 Exponential Trend
Convergence achieved after 1 iteradon Regression
RTRR=C(1)*EXP(C(2)*TIME)
Coefficient Std. Error t-Statistic Prob.

(1) 11967.80 177.9598 67.25003 0.0000
) 0.005944 3.77E-05 157.7469 0.0000
R 0.988796 Mean dependent var. 65630.56
Adjusted R 0.988772 SD dependent var. 49889.26
SE of regression 5286.406 Akaike info criterion 17.15005
Sum squared resid. 1.30E+10 Schwarz criterion 17.16778
Log likelihood -4675.175 Estatistic 41126.02
Durbin-Watson stat. 0.040527 Prob(Fstatistic) 0.000000
model directly in levels, using nonlinear least squares. In Table 5.4 and
Figure 5.18, we show the nonlinear least-squares estimation results and resid-
ual plot for the exponential trend model. The diagnostic statistics and residual
plot indicate that the exponential trend fits better than the linear but worse
than the quadratic.

Thus far, we’ve been informal in our comparison of the linear, quadratic,
and exponential trend models for retail sales. We've noticed, for example, that
the quadratic trend seems to fit the best. The quadratic rend model, however,

200,000 FIGURE 518
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TABLE 5.5 Linear Trend Quadratic Trend Exponential Trend

Model Selection

Criteria, Linear, AlC 19.35 15.83 17.15

Quadratic, and siC 19.37 15.86 17.17

Exponential Trend
Models

contains one more parameter than the other two, so it's not surprising that it
fits a little better, and there’s no guarantee that its better fit on historical data
will translate into better out-of-sample forecasting performance. (Recall the
KISS principle.) To settle on a final model, we examine the AIC or SIC, which
are summarized in Table 5.5 for the three trend models.!* Both the AIC and
SIC indicate that nonlinearity is important in the trend, as both rank the lin-
ear trend last. Both, moreover, favor the quadratic trend model. So let’s use
the quadratic trend model.

Figure 5.19 shows the history of retail sales, 1990.01-1993.12, together
with outofssample point and 95% interval extrapolation forecasts,
1994.01-1994.12. The point forecasts look reasonable. The interval forecasts
are computed under the (incorrect) assumption that the deviation of retail
sales from trend is random noise, which is why they're of equal width through-
out. Nevertheless, they look reasonable.

In Figure 5.20, we show the history of retail sales through 1993, the qua-
dratic trend forecast for 1994, and the realization for 1994. The forecast is
quite good, as the realization hugs the forecasted trend line quite closely. All
of the realizations, moreover, fall inside the 95% forecast interval.

FIGURE 519
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s important that the exponential trend model be estimated in levels, in order to maintain
comparability of the exponential trend model AlC and SIC with those of the other trend models.
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For comparison, we examine the forecasting performance of a simple lin-
ear trend model. Figure 5.21 presents the history of retail sales and the out-of-
sample point and 95% interval extrapolation forecasts for 1994. The point
forecasts look very strange. The huge drop forecasted relative to the historical
sample path occurs because the linear trend is far below the sample path by
the end of the sample. The confidence intervals are very wide, reflecting the
large standard error of the linear trend regression relative to the quadratic
trend regression.

Finally, Figure 5.22 shows the history, the linear trend forecast for 1994, and
the realization. The forecast is terrible—far below the realization. Even the

FIGURE S5.20
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FIGURE S 22
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very wide interval forecasts fail to contain the realizations. The reason for the
failure of the linear trend forecast is that the forecasts (point and interval) are
computed under the assumption that the linear trend model is actually
the true DGP, whereas in fact the linear trend model is a very poor approxima-
tion to the trend in retail sales.

Exercises, Problems, and Complements

(Calculating forecasts from trend models) You work for the International
Monetary Fund in Washington. D.C., monitoring Singapore's real consumption
expenditures. Using a sample of real consumption data (measured in billions of
2005 Singapore dollars), y, ¢ = 1990:Q1, . . ., 2006: (M4, vou estimate the linear
consumption trend model, y; = Bn‘+ BiTIME, + &, where g, ~ N(0, 0%),
obtaining the estimates By = .51, | = 2.30, and o? = 16. Based on your
estimated trend maodel, construct feasible point, interval, and density forecasts for
2010:Q1.

(Identifving and testing trend models) In 1963, Intel cofounder Gordon Moore
predicted that the numiber of transistors that one could place on a square inch
integrated circuit would double every 12 months.

a. What sort of trend is this?

b. Given a monthly series containing the number of transistors per square inch
for the latest integrated circuit, how would you test Moore's prediction? How
would you test the currently accepted form of Moore's Law—namely, that the
number of transistors actually doubles every 18 months?

(Understanding model selection criteria) You are tracking and forecasting the
earnings of a new company developing and applying proprietary nanotechnology.
The earnings are wrending upward. You fit linear, quadratic, and exponential
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rend models, yielding sums of squared residuals of 4352, 2791, and 2749,
respectively. Which trend model would vou select, and why?

4. (Mechanics of trend estimation and forecasting) Obtain from the web an upward-
trending monthly series that interests vou. Choose your series such that it spans at
least 10 years and ends at the end of a vear (that is, in December).
a. What is the series, and why does it interest you? Produce a time series plot of
it. Discuss.
b. Fit linear, quadratic. and exponential trend models to your series. Discuss the
assaciated diagnostic statistics and residual plots.
¢. Select a trend model using the AIC and one using the SIC. Do the selected
models agree? If not, which do you prefer?
d. Use your preferred model to forecast each of the 12 months of the next vear.
Discuss. <
e. The residuals from vour fitted model are effectively a detrended version of your |
original series. Why? Plot them and discuss.

5. (Properties of polynomial trends) Consider a sixth-order deterministic
polynomial trend:

T, = Bo + BITIME, + BoTIME? + - - + BeTIME; .

a. How mauny local maxima or minima may such a trend display?

b. Plot the trend for various values of the parameters to reveal some of the
different possible trend shapes.

c. Is this an artractive trend model in general? Why or why not?

d. Fit the sixth-order polynomial rend model to the NYSE volume series. How
does it perform in that particular case?

6. (Specialized nonlinear rends) The logistic trend is
1

L= ——
T A+ b

with 0 < r< 1.

a. Display the trend shape for various a and bvalues. When might such a trend
shape be useful?

b. Can vou think of other specialized situations in which other specialized rend
shapes might be useful? Produce mathematical formulas for the additional
specialized trend shapes you suggest.

7. (Moving average smoothing for trend estimation) The trend regression

technique is one wav to estimate and forecast trend. Another way to estimate
trend is by smoothing techniques, which we briefly introduce here. We'll focus on
three: two-sided moving averages, one-sided moving averages, and one-sided
weighted moving averages. Here we present them as ways to estimate and
examine the trend in a tme series; later we'll see how they can actually be used to
Jorecast time series.

Denote the original data by {),},T=1 and the smouothed data by {¥,}. Then the two-

»n

sided moving average is §, = (2m +1)~! 3_ 3,_,, the onesided moving average is

I=m
m
%= (m+ 1)1 y,_,, and the one-sided weighted moving average is
1 =f)
_ " !
¥ = Y wy;, where the w; are weights and mis an integer chosen by the user.

=0
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The “standard” one-sided moving average corresponds to a one-sided weighted
moving average with all weights equal to (m+ 1)71,

a.

For each of the smoothing techniques, discuss the role played by m. What
happens as m gets very large? Very small? In what sense does m play a role
similar to p, the order of a polynomial wend?

If the original data runs from time 1 1o time 7, over what range can smoothed
values be produced using each of the three smoothing methods? What are
the implications for real-time (on-line) smoothing versus ex post (off-line)
smoothing?

You’ve been hired as a consultant by ICSB, a major international bank, to
advise its management on trends in North American and European stock
markets and to help them to allocate their capital. You have extracted from
your database the recent history of EUROStar, an index of 11 major
European stock markets. Smooth the EUROStar data using equally weighted
one-sided and two-sided moving averages, for a variety of m values, undl

you have found values of m that work well. What do we mean by “work well™?
Must the chosen value of m be the same for the one- and two-sided
smoothers? For your chosen m values, plot the two-sided smoothed series
against the actual, and plot the one-sided smoothed series against the actual.
Do you notice any systematic difference in the relationship of the smoothed
to the actual series depending on whether you do a two-sided or one-sided
smooth? Explain.

Moving average procedures can also be used to detrend a series—we simply
subtract the estimated trend from the series. Sometimes, but not usually, it's
appropriate and desirable to detrend a series before modeling and
forecasting it. Why might it sometimes be appropriate? Why is it not usually
appropriate?

8. (Bias corrections when forecasting from logarithmic models)

a

In Chapter 3, we introduced squared error loss, L(¢) = A popular measure
of forecast accuracy is out-of-sample mean squared error, MSE = E(¢%)."” The
more accurate the forecast, the smaller is MSE. Show that MSE is equal to the
sum of the variance of the error and the square of the mean error.

A forecast is unbiased if the mean forecast error is 0. Why might unbiased
forecasts be desirable? Are they necessarily desirable?

Suppose that (log ¥).44. is an unbiased forecast of (log ¥) ;s Then

exp((log y) +5.,) is a biased forecast of y. ;. More generally, if (f{y)) s, is an
unbiased forecast of (f{y)) s then f I (f3)14ns) is a biased forecast of

Yu+# for the arbitrary nonlinear function £ Why? ( Hint: 1s the expected value
of a nonlinear function of the random variable the same as the nonlinear
function of the expected value?)

Various “corrections” for the bias exp((log y).;»,) have been proposed. In
practice, however, bias corrections may increase the variance of the forecast
error even if they succeed in reducing bias. Why? (Hint: In practice, the
corrections involve estimated parameters.)

In practice, will bias corrections necessarily reduce the forecast MSE? Why or
why not?

15 The MSE introduced earlier in the context of model selection is the mean of the in-sample
residuals, as opposed to out-of-sample prediciion errors. The distinction is erucial,
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9. (Model selection for long-horizon forecasting) Suppose that you want to forecast
monthly inventorv of Lamborgini autos at an exclusive Manhattan dealership.

a.

Using the true data-generating process is best for forecasting at any horizon.
Unfortunately, we never know the true data-generating process! All our
models are approximations to the true but unknown data-generating process,
in which case the best forecasting model may change with the horizon. Why?
At what horizon are the forecasts generated by models selected by the AIC
and SIC likely to be most accurate? Why?

How might you proceed to select a 1-month-ahead forecasting model? A
2-month-ahead model? A 3month-ahead model? A 4month-ahead model?
What are the implications of your answer for construction of an extrapolation
forecast, at horizons l-month-ahead through 4-months-ahead?

In constructing our extrapolation forecasts for retail sales, we used the AIC
and SIC 1o select one model, which we then used to forecast all horizons. Why
do you think we didn't adopt a more sophisticated strategy?

10. (The variety of “information criteria” reported across software packages) Some
authors, and software packages, examine and report the logarithms of the AIC

and SIC as ;
2
€;
=| 2k
C)= —_— -
In(AIC) = In T + ( T)
and
T
2
L
=1 kIn(T)
D=1 .
In(SIC) =In T + T

The practice is so common that log(AIC) and log(SIC) are often simply called the
“AlC” and “SIC.™ AIC and SIC must be greater than 0, so log(AIC) and log(SIC)

are always well defined and can take on any real value. Other authors and packages
use other variants, based, for example, on the value of the maximized likelihood or

log likelihood function. Some software packages have even changed definitions of

AIC and SIC across releases! The important insight, however, is that although these

variations will of course change the numerical values of AIC and SIC. produced by
your computer, they will not change the rankings of medels under the various
criteria. Consider, for example, selecting among three models. If AIC, < AIC, <
AICg4, then it must be true as well that In(AIC)) < In(AlCs) < In(AlCs), so we would
select model 1 regardless of the “definition” of the information criterion used.

Bibliographical and Computational Notes

The AIC and SIC trace at least to Akaike (1974) and Schwarz (1978). Granger, King,
and White (1995) provide insightful discussion of consistency of model selection
criteria, and the key (and difficult) reference on efficiency is Shibata (1980). Engle
and Brown (1986) find that criteria with comparatively harsh degrees-of-freedom
penalties (for example, the SIC) select the best forecasting models.
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Kennedy (1992) reviews a number of corrections for the bias in exp((log ), + 4.)-

A number of authors have investigated the use of multiple models for multiple
horizons, including Findley (1983) and Tiao and Tsay (1994). Findley (1985)
develops criteria for selection of multi-step-ahead forecasting models.

Concepts for Review

Trend Consistency

Deterministic trend Data-generating process (DGP)
Stochastic trend Asymptotic efficiency

Time dummy Residual serial correlation
Regression intercept Polynomial trend

Regression slope Logistic trend

Quadratic trend Smoothing

Exponential trend Two-sided moving average
Log-linear trend One-sided moving average
Least-squares regression One-sided weighted moving average
Argmin Real-time (on-line) smoothing
Model selection Ex post (off-line) smoothing
Mean squared error Detrending

In-sample overfitting Bias correction

Data mining
Out-ofsample 1-step-ahead prediction
error variance
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Modeling and

Forecasting Seasonality

P
I. The Nature and Sources of Seasanality

In the last chapter, we focused on the trends; now we’ll focus on seasonality. A
seasonal pattern is one that repeats itself every vear.! The annual repetition can
be exact, in which case we speak of deterministic seasonality, or approximate,
in which case we speak of stochastic seasonality. Just as we focused exclusively
on deterministic trend in Chapter 5, reserving stochastic trend for subsequent
treatment, so shall we focus exclusively on deterministic seasonality here.

Seasonality arises from links of technologies, preferences, and institutions
to the calendar. The weather (for example, daily high temperature in Tokvo)
is a trivial but very important seasonal series, as it's always hotter in the sum-
mer than in the winter. Any technology that involves the weather, such as pro-
duction of agricultural commodities, is likely to be seasonal as well.

Preferences may also be linked to the calendar. Consider, for example,
gasoline sales. In Figure 6.1, we show monthly U.S. current-dollar gasoline
sales, 1980.01-1992.01. People want to do more vacation travel in the summer,
which tends to increase both the price and quantity of summertime gasoline
sales, both of which feed into higher current-dollar sales.

! Note, therefore, that seasonality is impossible, and thus not an issue, in data recorded once per
year or less often than once per vear.
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Finally, social institutions that are linked to the calendar, such as holidays,
are responsible for seasonal variation in a variety of series. Purchases of retail
goods skyrocket, for example, every Christmas season. In Figure 6.2, we plot
monthly U.S. currentdollar liquor sales, 1980.01-1992.01, which are very
high in November and December. In contrast, sales of durable goods fall in
December, as holiday purchases tend to be nondurables. This emerges clearly
in Figure 6.3, in which we show monthly U.S. current-dollar durable goods
sales, 1980.01-1992.01.

You might imagine that, although certain series are seasonal for obvious
reasons, seasonality is nevertheless uncommon. On the contrary, and perhaps
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surprisingly, seasonality is pervasive in business and economics. Many indus-
trialized economies, for example, expand briskly every fourth quarter and
contract every first quarter.

One way to deal with seasonality in a series is simply to remove it and then
to model and forecast the seasonally adjusted time series.’ This strategy is per-
haps appropriate in certain situations, such as when interest centers explicitly
on forecasting nonseasonal fluctuations, as is often the case in macroeconom-
ics. Seasonal adjustment is often inappropriate in business forecasting situa-
tions, however, precisely because interest typically centers on forecasting all
the variation in a series, not just the nonseasonal part. If seasonality is respon-
sible for a large part of the variation in a series of interest, the last thing a fore-
caster wants to do is discard it and pretend itisn’t there.

BEREEN
2. Modeling Seasonality

A key technique for modeling seasonality is regression on seasonal dummies.
Let s be the number of seasons in a year. Normally we’d think of four seasons
in a year, but that notion is 100 restrictive for our purposes. Instead, think of s
as the number of observations on a series in each vear. Thus, s = 4 if we have
quarterly data, s = 12 if we have monthly data, s = 52 if we have weekly data,
and so forth.

2 Removal of seasonality is called seasonal adjustment.
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Now let’s construct seasonal dummy variables, which indicate which sea-
son we're in. If, for example, there are four seasons, we create

D;=(,0001000,100,0,...);
Dy=1(0,1,0,0,0,1,0,0,0,1,0,0,..:
D3=1(0,0,1,0,0,0,1,0,0,0,1,0,...);
Dy=1(0,0,0,1,0,0,0,1,0.0,0.1,...)

Dy indicates whether we're in the first quarter (it's 1 in the first quarter and

0 otherwise), D indicates whether we re in the second quarter (it's 1 in the sec-

ond quarter and () otherwise), and so on. At any given time, we can be in only

one of the four quarters, so one seasonal dummy is 1, and all others are 0.
The pure seasonal dummy mocdlel is

.
Y= Z‘YiDn +¢€.
=1

Effectively, we’re just regressing on an intercept, but we allow for a different
intercept in each season. Those different intercepts, the v;'s, are called the
seasonal factors; they summarize the seasonal pattern over the vear. In the ab-
sence of seasonality, the +y;’s are all the same, so we can drop all the seasonal
dummies and instead simply include an intercept in the usual way.

Instead of including a full set of s seasonal dummies, we can include any
5 — 1 seasonal dummies and an intercept. Then the constant term is the in-
tercept for the omitted season, and the coefficients on the seasonal dummies
give the seasonal increase or decrease relative to the omitted season. In no
case, however, should we include s seasonal dummies and an intercept. In-
cluding an intercept is equivalent to including a variable in the regression
whose value is always 1, but note that the full set of s seasonal durnmies sums
to a variable whose value is always 1. Thus. inclusion of an intercept and a full
set of seasonal dummies produces perfect multicollinearity, and your com-
puter will scream at you if you run such a regression. (Try it!)

Trend may be included as well. in which case the model is*

5
y =B TIME, + ) _v:D;, +E, .
=1
In fact, you can think of what we're doing in this chapter as a generalization of
what we did in the last, in which we focused exclusively on trend. We sfill want
to account for trend, if it's present, but we want to expand the model so that
we can account for seasonality as well.,

The idea of seasonality may be extended to allow for more general calendar
effects. “Standard” seasonality is just one type of calendar effect. Two additional
important calendar effects are holiday variation and trading-day variation.

Holiday variation refers to the fact that some holidays' dates change over
time. That is, although they arrive at approximatelv the same time each vear,
the exact dates differ. Easter is a common example. Because the behavior of

4 For simplicity, we have included only a linear trend. but more complicated models of trend, such
as quadratic, exponential, or logistic, could of course be used.



http://stillwa.nl

Modeling and Forecasting Scasonality

many series, such as sales. shipments, inventories, hours worked, and so on,
depends in part on the timing of such holidays, we may want to keep track of
them in our forecasting models. As with seasonality, holiday effects may be
handled with duwmmy variables. In a monthly model. for example, in addition
to a tull set of seasonal dummies, we might include an “Easter dummy,” which
is 1 it the month contains Easter and 0 otherwise.

Trading-day variation refers to the fact that different months contain differ-
ent numbers of rading davs or business davs, which is an important considera-
tion when modeling and forecasting certain series, For example, in a monthly
forecasting model of voluine traded on the London Stock Exchange, in addi-
tion 1o a full set of seasonal dummies, we might include a trading-day variable,
whose value each month is the number of trading days that month.

Allowing for the possibility of holiday or trading-day variation gives the
complete model

. ¥ "
»=BTIME, +Y vDi,+ ) 8 HDV,+ Y 8 TDV, +¢,,
=1 i=1 i=1
where the HDVs are the relevant holiday variables (there are v, of them), and
the TDVs are the relevant rading-day variables (here we’ve allowed for v of
them, but in most applications, v = 1 will be adequate). This is just a standard
regression equation and can be estimated by ordinary least squares.

NN
3. Forecasting Seasonal Series

Now consider constructing an /step-ahead point forecast, y7.,. 7, attime T. As
with the pure trend models discussed in the previous chapter, there’s no prob-
lem of forecasting the right-hand-side variables, because of the special (per-
fectly predictable) nature of trend and seasonal variables, so point forecasts
are easy to generate.

The full model is

N vy 2
v =B TIME, + Y v.D,+ ) 8"HDV, + Y 8"TDV, +&,.
=1 =1 =1

so that at time 7"+ A,
\ vy [
10
yren =B TIME, + Z YiDiran+ z S:mHDV,_ rant Z 8 "TDV, ., + €.
=1 =1 =1

As with the pure trend model of Chapter 5, we project the right side of the
equation on what's known at time T (that is, the time-T information set, Q)
to obtain the forecast

[ 'y (03
Yot =BTIME,, + 3 v D, 7+ Y 8" HOV, ;. + > §"TOV, ., .
=1 i=|

=]
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As always, we make this point forecast operational by replacing unknown
parameters with estimates,

5 3] va
YrenT= ﬁITIMEn,, + Z YiDiren + Z S:-mHDV,._ ron T Z AS‘-[DTDV,. _
i=1 =1 i=1

To form an interval forecast, we proceed precisely as in pure trend models
we studied earlier. We assume that the regression disturbance is normally dis-
tributed, in which case a 95% interval forecast ignoring parameter estimation
uncertainty is ¥y, 7 £ 1.960, where o is the standard deviation of the re-
gression disturbance. To make the interval forecast operational, we use
¥7-n.1 £ 1.96 &, where & is the standard error of the regression.

To form a density forecast, we again assume that the trend regression dis-
turbance is normally distributed. Then, ignoring parameter estimation uncer-
tainty, the density forecast is N(yr..7, c?). where a is the standard deviation
of the disturbance in the trend regression. The operational density forecast is
then 1'\"(5'74_,,. T 6‘2)

EEEEEEEEEEEE
4. Application: Forecasting Housing Starts

We’ll use the seasonal modeling techniques that we’ve developed in this chap-
ter to build a forecasting model for housing starts. Housing starts are seasonal
because it's usually preferable to start houses in the spring. so that thev're
completed before winter arrives. We have monthly data on U.S. housing starts;
we'll use the 1946.01-1993.12 period for estimation and the 1994.01-1994.11
period for out-ofsample forecasting. We show the entire series in Figure 6.4,

FIGLUTE 6.4 950
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1946.01-1994.11
200
150
8 !
g |
7
100
50
0 1 11 & 1l T S W S U S W T NN N B I S | [HD W S B N R M I | 11 [ ] 1 L4 & 1 1 [l 1

50 55 60 65 70 73 80 85 90
Time




Modeling and Forecasting Seasonalin

160 -

140

120

100

Starts

80

60

40 )
90:01  Y0:07 91:01  91:07 92:01 92:07 93:01 93:07 94:01 94:07

Time

and we zoom in on the 1990.01-1994.11 period in Figure 6.5 in order to reveal
the seasonal pattern in better detail.

The figures reveal that there is no trend, so we'll work with the pure sea-
sonal model,

»n= Z:'Y:'Dil +&.
i=1

Table 6.1 shows the estimation results. The 12 seasonal dummies account for
more than a third of the variation in housing starts, as B2 = 0.38. At least some
of the remaining variation is cyclical, which the model is not designed to cap-
ture. (Note the very low Durbin-Watson statistic.)

The residual plot in Figure 6.6 makes clear the strengths and limitations of
the model. First compare the actual and fitted values. The fitted values go
through the same seasonal pattern every year—there’s nothing in the model
other than deterministic seasonal dummies—but that rigid seasonal pattern
picks up a lot of the variation in housing starts. It doesn’t pick up all of the vari-
ation, however, as evidenced by the serial correlation that's apparent in the
residuals. Note the dips in the residuals, for example, in recessions (for exam-
ple 1990, 1982, 1980, and 1975), and the peaks in booms.

The estimated seasonal factors are just the 12 estimated coefficients on the
seasonal dummiies; we graph them in Figure 6.7. The seasonal effects are very
low in January and February and then rise quickly and peak in May, after which
they decline, at first sfowly and then abruptly in November and December.

In Figure 6.8, we see the history of housing starts through 1993, together
with the out-of-sample point and 95% interval extrapolation forecasts for the
first 11 months of 1994. The forecasts look reasonable, as the model has

FIGURE B &
Housing Starts,
1990.01-1994.11
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TABLE B.! LS/ /Dependent variable is STARTS.
Regression Results: Sample: 1946:01 1993:12
Seasonal Dummy Included observations: 576
L"o'; ’;f” ’;”S’l‘(’ld:é Variable Coefficient Std. Error t-Statistic Prob.
D1 86.50417 4.029055 21.47009 0.0000
D2 89.50417 4.029055 22.21468 0.0000
D3 122.8833 4.029055 30.49929 0.0000
D4 142.1687 4,029055 35.28588 0.0000
D5 147.5000 4.029055 36.60908 0.0000
D6 145.9979 4.029055 36.23627 0.0000
D7 139.1125 4.029055 34.52733 0.0000
D8 138.4167 4.029055 34.35462 0.0000
D9 130.5625 4.029055 32.40524 0.0000
D10 134.0917 4.029055 33.28117 0.0000
D11 111.8333 4.029055 27.75671 0.0000
D12 9215833 4.029055 22.87344 0.0000
R 0.383780 Mean dependent var. 123.3944
Adjusted R 0.371762 SD dependent var. 35.21775
SE of regression 27.91411 Akaike info criterion 6.678878
Sum squared resid. 439467.5 Schwarz criterion 6.769630
Log likelihood —2728.825 Festatistic 31.93250
Durbin-Watson stat. 0.154140 Prob (Fstatistic) 0.000000
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evidently done a good job of capturing the seasonal pattern. The forecast
intervals are quite wide, however, reflecting the fact that the seasonal effects
captured by the forecasting model are responsible for only about a third of the
variation in the variable being forecast.

In Figure 6.9, we include the 1994 realization. The forecast appears highly
accurate, as the realization and forecast are quite close throughout. Moreover,
the realization is everywhere well within the 95% interval.

FIGURE 6.7
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FIGURE B.9
Housing Starts:
History,

1990.01-1993.12;

and Forecast and
Realization,
1994.01-1994.11
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Exercises, Prablems, and Complements

1.

(Log transformations in seasonal models) Just as log transformations were useful
in trend models to allow for nonlinearity, so too are they useful in seasonal
models, although for a somewhat different purpose: stabilization of variance.
Often log transformations stabilize seasonal patterns whose variance is growing
over time. Explain and illustrate.

(Seasonal adjustment) Just as we sometimes want to remove the trend from a
series, sometimes we want to seasonally adjust a series before modeling and
forecasting it. Seasonal adjustment may be done with moving-average methods
analogous to those used for detrending in Chapter 5, or with the dummy variable
methods discussed in this chapter, or with sophisticated hybrid methods like the
X-11 procedure developed at the U.S. Census Bureau.

a. Discuss in detail how you'd use dummy variable regression methods to
seasonally adjust a series. (Hint: The seasonally adjusted series is closely
related to the residual from the seasonal dummy variable regression.)

b. Seasonally adjust the housing starts series using dummy variable regression.
Discuss the patterns present and absent from the seasonally adjusted series.

c. Search the web (or the librarv) for information on the latest L'.S. Census
Bureau seasonal adjustment procedure, and report what you learned.

(Selecting forecasting models involving calendar effects) You're sure that a series
you want to forecast is trending and that a linear trend is adequate, but you're not
sure whether seasonality is important. To be safe, you fit a forecasting model with
both trend and seasonal dummies,

yi=PTIME, + Y viDis+e .

i=1
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a. The hypothesis of no seasonality, in which case you could drop the seasonal
dummies, corresponds to equal seasonal coefficients across seasons, which is a
set of s — 1 linear restrictions:

YI=Y. Y=Y s V=1 =5 .

How would you perform an Ftest of the hypothesis? What assumptions are
you implicitly making about the regression’s disturbance term?

b. Alternatively, how would vou use forecast model selection criteria to decide
whether to include the seasonal dummies?

¢.  What would vou do in the event that the results of the “hypothesis testing™
and “model selection” approaches disagree?

d. How, if at all. would vour answers change if instead of considering whether to
include seasonal dummies you were considering whether to include holiday
dummies? Trading-day dummies?

(Testing for seasonality) Using the housing starts data:

a. Asin the chapter, construct and estimate a model with a full set of seasonal
dummies.
Test the hypothesis of no seasonal variation. Discuss your results.

¢. Test for the equality of the coefficients on March and November and the
coefficients on all the months in between, and construct a model that uses
three dummy variables, one for December, January, and February, one for
March and November, and one for the remaining months.

(Seasonal regressions with an intercept and s — 1 seasonal dummies) Reestimate
the housing starts model using an intercept and 11 seasonal dummies, rather
than the full set of seasonal dummies as in the text. Compare and contrast your
results with those reported in the text. What is the interpretation of the intercept?
What are the interpretations of the coefficients on the 11 included seasonal
dummies? Does it matter which month's dummy you drop?

(Applied trend and seasonal modeling) Nile.com, a successful online bookseller,
monitors and forecasts the number of hits per day to its web page. You have daily
hits data for January 1, 1998, through September 28, 1998.

a. Fitand assess the standard linear, quadratic, and log linear trend models.

b. For a few contiguous days roughly in late April and early May, hits were much
higher than usual during a big sale. Do vou find evidence of a corresponding
group of outliers in the residuals from your trend models? Do they influence
your trend estimates much? How should you treat them?

¢. Model and assess the significance of day-of-week effects in Nile.com web page
hits.

d. Selecta final model, consisting only of trend and seasonal components, to use
for forecasting.

e. Use your model to forecast Nile.com hits through the end of 1998.

(Periodic models) We introduced the seasonal dummy model as a natural and
simple method for generalizing a simple “mean plus noise™ model,

N=K+E,
to allow the mean to vary with the seasons,

Ve= Z YiDi + & .

=1
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More generally, we can also allow the coefficients of richer models to vary with
the seasons, as, for example, when we move from the fixed-coefticient regression
model,

y=Bo+Bix+e,
to the model with time-varying parameters

L s
{
»n= E 'Y,-”Dit + Z Y, Dis | x+& .
=1

i=1

This model, which permits not only a seasonally varying intercept but also a
seasonally varying slope, is an example of a periodic regression model. The word
periodic refers to the coefficients, which vary regularly with a fixed seasonal
periodicity.

(Interpreting dummy variables) You fit a purely seasonal model with a full set of
standard monthly dummy variables to a monthly series of employee hours
worked. Discuss how the estimated dummy variable coefficients ¥y, ¥+, ... would
change if vou changed the first dummy variable Dy = (1, 0, 0, . . .) (with all the
other dummy variables remaining the same) to

a. D1=(200,...);

b. Dy=(-10,0,0,...);

¢« Dh=(,1,0,..)).

{Constructing seasonal models) Describe how you would construct a purely
seasonal mode] for the following monthly series. In particular, what dummy
variable(s) would you use to capture the relevant effects?

a. A sporting goods store finds that detrended monthly sales are roughly the
same for each month in a given 3-month season. For example, sales are
similar in the winter months of January, February, and March; in the spring
months of April, May, and June; and so on.

b. A campus bookstore finds that detrended sales are roughly the same for all
first, all second, all third, and all fourth months of each trimester. For
example, sales are similar in January, May, and September, the first months of
the first, second, and third trimesters, respectively.

¢. A Christmas ornament store is only open in November and December, so
sales are zero in all other months.

{Calendar etfects) You run a large catering firm, specializing in Sunday brunches

and weddings. You model the firm’s monthly income as y, = By + 8, 5, + 8, W]

+ &,, where y is monthlv income, and $and Ware calendar effect variables

indicating the number of Sundays and weddings in a month.

a. What are the units of By, 8,, and 8,.?

b. How could you estimate the average income the firm receives per wedding?

¢.  Over the past 30 years, you have regularly increased your prices to keep pace
with inflation. How would you modify the model to account for the effects of
such increases?
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Deterministic seasonality Calendar effects
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Characterizing Cycles

We've already built forecasting models with trend and seasonal components.
In this chapter, as well as the next two, we consider a crucial third component,
cycles. When vou think of a “cycle,” you probably think of the sort of rigid up-
and-down pattern depicted in Figure 7.1. Such cycles can sometimes arise, but
cyclical fluctuations in business, finance, economics, and government are typ-
ically much less rigid. In fact, when we speak of cycles, we have in mind a much
more general, allencompassing notion of cyclicality: any sort of dvnamics not
captured by trends or seasonals.

Cvcles, according to our broad interpretation, may display the sort of back-
and-forth movement characterized in Figure 7.1, but they don’t have to. All we
require is that there be some dynamics, some persistence, some way in which
the present is linked to the past and the future to the present. Cycles are pre-
sent in most of the series that concern us, and it’s crucial that we know how to
model and forecast them, because their history conveys information regard-
ing their future.

Trend and seasonal dynamics are simple, so we can capture them with sim-
ple models. Cyclical dynamics, however, are more complicated. Because of the
wide variety of cvclical patterns, the sorts of models we need are substantially
more involved. Thus, we split the discussion into three parts. Here in Chap-
ter 7 we develop methods for characterizing cvcles, in Chapter 8 we discuss mod-
els of cvcles, and following that, in Chapter 9, we show how to use those models
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to forecast cycles. All of the material is crucial to a real understanding of fore-
casting and forecasting models, and it’s also a bit difficult the first time around
becatise it’s unavoidably rather mathematical, so careful, systematic study is re-
quired. The payoff will be large when we arrive at Chapter 10, in which we as-
semble and apply extensively the ideas for modeling and forecasting trends,
seasonals, and cycles developed in Chapters 5-9.

P
|. Covariance Stationary Time Series

A realization of a time series is an ordered set, |. .., y-2, ¥-1, Y0, ¥1. %2, . . ... Typ-
ically the observations are ordered in time—hence the name time series—but
they don’t have to be. We could, for example, examine a spatial series, such as
office space rental rates as we move along a line from a point in Midtown
Manhattan to a point in the New York suburbs 30 miles away. But the most
important case for forecasting, by far, involves observations ordered in time,
so that’s what we'll stress.

In theory, a time series realization begins in the infinite past and continues
into the infinite future. This perspective may seem abstract and of limited
practical applicability, but it will be useful in deriving certain very important
properties of the forecasting models we’ll be using soon. In practice, of
course, the data we observe are just a finite subset of a realization, {y1, ..., y7,
called a sample path.

Shortly we'll be building forecasting models for cyclical time series. If the
underlying probabilistic structure of the series were changing over time, we'd
be doomed—there would be no way to predict the future accurately on the
basis of the past, because the laws governing the future would differ from

F\GURE 7
A Rigid Cyclical
Pattern
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those governing the past. If we want to forecast a series, at a minimum we’d
like its mean and its covariance structure (i.e., the covariances between cur-
rent and past values) to be stable over time, in which case we say that the series
is covariance stationary.

Let's discuss covariance stationarity in greater depth. The first require-
ment for a series to be covariance stationary is that the mean of the series be
stable over time. The mean of the series at time £ is

E()’t) =P

If the mean is stable over time, as required by covariance stationarity, then we
can write

E(y:)=p-,

for all t. Because the mean is constant over time, there’s no need to put a time
subscript on it.

The second requirement for a series to be covariance stationary is that its
covariance structure be stable over time. Quantifying stability of the covari-
ance structure is a bit tricky, but tremendously important, and we do it using
the autocovariance function. The autocovariance at displacement 7 is just the
covariance between y, and y,_,. It will of course depend on 7, and it may also
depend on t, so in general we write

V(. T) = cov(y, Yi-a) = E(y — p)(¥-r — ) .

If the covariance structure is stable over time, as required by covariance sta-
tionarity, then the autocovariances depend only on displacement, 7, not on
time, ¢, and we write

Yt T) = (7).
for all ¢.

The autocovariance function is important because it provides a basic sum-
mary of cvclical dynamics in a covariance stationary series. By examining the
autocovariance structure of a series, we learn about its dynamic behavior. We
graph and examine the autocovariances as a function of 7. Note that the auto-
covariance function is symmetric; that is,

Y(T) =v(=1),

for all 1. Typically, we'll consider only nonnegative values of 7. Symmetry re-
flects the fact that the autocovariance of a covariance stationary series de-
pends only on displacement; it doesn’'t matter whether we go forward or
backward. Note also that

¥(0) = cov(y;, y/) = var(y,) .

There is one more technical requirement of covariance stationarity: We
require that the variance of the series—the autocovariance at displacement 0,
v(0)—be finite. It can be shown that no autocovariance can be larger in
absolute value than y(0), so if ¥(0) < og, then so, too, are all the otlier auto-
covariances.
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It may seem that the requirements for covariance stationarity are quite
stringent, which would bode poorly for our forecasting models, almost all of
which invoke covariance stationarity in one way or another. It is certainly true
that many economic, business, financial, and government series are not co-
variance starionary. An upward trend. for example, corresponds to a steadily
increasing mean, and seasonality corresponds to means that vary with the sea-
son, both of which are violations of covariance stationarity.

But appearances can be deceptive. Although many series are not covariance
stationary, it is frequently possible to work with models that give special treatment
to nonstationary components such as trend and seasonality, so that the cyclical
component that'’s left over is likely to be covariance stationary. We'll often adopt
that strategy. Alternatively, simple transformations often appear to transform
nonstationarv series to covariance stationarity. For example, many series that are
clearly nonstationary in levels appear covariance stationary in growth rates.

In addition, note that although covariance stationarity requires means and
covariances to be stable and finite, it places no restrictions on other aspects of
the distribution of the series, such as skewness and kurtosis."! The upshot is
simple: Whether we work directly in levels and include special components for
the nonstationary elements of our models, or we work on transformed data
such as growth rates, the covariance stationarity assumption is not as unrealis-
tic as it may seem.

Recall that the correlation between two random variables x and y is de-
fined by

cov(x, y)
corr(x, y) = ————.
0.0,

That is, the correlation is simply the covariance, “normalized” or “standard-
ized,” by the product of the standard deviations of xand y. Both the correlation
and the covariance are measures of linear association between two random
variables. The correlation is often more informative and easily interpreted,
however, because the construction of the correlation coefficient guarantees
that corr(x, v} € [—1, 1], whereas the covariance between the same two ran-
dom variables may take any value. The correlation, moreover, does not depend
on the units in which xand yare measured, whereas the covariance does. Thus,
for example, if x and y have a covariance of 10 million, they're not necessarily
very strongly associated, whereas if thev have a correlation of .95, it is unam-
biguously clear that they are very strongly associated.

In light of the superior interpretability of correlations as compared with
covariances, we often work with the correlation, rather than the covariance,
hetween y, and y,_.. That is, we work with the autocorrelation function, p(7),
rather than the autocovariance function, y(t). The autocorrelation function is
obtained by dividing the autocovariance function by the variance,

_

(1)y= ,
T30

7=012,....

! For that reason, covariance stationarity is sometimes called second-order stationarity or weak
stationarity.
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The formula for the autocorrelation is just the usual correlation formula. spe-
cialized to the correlation between 3, and y,_;. To see why, note that the vari-
ance of y, is v (0), and by covariance stationarity, the variance of y at any other
time y,_, is also vy (0). Thus,

o(r) = covlynyis) ) yiT)
S NarGo) YO0 ¥0)

Y

as claimed. Note that we always have p(0) = v

=1, because any series is

perfectly correlated with itself. Thus, the autocorrelation at displacement 0
isn’t of interest; rather, onlv the autocorrelations beyond displacement 0 in-
form us about a series’ dynamic structure.

Finally, the partial autocorrelation function, p(7), is sometimes useful. ()
is just the coefficient of y,_, in a population linear regression of y, on
|77 P )',_,.2 We call such a regression an autoregression, because the vari-
able is regressed on lagged values of itself. It’s easy to see that the autocaorrela-
tions and partial autocorrelations, although related, differ in an important way.
The autocorrelations are just the “simple” or “regular” correlations between y,
and y,_,. The partial autocorrelations, on the other hand, measure the associ-
ation between y,and y,_; after controlling for the effectsof y,_y, ..., y,—r41; that
is, they measure the partial correlation between y, and y,_,.

As with the autocorrelations, we often graph the partial autocorrelations
as a function of 7 and examine their qualitative shape, which we'll do soon.
Like the autocorrelation function, the partial autocorrelation function pro-
vides a summary of a series” dynamics, but as we’ll see, it does so in a differ-
ent way.?

All of the covariance stationary processes that we will study subsequently
have autocorrelation and partial autocorrelation functions that approach 0,
one way or another, as the displacement gets large. In Figure 7.2 we show an
autocorrelation function that displays gradual one=sided damping, and in Fig-
ure 7.3 we show a constant autocorrelation function; the latter could not be
the autocorrelation function of a stationary process, whose autocorrelation
function must eventually decay. The precise decay patterns of autocorrela-
tions and partial autocorrelations of a covariance stationary series, however,
depend on the specifics of the series, as we'll see in detail in the next chapter.
In Figure 7.4, for example, we show an autocorrelation function that displays
damped oscillation—the autocorrelations are positive at first, then become
negative for a while, then positive again, and so on, while continuously getting

2 Ta get a feel for what we mean by “population regression.” imagine that we have an infinite sam-
ple of data at our disposal, s0 thal the parameter estimates in the regression are not contaminated
by sampling variation: that is, thev're the true population values. The thought experiment just de-
scribed is a population regression.

¥ Also in parallel to the autocorrelation function, the partial antocorrelation at displacement {1 is
always | and is therefore uninformative and iminteresting. Thus, when we graph the autocorrelation
and partial autocorrelation functions, we'll begin at displacement 1 rather than displacement 0.
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smaller in absolute value. Finally, in Figure 7.5 we show an autocorrelation
function that differs in the wav it approaches 0—the autocorrelations drop
abrupily to 0 beyond a ceriain displacement.
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2. White Noise

In this section and throughout the next chapter, we'll study the population
properties of certain time series models, or time series processes, which are
very important for forecasting. Before we estimate time series forecasting
models, we need to understand their population properties, assuming that the
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FIGURE 7.4
Autocorrelation
Function, Gradual
Damped Oscillation
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postulated model is true. The simplest of all such time series processes is the
fundamental building block from which all others are constructed. In fact, it's
so important that we introduce it now. We use y to denote the observed series
of interest. Suppose that

=g

g ~(0.0%),

where the “shock,” g, is uncorrelated over time. We sav that €,, and hence y;, is
serially uncorrelated. Throughout, unless explicitly stated otherwise. we
assume that 0 < 0. Such a process, with zero mean, constant variance, and
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no serial correlarion. is called zero-mean white noise, or simply white noise.*
Sometimes for short we write

€, ~ WN(0, ¢?)
and hence
¥~ WN(0, o).

Note that, although & and hence y, are serially uncorrelated, they are not
necessarily seriallv independent, because they are not necessarily normally
distributed.” If in addition to being serially uncorrelated, y is serially indepen-
dent, then we say that y is independent white noise.’ We write
hd N
¥~ (0,0%),

and we say that "y is independently and identically distributed with zero mean
and constant variance.” If y is serially uncorrelated and normally distributed,
then it follows that y is also serially independent, and we say that y is normal
white noise or Gaussian white noise.’ We write

id o
¥~ N(0,0%) .

We read “y is independentlv and identically distributed as normal, with zero
mean and constant variance”™ or simply "y is Gaussian white noise.” In Fig-
ure 7.6 we show a sample path of Gaussian white noise, of length 7' = 150, sim-
ulated on a computer. There are no patterns of any kind in the series due to
the independence over time,

You're already familiar with white noise, although you may not realize it.
Recall that the disturbance in a regression model is typically assumed to be
white noise of one sort or another. There’s a subtle difference here, however.
Regression disturbances are not observable, whereas we're working with an
observed series. Later, however, we’ll see how all of our models for observed
series can be used to model unobserved variables such as regression distur-
bances.

Let's characterize the dynamic stochastic structure of white noise,
¥~ WN(0, a%). By construction the unconditional mean of y is

E(_Y') = O 0
and the unconditional variance of yis

var(y,) = o?.

' It's called white noise by analogy with white light. which is composed of all colors of the
spectrum, in equal amounts. We can think uf white noise as being composed of a wide variety of
cveles of differing perodicities, in equal amounts.

* Recall that zero correlation implies independence only in the normal case.

% Another name for independent white noise is strong white noise, in contrast to standard serially
uncarrclated weak white noise.

“ Karl Friedrich Gauss, one of the greatest mathematicians of all time, discovered the normal
distribution some 200 vears ago—hence the adjective Gaussian.
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Note that the unconditional mean and variance are constant. In fact, the un-
conditional mean and variance must be constant for any covariance stationary
process. The reason is that constancy of the unconditional mean was our first
explicit requirement of covariance stationarity and that constancy of the un-
conditional variance follows implicity from the second requirement of covari-
ance stationarity—that the autocovariances depend only on displacement, not
on time.®

To understand fully the linear dvhamic structure of a covariance stationary
time series process, we need to compute and examine its mean and its auto-
covariance function. For white noise, we've already computed the mean and
the variance, which is the autocovariance at displacement 0. We have vet to
compute the rest of the autocovariance function; fortunately. however, it’s
very simple, Because white noise is. by definition, uncorrelated over time, all
the autocovariances, and hence all the autocorrelations, are 0 bevond dis-
placement 0.* Formally. then, the autocovariance function for a white noise

process is
gt =0
i) = [0. T>1

pratil ’

and the autocorrelation function for a white noise process is
L v=0
p(t) = I

0. 7>1.
In Figure 7.7 we plot the white noise autocorrelation function.
Finally, consider the partial autocorrelation function for a white noise
series. For the same reason that the autocorrelation at displacement () is alwavs
1, s0. too, is the partial auocorrelation at displacement 0. For a white noise

¥ Recall that a? = y(0).

9 If the antocovariances are all 0, so are the autocorrelations, because the autocorrelations are
proportional to the autocovariances.
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process, all partial autocorrelations beyond displacement 0 are 0, which again
follows from the fact that white noise, by construction, is serially uncorrelated.
Population regressions of y; on y,_;, or on y,_; and y,_» or on any other lags,
produce nothing but 0 coefficients, because the process is serially uncorre-
lated. Formally, the partial autocorrelation function of a white noise process is

L, 7=0
0, 7=>1.

pir) =

We show the partial autocorrelation function of a white noise process in Fig-
ure 7.8. Again, it's degenerate and exactly the same as the autocorrelation
function!

By now vou've surely noticed that if you were assigned the task of forecast-
ing independent white noise, you'd likely be doomed to failure. What happens
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to a white noise series at any time is uncorrelated with anything in the past;
similarly, what happens in the future is uncorrelated with anvthing in the pre-
sent or past. But understanding white noise is tremendously iinportant tor at
least two reasons. First, as already mentioned, processes with much richer dy-
namics are built up by taking simple transformations of white noise. Second,
1-step-ahead forecast errors from good models should be white noise. After
all, if such forecast errors aren’t white noise, then they're serially correlated,
which means that thev're forecastable: and if forecast errors are torecastable,
then the forecast can't be very good. Thus, it's important that we understand
and be able to recognize white noise.

Thus far we've characterized white noise in terms of its mean, variance,
autocorrelation function, and partial autocorrelation function. Another char-
acterization of dynamics, with important implications for forecasting, involves
the mean and variance of a process, conditional on its past. In particular, we
often gain insight into the dynamics in a process by examining its condirional
mean, which is a key object for forecasting.'” In fact, throughaut our study of
time series, we'll be interested in computing and contrasting the uncondi-
tional mean and variance and the conditional mean and variance of various
processes of interest. Means and variances, which convey information about
location and scale of random variables, are examples of what statisticians call
momeants. For the most part, our comparisons of the conditional and uncon-
ditional moment structure of time series processes will focus on means and
variances (thev're the most important moments), but sometimes we'll be in-
terested in higher-order moments, which are related to properties such as
skewness and kurtosis.

For comparing conditional and unconditional means ang variances, it will
simplifv our story to consider independent white noise. y, ~ (0. o?). By the
same arguments as before, the unconditional mean of yis 0, and the uncondi-
tional variance is 0. Now consider the conditional mean and variance, where
the information set ,_; on which we condition contains either the past his-
tory of the observed series, €,.} = {y-1. -2, ...}, or the past history of the
shocks, Q,_y = {€&,_1, €,_y, ...}. (They're the same in the white noise case.) In
contrast to the unconditional mean and variance, which must be constant by
covariance stationarity, the conditional mean and variance need not be con-
stant, and in general we’'d expect them nof to be constant. The uncondition-
ally expected growth of laptop computer sales next quarter mav be 10%. but
expected sales growth may be much higher, conditional on knowledge that
sales grew this quarter by 20%. For the independent white noise process, the
conditional mean is

E(y, 1Q-1)=0,
and the conditional variance is

var(y, | Q)= E((y, - E(,V/ | Qt—l))2 | $2,-)) =u?.

" If vou need 1o refresh vour memory on conditional means. consudt any good introductory
statistics book. such as Wonnacott and Wonnacott (1990).
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Conditional and unconditional means and variances are identical for an inde-
pendent white noise series: there are no dynamics in the process and hence no
dynamics in the conditional moments to exploit for forecasting.

I T T T S
3. The Lag Operator

The lag operator and related constructs are the natural language in which fore-
casting models are expressed. If you want to understand and manipulate
forecasting models—indeed, even if you simply want to be able to read the soft-
ware manuals—you have to be comfortable with the lag operator. The lag
operator, L, is very simple: It “operates” on a series by lagging it. Hence,

Ly, = .
Similarly,
Ly, = L(L()) = L(yi<1) = yi2
and so on. Typically we’ll operate on a series not with the lag operator but with

a polynomial in the lag operator. A lag operator polynomial of degree m is just
a linear function of powers of L, up through the mth power,

B(Ly=by+ b L+ b«_;L?-{.-... b, L.

To take a very simple example of a lag operator polynomial operating on
a series, consider the mth-order lag operator polynomial L”, for which

Lm)‘t = Yi-m -

A well-known operator, the first-difference operator A, is actually a first-order
P p )
polynomial in the lag operator; you can readily verify that

A_Vt =(1- L)_\'/ =Y— Y1 -

As a final example, consider the second-order lag operator polynomial
(1 + 0.9L + 0.61°) operating on y. We have

(1409L+0.6L%y, =y +09y,_, +0.6y_,,

which is a weighted sum, or distributed lag, of current and past values. All
forecasting models, one way or another. must contain such distributed lags,
because they’ve got to quantify how the past evolves into the present and
future; hence, lag operator notation is a useful shorthand for stating and ma-
nipulating forecasting models.

Thus far, we've considered only finite-order polynomials in the lag opera-
tor; it turns out that infinite-order polynomials are also of great interest. We
write the infinite-order lag operator polynomial as

B(L):b.,-{- b1L+ b3L2+‘=Zb,L‘-

i=U
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Thus, for example, to denote an infinite distributed lag of current and past
shocks, we might write

B(L)E, = by, + bi€oy + b+ =Y bk, .

At first sight, infinite distributed lags may seem esoteric and of limited practi-
cal interest, because models with infinite distributed lags have infinitely many
parameters (&, &), b, . ..) and therefore can’t be estimated with a finite sam-
ple of data. On the contrary, and surprisingly, it turns out that models involv-
ing infinite distributed lags are central to time series modeling and forecast-
ing. Wold’s theorem. to which we now turn, establishes that centrality.

NEREN
4. Wold's Theorem, the General Linear Process,
and Rational Distributed Lags"

WoLD’S THEOREM

Many different dynamic patterns are consistent with covariance stationarity.
Thus, if we know only that a series is covariance stationary, it's not at all clear
what sort of model we might fit to describe its evolution. The trend and sea-
sonal models that we've studied aren’t of use; they're models of specific non-
stationary components. Effectively, what we need now is an appropriate model
for what's left after fitting the trend and seasonal components—a model for a
covariance stationary residual. Wold’s representation theorem points to the
appropriate model.

THEOREM

Let {y} be any zero-mean covariance-stationary process. 2 Then we can write it as

x
¥ = B(L), = Z big,-,

=N

g ~ WN(0, %),

x
2 M * .
where ) = 1 and Z b= < oc. In short, the correct *model” for any covariance

=0

stationary series is some infinite distributed lag of white noise, called the Wold
representation. The g, are often called innovations, because (as we'll see in
Chapter 9) they correspond to the I-step-ahead forecast errors that we'd make

"! This section is a bit more abstract than others. but don’t be put off. On the contrary, you may
wan to read it severa) uimes. The material in it is crucially important for time series modeling and
forecasting and is therefore central to our concerns.

12 Moreover, we require that the covariance stationary processes don’t contain any deterministic
components.
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if we were to use a particularlv good forecast. That is, the g% represent that
part of the evolution of v that’s linearly unpredictable on the basis of the past
of 5. Note also that the g,5. although uncorrelated, are not necessarily inde-
pendent. Again, it’s onlv for Gaussian random variables that lack of correla-
tion implies independence. and the innovations are not necessarily Gaussian.

In our statement of Wold's theorem we assumed a zero mean. That may
seem restrictive, but it’s not. Rather, whenever you see y, just read y, — u, so
that the process is expressed in deviations from its mean. The deviation from
the mean has a zero mean, by construction. Working with zero-mean
processes therefore involves no loss of generality while facilitating notational
economy. We'll use this device frequently.

THE GENERAL LINEAR PROCESS

Wold’s theorem tells us that when formulating forecasting models for covari-
ance stationary time series, we need only consider models of the form

= B(I.)E, = Z b,E'_,

=t

~ WN(, o%),

x
. . 2 . .
where the b;are coefficientswith &, = 1 and 3_ 4; < 0o. We call this the general
i=0
linear process, “general” because any covariance stationary series can be writ-

ten that way, and “linear” because the Wold representation expresses the series
as a linear function of its innovations.

The general linear process is so important that it's worth examining its
unconditional and conditional moment structure in some detail. Taking
means and variances, we obtain the unconditional moments

E(y)=E i be,_, | = i b E,.,) = i b;-0=0

=0 =1 =0

var(y,) = var ib,—e,_, Zb var(g,_;) = Z b gl=¢* b'

(=) =l r=t0 =0
At this point, in parallel to our discussion of white noise, we could compute
and examine the autocovariance and autocorrelation functions of the gen-
eral linear process. Those calculations, however, are rather involved, and not
particularly revealing, so we'll proceed instead to examine the conditional
mean and variance, where the information set £2,_y on which we condition
contains past innovations: that is, Q,.) = {€,_).€-s,...). In this manner,
we can see how dynamics are modeled via conditional moments.'* The

1% Although Wold's theorem gmarantees only serially uncorrelated white noise innovations, we
shall sometimes make a stronger assumption of independent white noise innovations to focus the
discussion. We do so, for example. in the following characterization of the conditional moment
struciure of the general linear process.
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conditional mean is

E(3|Q-)=E@€ | Qo)+ b EE€ ) | Q1)+ bE€ 21 Q)+
=0+ blsl—l + b‘.’£f—2 +:--= Z blEI—I ’
pr

and the conditional variance is
var(y, | Qi-) = E((y — E(n | Q) 1 Qi) = E€ 1 Qi-)) = E€;) = 0.

The key insight is that the conditional mean moves over time in response to the
evolving inforination set. The model captures the dynamics of the process,
and the evolving conditional mean is one crucial way of summarizing them.
An important goal of time series modeling, especiallv for forecasters, is cap-
turing such conditional mean dynamics—the unconditional mean is constant
{a requirement of stationarity), but the conditional mean varies in response to
the evolving information set.!

RATIONAL DISTRIBUTED LAGS

Aswe've seen, the Wold representation points to the crucial importance of mod-
els with infinite distributed lags. Infinite distributed lag models, in turn, are
stated in terms of infinite polynomials in the lag operator, which are therefore
very important as well. Infinite distributed lag models are not of immediate
practical use, however, because they contain infinitely many parameters, which
certainly inhibits practical application! Fortunately. infinite polynomials in the
lag operator needn’t contain infinitely many free parameters. The infinite poly-
nomial B(L) may, for example, be a ratio of finite-order (and perhaps very low-
order) polynomials. Such polynomials are called rational polynomials, and dis-
tributed lags constructed from them are called rational distributed lags.

Suppose, for example, that
o(L)
B(L) = YT

where the numerator polynomial is of degree ¢,

(L) = }I: oL,
=1

and the denominator polynomial is of degree p,

I
O(Ly=) L.
=)
There are not infinitelv many free parameters in the B(L) polvnomial: instead,
there are only p + g parameters (the 8's and the ¢'s). If pand gare small—say,

" Note, however, an embarrassing asvmmetry: the conditional variance, like the unconditional
variance, is a fixed constant. However, models that allow the conditional variance to change with
the information set have been developed recently, as discussed in detail in Chapter 14.



Characterizing Cycles

0, 1, or 2—then what seems like a hopeless task—estimation of B(L)—may
actually be easy.
More realistically, suppose that B(L) is not exactly rational but is approxi-

mately rational,
e(L)
B(L) ~ ——+ .
(L~ D
Then we can find an approximation of the Wold representation using a ratio-
nal distributed lag. Rational distributed lags produce models of cycles that
economize on parameters (they're parsimonious), while nevertheless provid-
ing accurate approximations to the Wold representation. The popular ARMA
and ARIMA forecasting models, which we’ll studv shortly, are simply rational
approximations to the Wold representation.

NEEEEEE
5. Estimation and Inference for the Mean,
Autocorrelation, and Partial Autocorrelation Functions

Now suppose we have a sample of data on a time series, and we don’t know the
true model that generated the data, or the mean, autocorrelation function, or
partial autocorrelation function associated with that true model. Instead, we
want to use the data to estimale the mean, autocorrelation function, and partial
autocorrelation function, which we might then use to help us learn about the
underlying dynamics and to decide on a suitable model or set of models to fit
to the data.

SAMPLE MEAN

The mean of a covariance stationary series is . = Ey,. A fundamental princi-
ple of estimation, called the analog principle, suggests that we develop estima-
tors by replacing expectations with sample averages. Thus, our estimator for
the population mean, given a sample of size T, is the sample mean,

1 <
=7§y,,

Typically we're not directly interested in the estimate of the mean, but it’s
needed for estimation of the autocorrelation function.

‘e

SAMPLE AUTOCORRELATIONS

The autocorrelation at displacement 7 for the covariance stationary series y is

_ E(O = w)(ye—r — )

{
PiT) E(Gr = i)
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Application of the analog principle yields a natural estimator,

1 T _ T . _
7 2 =D =N (0= i = )

=7+l =r+1

[

=3 > (=5
=1 =1

This estimator, viewed as a function of 7, is called the sample autocorrelation
function or correlogram. Note that some of the summations begin at
t =71+ 1, not at ¢ = 1; this is necessary because of the appearance of y,_, in
the sum. Note that we divide those same sums by T, even though only (T — )
terms appear in the sum. When T is large relative to 7 (which is the relevant
case), division by T or by T — 7 will vield approximately the same result, so it
won’t make much difference for practical purposes; moreover, there are good
mathematical reasons for preferring division by T.'*

It’s often of interest to assess whether a series is reasonably approximated
as white noise, which is to say whether all its autocorrelations are 0 in popula-
tion. A key result, which we simply assert, is that if a series is white noise, then
the distribution of the sample autocorrelations in large samples is

N 1
p(T) N(O, 7) .

Note how simple the resultis. The sample autocorrelations of a white noise se-
ries are approximately normally distributed, and the normal is always a conve-
nient distribution to work with. Their mean is 0, which is to say the sample au-
tocorrelations are unbiased estimators of the true autocorrelations, which are
in fact 0. Finally, the variance of the sample autocorrelations is approximately
1/ T (equivalently, the standard deviation is 1/+/7), which is easy to construct
and remember. Under normality, taking plus or minus two standard errors
yields an approximate 95% confidence interval. Thus, if the series is white
noise, then approximately 95% of the sample autocorrelations should fall in
the interval iir. In practice, when we plot the sample autocorrelations for
a sample of data, we typically include the “two-standard-error bands,” which
are useful for making informal graphical assessments of whether and how the
series deviates from white noise.

The two-standard-error bands, although very useful, only provide 95%
bounds for the sample autocorrelations taken one at a time. Ultimately, we're
often interested in whether a series is white noise—that is, whether all its
autocorrelations are jointly 0. A simple extension lets us test that hypothesis.

Rewrite the expression .
5 ~ N0, =
p(T) ( T)

VTp(r) ~ N0, 1).

p(r) =

15 For additional discussion, consult any of the more advanced time series texts mentioned in
Chapter 1.
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Squaring both sides vields'®
" 2
T6* () ~ X, -
It can be shown that, in addition to being approximately normally distributed,
the sample autocorrelations at various displacements are approximately inde-
pendent of one another. Recalling that the sum of independent x* variables is

also x* with degrees of freedom equal to the sum of the degrees of freedom of
the variables summed, we have shown that the Box-Pierce Q-statistic,

Ope = 7252(7) .
=1

is approximately distributed asa x » random variable under the null hypothesis
that y is white noise.'” A slight modification of this, designed to follow more
closely the x* distribution in small samples, is

Qu=TT+2 Y (7)),
T=1

Under the null hypothesis that y is white noise, Qrp is approximately distrib-
uted as a x» random variable. Note that the Ljung-Box Q-statistic is the same
as the Box-Pierce Q-statistic, except that the sum of squared autocorrelations
is replaced by a weighted sum of squared autocorrelations, where the weights
are (T + 2)/(T — 7). For moderate and large T, the weightsare approximately 1,
so that the Ljung-Box statistic differs little from the Box-Pierce statistic.

Selection of m is done to balance competing criteria. On the one hand, we
don’t want m too small, because, after all, we're trying to do a joint test on a
large part of the autocorrelation function. On the other hand, as m grows
relative to 7, the quality of the distributional approximations we’ve invoked
deteriorates. In practice, focusing on m in the neighborhood of VT is often
reasonable.

SAMPLE PARTIAL AUTOCORRELATIONS

Recall that the partial autocorrelations are obtained from population linear
regressions, which correspond to a thought experiment involving linear re-
gression using an infinite sample of data. The sample partial autocorrelations
correspond to the same thought experiment, except that the linear regression
is now done on the (feasible) sample of size T. If the fitted regression is

5‘1 =c+ Bl_\’l-l 4+ 4+ B-:JH—T '
then the sample partial autocorrelation at displacement 7 is

px)=p..

N - 2 - .
1% Recall that the square of a standard normal random variable is a x° random variable with | de-
gree of freedom. We square the sample autocorrelations (1) so that positive and negative values
don’t cancel when we sum across various values of 7, as we will soon do.

7

m is a maximum displacement selected by the user. Shoruy we'll discuss how to choose it.
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Distributional results identical to those we discussed for the sample autocor-
relations hold as well for the sample partial autocorrelations. That is, if the se-
ries is white noise, approximately 95% of the sample partial autocorrelations
should fall in the interval 1727. As with the sample autocorrelations, we

typically plot the sample partial autocorrelations along with their two-standard-
error bands.

NN — -
B. Application: Characterizing Canadian Employment
Dynamics

To illustrate the ideas we've introduced, we examine a quarterly, seasonally
adjusted index of Canadian employment, 1962.1-1993.4, which we plot in
Figure 7.9. The series displavs no trend, and of course it displays no seasonal-
ity because it's seasonally adjusted. It does, however, appear highly serially cor-
related. It evolves in a slow, persistent fashion—high in business cycle booms
and low in recessions.

To get a feel for the dynamics operating in the employment series, we per-
form a correlogram analysis.'® The results appear in Table 7.1. Consider first
the Qsstatistic.! We compute the Q-statistic and its pvalue under the null hy-
pothesis of white noise for values of m (the number of terms in the sum that

F.GURE 73
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18 A correlogram analysis simply means examination of the sample autocorrelation and partial
autocorrelation functions (with two-standard-error bands), together with related diagnostics,
such as Q-statistics.

1 We show the Ljung-Box version of the Q-statistic.
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Sample: 1962:1 1993:4 é" B.d: 7
. anadian
Included observations: 128 Employment Index,
Acorr. P. Acorr. Std. Error Ljung-Box pvalue  Correlogram
1 0.949 0.949 .088 118.07 0.000
2 0.877 —0.244 .N88 219.66 0.000
3 0.795 -0.101 .088 303.72 0.000
4 0.707 -0.070 88 370.82 0.000
5 0.617 —-0.063 .088 422.27 0.000
6 0.526 —0.048 088 460.00 0.000
7 0.438 -0.033 .088 486.32 0.000
8 0.351 —-0.049 .088 503.41 0.000
9 0.2568 -0.149 .088 512.70 0.000
10 0.163 -0,070 .088 516.43 0.000
11 0.073 -0.011 088 517.20 0.000
12 —0.005 0.016 .088 517.21 0.000

underlies the Q-statistic) ranging from 1 through 12. The pvalue is consis-
tently 0 to four decimal places, so the null hypothesis of white noise is deci-
sively rejected.

Now we examine the sample autocorrelations and partial autocorrela-
tions. The sample autocorrelations are very large relative to their standard er-
rors and display slow one-sided decay.*” The sample partial autocorrelations,
in contrast, are large relative to their standard errors at first (particularly for
the one-quarter displacement) but are statistically negligible beyond displace-
ment 2.2' In Figure 7.10 we plot the sample autocorrelations and partial auto-
correlations along with their two-standard-error bands.

IU's clear that employment has a strong cyclical component; ail diagnostics
reject the white noise hypothesis immediately. Moreover, the sample autocor-
relation and partial autocorrelation functions have particular shapes—the au-
tocorrelation function displays slow one-sided damping, while the partial
autocorrelation function cuts off at displacement 2. You might guess that such
patterns, which summarize the dynamics in the series, might be useful for sug-
gesting candidate forecasting models. Such is indeed the case, as we'll see in
the next chapter.

#'We don't show the sample autacorrelation or partial autocorrelation at displacement 0, because
as we mentioned earlier, thev equal 1.0, by construction, and therefore convey no useful infor-
mation. We'll adopt this convenninn rthronghout.

2 Note that the sample awocorrelation and partial autocorrelation are identical at displacement
1. That’s because at displacement 1. there are no earlier lags to control for when computing the
samnple partial autocorrelation. so it équals the sample autocorrelation. At higher displacemnents,
of course, the two diverge.
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FIGURE 7.10
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Exercises, Problems, and Complements

1. (Lag operator expressions 1) Rewrite the following expressions without using the
lag operator.
a (Ly=¢g

2+5L+0.817
> r=\"Tooerr )®

LE‘
C. y;=2(1 + T)E,.
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2.

o

(Lag operator expressions 2) Rewrite the following expressions in lag operator
form.

a y+yua+--+y-yv=a+&+€-)+ - +E-_y\, where a is a constant
b. yy=¢_2+8&_1+¢,.

(Autocorrelation functions of covariance stationary series) While interviewing at
a top investment bank, vour interviewer is impressed by the fact that you have
taken a course on time series forecasting. She decides to test your knowledge of
the autocovariance structure of covariance stationary series and lists four
autocovariance functions:

2 vy, T)=aq

b, y(t.7)=¢"",

c. Yy, t)=ar, and

[4 3
d. y(ir.7)=-,
T

where « is a positive constant. Which autocovariance function(s) are consistent
with covariance stationarity, and which are notr Why?

(Autocorrelation vs, partial autocorrelation) Describe the difference between
autocorrelations and partial autocorrelations. How can autocorrelations at
certain displacements be positive while the partial autocorrelations at those same
displacements are negative?

(Condidonal and unconditional means) As head of sales of the leading

technology and innovation magazine publisher TECCIT, vour bonus is dependent

on the firm’s reventue. Revenue changes from season to season, as subscriptions

and advertising deals are entered or renewed. From vour experience in the

publishing business, vou know that the revenue in a season is a function of the

number of magazines sold in the previous season and can be described as

¥ = 1000 + 0.9x,_ + €,, with uncorrelated residuals €, ~ N (0, 1000), where yis

revenue and x is the number of magazines sold.

a. What is the expected revenue for next season conditional on total sales of
6340 this season?

b. What is unconditionally expected revenue if unconditionally expected sales
are 85007

¢. Arival publisher offers you a contract identical to your current contract
(same base pay and bonus). Based on a confidential interview, vou know that
the same revenue model with identical coetficients is appropriate for your
rival. The rival has sold an average of 9000 magazines in previous scasons but
only 5650 this season. Will you accept the offer? Why or why not?

(White noise residuals) You work for a top five consulting firm and are in the
middle of a laveek vacation, when one of the directors calls you and urges you
immediately to join a turnaround project at Stardust Cinemas. You are briefed
that despite its bad financial condition, the recently fired CEO had planned to
increase Stardust’s market share by renovating every theater to include a bar,

an arcade, and a restaurant. Your task on the team is to assess whether this
renovation should he scrapped or included in a future value creation project. To
do so, you spend a long night fitting a trend + seasonal model to a sample of

T = 100 observations of Stardust’s recent box office income data. You find that
lhg- residuals (¢) from vour model ;1ppmxima(e]y follow ¢, = 0.5¢,_) + v,, where

i .
v, ~ N(0, 1). At 4 A vou send vour results to vour project manager.
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a. The next morning vou receive an e-mail from your project manager. He
thinks that vour residuals do not look like white noise. Why? Why care?

b. Assuming that the residuals do indeed follow ¢, = 0.5¢,_) + v,. what is their
autocorrelation function? Discuss.

c.  What oype of model might be useful for describing the historical path of box
office income and its likelv future path in the absence of renovations? How
would you use it to assess the efficacy of the renovation project, if
implemented?

(Selecting an emploviment forecasting model with the AIC and SIC) Use the AIC
and SIC to assess the necessity and desirability of including trend and seasonal
components in a forecasting model for Canadian emplovment.

a. Displav the AIC and SIC for a variety of specifications of trend and seasonality.
Which would vou select using the AIC? SIC? Do the AIC and SIC select the
same model? If not, which do vou prefer?

b. Discuss the estimation results and residual plot from vour preferred model,
and perform a correlogram analysis of the residuals. Discuss, in particular, the
patterns of the sample autocorrelations and partial autocorrelations, and
their statistical significance.

¢.  How, if at all, are vour results different from those reported in the textr Are
the differences important: Why or why not?

(Simulation of a time series process) Many cutting-cdge estimation and

forecasting techniques involve simulaton. Moreover, simulation is often a good

way to get a teel tor 1 model and its behavior. White noise can be simulated on a

computer using random number generators, which are available in most statistics,

econometrics, and forecasting packages.

a. Simulate a Gaussian white noise realization of length 200. Call the white noise
€;. Compute the correlogram, Discuss.

b. Form the distributed lag y, = €, + 0.9¢,_1,t =2, 3, ..., 200. Compute the
sample autocorrelations and partial autocorrelations. Discuss.

c. Letyy=landy =09y_;+8.1=23,...,200. Compute the sample
autacorrelations and partial autocorrelations. Discuss.

(Sample awtocorrelation functions for trending series) A telltale sign of the slowly

evolving nonstationarity associated with trend is a sample autocorrelation

function time=clemps extremely slowly.

a. Find three trending series, compute their sample autocorrelation functions,
and report vour results. Discuss,

b. Fit appropriate trend models, obtain the model residuals. compute their
sample autocorrelation functions, and report your results. Discuss.

. (Sample autocorrelation functions for seasonal series) A telltale sign of seasonality

is 4 sample autocorrelation function with sharp peaks at the seasonal displacemnents

(4, 8. 12, etc.. for quarterly data; 12, 24, 36, etc., for monthly data: etc.).

a. Find a series with both trend and seasonal variation. Compute its sample
autocorrelation function. Discuss.

b. Detrend the series. Discuss.

c¢. Compute the sample autocorrelation function of the detrended series. Discuss.

d. Seasonally adjust the detrended series. Discuss.

e. Compute the sample autocorrelation function of the detrended, seasonally-
adjusted series. Discuss.




Characterizing Cycles

11. (Volatility dynamics: correlograms of squares) In Chapter 4's Exercises, Problems,
and Complements, we suggested that a time series plot of a squared residual, ¢;,
can reveal serial correlation in squared residuals, which corresponds to
nonconstant volatility, or heteroskedasticity, in the levels of the residuals.
Financial asset returns often display litde systematic variation. so instead of
examining residuals from a model of returns, we often examine returns directly,
In what follows, we will continue (o use the notation ¢,, but you should interpret

#; as an observed asset return

a. Find a high-frequency (e.g., dailv) financial asset return series, ¢, plot it, and

discuss vour results.

h. Per fol m a correlogram analvsis of ¢, and discuss vour results.

c. Plm e, and discuss your xe\ults

d. In addition 10 plouing p, , examining the correlogram of e, often proves
informative for assessing volatility persistence. Why might that be so? Perform
Y9 A )
a correlogram analysis of ¢;, and discuss your resuits,

Bibliographical and Computational Notes

Wold's theorem was originally proved in a 1938 monograph. later revised as Wold
(1954). Rational distributed lags have long been used in engineering, and their use in
econometric modeling dates at least to Jorgenson (1966).

Bartlett (1946) derived the standard errors of the sample autocorrelations and
partial autocorrelations of white noise. In fact, the plus-or-minus two-standard-error

bands are often called the "Bartlett bands.™

The two variants of the Q-statistic that we introduced were developed in the 1970s
by Box and Pierce (1970) and by Ljung and Box (197R8). Some packages compute
both variants. and some compute only one (typically Ljung-Box, because it’s designed
to be morc accurate in small samples). [n practice. the Box-Pierce and Ljung-Box
statistics usually lead to the same conclusions.

For concise and insightful discussion of random number generation, as well as a
variety of numerical and computational techniques, see Press ef al. (1992).
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Autocovariance function
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Gaussian white noise
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Conditional mean and variance
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representation
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Analog principle

Sample mean

Sample autocorrelation function
Box-Pierce Q-statistic

Ljung-Box Q-statistic

Sample partial autocorrelation
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Simulation of a time series process
Random number gencrator
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Modeling Cycles: MA,
AR, and ARMA Models

When building forecasting models, we don’t want to pretend that the model
we fit is true. Instead, we want to be aware that we're approximating a more
complex reality. That's the modern view, and it has important implications for
forecasting. In particular, we've seen that the key to successful time series
modeling and forecasting is parsimonious, yet accurate, approximation of the
Wold representation. In this chapter, we consider three approximations: mov-
ing average (MA) models, autoregressive (AR) models, and autoregressive
moving average (ARMA) models. The three models vary in their specifics
and have different strengths in capturing different sorts of autocorrelation
behavior.

We begin by characterizing the autocorrelation functions and related
quantities associated with each model, under the assumption that the model is
“true.” We do this separately for MA, AR, and ARMA models.! These charac-
terizations have nothing to do with data or estimation, but thev're crucial for
developing a basic understanding of the properties of the models, which is
necessary to perform intelligent nodeling and forecasting. They enable us to

! Sometimes, especially when characterizing population properties under the assumption that the
models are correct, we refer 1o them as processes, which is short for stochastic processes—hence
the terms moving avevage process, autoregressive process, and ARMA process.
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make statements such as “If the data were really generated by an autoregres-
sive process, then we'd expect its autocorrelation function to have property x.”
Armed with that knowledge, we use the sample autocorrelations and partial
autocorrelations, in conjunction with the AIC and the SIC, to suggest candi-
date forecasting models. which we then estimate.

I N

I. Maving Average (MA) Models

The finite-order moving average process is a natural and obvious approxima-
tion to the Wold representation, which is an infinite-order moving average
process. Finite-order moving average processes also have direct motivation.
The fact that all variation in time series, one way or another, is driven by
shocks of various sorts suggests the possibility of modeling time series directly
as distributed lags of current and past shocks—that is, as moving average
processes.*

THE MA(1) PROCESS

The first-order moving average process, or MA(1) process, is
»= € + 98,_1 = (1 + BL)E,
g, ~ WN(Q, c?).

The defining characteristic of the MA process in general, and the MA(1) in
particular, is that the current value of the observed series is expressed as a
function of current and lagged unobservable shocks. Think of it as a regres-
sion model with nothing but current and lagged disturbances on the right-
hand side.

To help develop a feel for the behavior of the MA(1) process, we show two
simulated realizations of length 150 in Figure 8.1. The processes are

yi=£g+0.4g,_,4
and
)', =g, + 0.9581_1 »

where in each case g, X N(0, 1). To construct the realizations, we used the
same series of underlying white noise shocks: the only difference in the real-
izations comes from the different coefticients, Past shocks feed positively into
the current value of the series, with a small weight of 8 = 0.4 in one case and
a large weight of 8 = 0.95 in the other. You might think that # = 0.95 would in-
duce much more persistence than 8 = 0.4, but it doesn’t. The structure of the

? Economic equilibria, for example, may be disturbed by shocks that take some time to be fully
assimilated.
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MA(1) process, in which only the first lag of the shock appears on the right,
forces it to have a very short memory, and hence weak dynamics, regardless of
the parameter value.

The unconditional mean and variance are

E(y))=E@®€)+0EE_)=0
and
var(y,) = var(€,) + 8%var(e,) = a® + 8%¢” = 0% (1 + 6%).

Note that for a fixed value of o, as 0 increases in absolute value, so, too, does
the unconditional variance. That’s why the MA(1) process with parameter
6 = 0.95 varies a bit more than the process with a parameter of § = 0.4.

The conditional mean and variance of an MA(1), where the conditioning
information set is 2,_, = {&,_{, €,-9, . ..}, are

E(y Q1) =E@€ +0€) Q1) = E@€|2,21) +0EE€ -1 |2,-)) =08
and
var(y | Q1) = E((y — E(3 | R))2 10-1) = E(€] | Qi) = E(€]) = o*.

The conditional mean explicitly adapts to the information set, in contrast to
the unconditional mean, which is constant. Note, however, that only the first
lag of the shock enters the conditional mean—more distant shocks have no
effect on the current conditional expectation. This is indicative of the one-
period memory of MA(1) processes, which we'll now characterize in terms of
the autocorrelation function.
To compute the autocorrelation function for the MA(1) process, we must
first compute the autocovariance function. We have
2 =
Y() = E(3:y1-2) = E((& + BE1) (€17 +8Ec)) = l gf’ ' ;;e:wise _
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(The proof is left as a problem.} The autocorrelation function is just the auto-
covariance function scaled by the variance,

¥(1) 3
=—=11+86?
p(T) 70 0,+

otherwise .

The key feature here is the sharp cutoff in the autocorrelation function. All
autocorrelations are 0 beyond displacement 1, the order of the MA process.
In Figures 8.2 and 8.3, we show the autocorrelation functions for our two
MA(1) processes with parameters § = 0.4 and 6 = 0.95. At displacement 1,
the process with parameter 8 = 0.4 has a smaller autocorrelation (0.34)
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than the process with parameter 8 = 0.95 (0.50), but both drop to 0 beyond
displacement 1.

Note that the requirements of covariance stationarity (constant uncondi-
tional mean, constant and finite unconditional variance, autocorrelation
dependent only on displacement) are met for any MA(1) process, regardless of
the values of its parameters. If, moreover, |8] < 1. then we say that the MA(1)
process is invertible. In that case, we can “invert” the MA(1) process and ex-
press the current value of the series not in terms of a current shock and a
lagged shock but rather in terms of a current shock and lagged values of the
series. That's called an autoregressive representation. An autoregressive repre-
sentation has a current shock and lagged observable values of the series on the
right, whereas a moving average representation has a current shock and
lagged unobservable shocks on the right.

Let’s compute the autoregressive representation. The process is

¥ =€+ 0g_;

g, ~ WN(0, d?).
Thus, we can solve for the innovation as
g =9y —0g;.

Lagging by successively more periods gives expressions for the innovations at
various dates,

€1 = Y1 — 0y
€ 3= y-3 — €3
€3 = yr_s — 0€/_4,

and so forth. Making use of these expressions for lagged innovations, we can
substitute backward in the MA(1) process, yielding

»=€+ e_vl-l - 92»-2 + 93)1-—3 -

In lag operator notation, we write the infinite autoregressive representation as

——— =g
T+l "

Note that the back substitution used to obtain the autoregressive representa-
tion only makes sense, and in fact a convergent autoregressive representation
only exists, if |8] < 1, because in the back substitution we raise 8 to progres-
sively higher powers.

We can restate the invertibility condition in another way: The inverse of the
root of the moving average lag operator polynomial (1 + 8L) must be less than
1 in absolute value. Recall that a polynomial of degree m has m roots. Thus, the
MA(1) lag operator polynomial has one root, which is the solution to

1+6L=0.
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The root is L = —1/0, so its inverse will be less than 1 in absolute value if
|8] < 1, and the two invertibility conditions are equivalent, The “inverse root”
way of stating invertibility conditions seems tedious, but it turns out to be of
greater applicability than the 8] < 1 condition, as we'll see shortly.

Autoregressive representations are appealing to forecasters, because one
way or another, if a model is to be used for real-world forecasting, it must link
the present observables to the past history of observables, so that we can ex-
wrapolate to form a forecast of future observables based on present and past
observables. Superficially, moving average models don’t seem to meet that re-
quirement, because the current value of a series is expressed in terms of cur-
rent and lagged unobservable shocks, not observable variables. But under the
invertibility conditions that we've described, moving average processes have
equivalent autoregressive representations. Thus, aithough we wanr auto-
regressive representations for forecasting, we don’t have to start with an autore-
gressive model. However, we typically restrict ourselves to invertible processes,
because for forecasting purposes we want to be able to express current ob-
servables as functions of past observables.

Finally. let’s consider the partial autocorrelation function for the MA(1)
process. From the infinite autoregressive representation of the MA(1) process,
we see that the partial autocorrelation function will decay gradually to 0. As we
discussed in Chapter 7, the partial autocorrelations are just the coefficients on
the last included lag in a sequence of progressively higher-order autoregres-
sive approximations. If 8 > 0. then the pattern of decay will be one of damped
oscillation; otherwise, the decay will be one-sided.

In Figures 8.4 and 8.5 we show the partial autocorrelation functions for our
example MA(1) processes. For each process, |6( < 1, so that an autoregressive
representation exists, and 6 > 0, so that the coefficients in the autoregressive
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representations alternate in sign. Specifically, we showed the general autore-
gressive representation to be

Y =€+ 0y — 0%y 0+ 0y s — -,
so the autoregressive representation for the process with 8 = 0.4 is
Y =8+ 0.4y, — 0.42y,,2 +---=g+04y_, - 0.16y_9+ ---,
and the autoregressive representation for the process with 8 = 0.95 is
ye =€+ 0955, —0.95°y,_y + - =€ +0.95y,_; — 0.9025y, 5 + --- .

The partial autocorrelations display a similar damped oscillation.® The decay,
however, is slower for the § = 0.95 case.

THE MA(q) PROCESS

Now consider the general finite-order moving average process of order g, or
MA(¢) for short,

y=€+0g_ 1+ - +0,:8_, =0(L)
g ~ WN(O,a?),
where
O(Ly=1+6,L+---+6,L7

is a qth-order lag operator polvnomial. The MA(q) process is a natural gener-
alization of the MA(1). Bv allowing for more lags of the shock on the right side

3 Note, however, that the partial autucorrelations are nof the successive coefficients in the infinite
autoregressive representation. Rather. thev are the coefficients on the last included lag in se-
quence of progressively longer autorcgressions. The two are related but distinct.
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of the equation, the MA(q) process can capture richer dynamic patterns,
which we can potentially exploit for improved forecasting. The MA(1) process
is of course a special case of the MA(g), corresponding to ¢=1.

The properties of the MA(g) processes parallel those of the MA(1) process
in all respects, so in what follows we'll refrain from grinding through the math-
ematical derivations. Instead, we'll focus on the key features of practical im-
portance. Just as the MA(1) process was covariance stationary for any value of
its parameters, so, too, is the finite-order MA(q) process. As with the MA(1)
process, the MA(q) process is inwvertible only if a root condition is satisfied. The
MA(¢) lag operator polynomial has groots; when g > 1, the possibility of com-
plex roots arises. The condition for invertibility of the MA(q) process is that
the inverses of all of the roots must be inside the unit circle, in which case we
have the convergent autoregressive representation,

(;)_(L;yl =€.

The conditional mean of the MA(q) process evolves with the information
set, in contrast to the unconditional moments, which are fixed. In contrast to the
MA(1) case, in which the conditional mean depends on only the first lag of the
innovation, in the MA(q) case the conditional mean depends on ¢ lags of
the innovation. Thus, the MA(q) process has the potential for longer memory.

The potentially longer memory of the MA(¢) process emerges clearly in its
autocorrelation function. In the MA(1) case, all autocorrelations beyond dis-
placement 1 are 0; in the MA(g) case, all autocorrelations beyond displace-
ment ¢ are 0. This autocorrelation cutoff is a distinctive property of moving
average processes. The partial autocorrelation function of the MA(g) process,
in contrast, decays gradually, in accord with the infinite autoregressive repre-
sentation, in either an oscillating or a one-sided fashion, depending on the pa-
rameters of the process.

In closing this section, let’s step back for a moment and consider in greater
detail the precise way in which finite-order moving average processes approx-
imate the Wold representation. The Wold representation is

= B(L)el N

where B(L) is of infinite order. The MA(1), in contrast, is simply a first-order
moving average, in which a series is expressed as a one-period moving average
of current and past innovations. Thus, when we fit an MA(1) model, we're
using the first-order polvnomial 1 + 81, to approximate the infinite-order poly-
nomial B(L). Note that 1 + 0L is a rational polynomial with numerator poly-
nomial of degree 1 and degenerate denominator polynomial (degree 0).
MA (g) processes have the potential to deliver better approximations to the
Wold representation, at the cost of more parameters to be estimated. The
Wold representation involves an infinite moving average; the MA(g) process
approximates the infinite moving average with a finite-rder moving average,

»= @(L),,
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whereas the MA(1) process approximates the infinite moving average with
only a first-order moving average, which can sometimes be very restrictive.

NN
2. Autoregressive (AR) Models

The autoregressive process is also a natural approximation to the Wold repre-
sentation. We've seen, in fact, that under certain conditions a moving average
process has an autoregressive representation, so an autoregressive process is in a
sense the same as a moving average process. Like the moving average process, the
autoregressive process has direct motivation; it's simply a stochastic difference equa-
tion, a simple mathematical model in which the current value of a series is linearly
related to its past values, plus an additive stochastic shock. Stochastic difference
equations are a natural vehicle for discrete-time stochastic dynamic modeling.

THE AR(1) PROCESS

The first-order autoregressive process, AR(1) for short, is

=1+ &
g ~ WN(0,0?%).
In lag operator form, we write
(I —¢L)y, =¢.

In Figure 8.6 we show simulated realizations of length 150 of two AR(1)
processes; the first is

»= 0-4,71—1 + £,
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and the second is
y, = 0-95_7;_.] + E, y
iid

where in each case €, ~ N(0, 1), and the same innovation sequence underlies
each realization. The fluctuations in the AR(1) with parameter ¢ = 0.95 ap-
pear much more persistent that those of the AR(1) with parameter ¢ = 0.4.
This contrasts sharply with the MA(1) process, which has a very short memory
regardless of parameter value. Thus, the AR(1) model is capable of capturing
much more persistent dynamics than is the MA(1).

Recall that a finite-order moving average process is always covariance sta-
tionary but that certain conditions must be satisfied for invertibility, in which
case an autoregressive representation exists. For autoregressive processes,
the situation is precisely the reverse. Autoregressive processes are always
invertible—in fact, invertibility isn't even an issue, as finite-order autoregres-
sive processes already are in autoregressive form—but certain conditions must
be satisfied for an autoregressive process to be covariance stationary.

If we begin with the AR(1) process,

Y =®¥-1+E&,
and substitute backward for lagged y’s on the right side, we obtain
Y =€+ QE + Qe+

In lag operator form, we write

y,—l_(pL ' -

This moving average representation for y is convergent if and only if |¢| < I;
thus, |¢| < 1 is the condition for covariance stationarity in the AR(1) case.
Equivalently, the condition for covariance stationarity is that the inverse of the
root of the autoregressive lag operator polynomial be less than 1 in absolute
value.

From the moving average representation of the covariance stationary
AR(1) process, we can compute the unconditional mean and variance,

E(y)=E(@€ +¢€-1 + I TR S
= E(&,) + $E(&1) + 9*E(€,9) + - -
=0
and

var(y,) = var(e, + 9.1 + ¢*€,—2 + - - )

=o?+¢lo? +giot+ -

o0
=o,.’ E ‘p21

=0
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The conditional moments. in contrast, are
E(yily1)=E(@yr+&|y1)
=QE(y -1 | yi-1) + E(€ ) 3-1)
=¢@y1+0
= @¥-t
and
var(y| yi-1) = var(@y. -1 + & | yi-1)
= @™var(y,. | y-1) + var(& | y-1)
=0+0’
=o’.

Note in particular the simple way in which the conditional mean adapts to the
changing information set as the process evolves.
To find the autocovariances, we proceed as follows. The process is
Y =@y +E,
so that, multiplying both sides of the equation by y-; we obtain

Yi¥i—r = @Yi-1¥r-1 + €& Yi-r .
For 7 = 1, taking expectations of both sides gives

Y& = ey(m - 1).
This is called the Yule-Walker equation. It is a recursive equation; that is, given
¥(7), for any 7, the Yule-Walker equation immediately tells us how to get
Y(7+ 1). If we knew y(0) to start things off (an “initial condition”), we could use
the Yule-Walker equation to determine the entire autocovariance sequence. And
we do know y(0); it's just the variance of the process, which we already showed

to be y(0) = ﬁu . Thus, we have
2

o
0)=
¥(0) s
o
)=
W =1
) 2
2) = ¢ ,
Y2 =¢ ¢
and so on. In general, then,
y(ﬂ=xp*%, T=0,1,2,....
1 —¢*

Dividing through by vy(0) gives the autocorrelations,

pri=¢", 7v=01,2,....
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Note the gradual autocorrelation decay, which is typical of autoregressive
processes. The autocorrelations approach 0, but only in the limit as the dis-
placement approaches infinity. In particular, they don’t cut off to 0, as is the
case for moving average processes. If ¢ is positive, the autocorrelation decay is
one-sided. If ¢ is negative, the decay involves back-and-forth oscillations. The
relevant case in business and economiics is ¢ > 0, but either way, the autocor-
relations damp gradually, not abruptly. In Figures 8.7 and 8.8, we show the
autocorrelation functions for AR(1) processes with parameters ¢ = 0.4 and
¢ = 0.95. The persistence is much stronger when ¢ = 0.95, in contrast to the
MAC(1) case, in which the persistence was weak regardless of the parameter.
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Finally, the partial autocorrelation function for the AR(1) process cuts off
abruptly; specifically,
7=1
T>1

poy =18

It's easy to see why. The partial autocorrelations are just the last coefficients in
a sequence of successively longer population autoregressions. If the true
process is in fact an AR(1), the first partial autocorrelation is just the auto-
regressive coefficient, and coefficients on all longer lags are 0.

In Figures 8.9 and 8.10 we show the partiul autocorrelation functions for
our two AR(1) processes. At displacement 1, the partial autocorrelations are
simply the parameters of the process (0.4 and 0.95, respectively), and at longer
displacements, the partial autocorrelations are 0.
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THE AR(p) PROCESS

The general pth order autoregressive process, or AR(p) for short, is
=@Mt Qayiat T @Y+ E
g~ WN@O,0%) .
In lag operator form, we write
®(L)yy, =0 ~¢L— ‘P2L2 - ‘Ple‘)yr =E.

As with our discussion of the MA(g) process, in our discussion of the AR(p)
process, we dispense here with mathematical derivations and instead rely on
paraliels with the AR(1) case to establish intuition for its key properties.

An AR(p) process is covariance stationary it and only if the inverses of all
roots of the autoregressive lag operator polynomial ® (L) are inside the unit
circle.! In the covariance stationary case, we can write the process in the con-
vergent infinite moving average form

1
(L) €.

The autocorrelation function for the general AR(p) process, as with that of
the AR(1) process, decays gradually with displacement. Finally, the AR() par-
tial autocorrelation function has a sharp cutoff at displacement p. for the same
reason that the AR(1) partial autocorrelation function has a sharp cutoff at
displacement 1.

Let’s discuss the AR(p) autocorrelation function in a bit greater depth. The
key insight is that, in spite of the fact that its qualitative behavior (gradual
damping) matches that of the AR(1) autocorrelation function, it can never-
theless display a richer variety of patterns, depending on the order and para-
meters of the process. It can, for example, have damped monotonic decay, as
in the AR(1) case with a positive coefficient, but it can also have damped oscil-
lation in ways that AR(1) can’t have. In the AR(1) case. the only possible
oscillation occurs when the coefficient is negative, in which case the autocor-
relations switch signs at each successively longer displacement. In higher-order
autoregressive models, however, the autocorrelations can oscillate with much
richer patterns reminiscent of cycles in the more traditional sense. This occurs
when some roots of the autoregressive lag operator polynomial are complex.”

Consider, for example, the AR(2) process,

Y=

»= 1.5y1_| - O.gy/_;» + &, .

The corresponding lag operator polynomialis 1 — 1.5L + 0.9L*, with two com-
plex conjugate roots, 0.83 * 0.65.. The inverse roots are 0.75 + 0.58}, both of

* A necessary condition for covariance stationarity, which is often useful as a quick check, is
):f:] ¢; < L. If the condition is satisfied. the process may or mav nor be stationary: but if the con-
dition is violated, the process can’t be stationary.

® Nole that complex roots can’Loccur in the AR(1) case,




Modeling Gvcles: MA, AR. and ARMA Models 151
1.2r FIGURE 8.
Population
‘ Autocorrelation
0.8+ Function,
= AR(2) Process uith
% 045 Complex Rools
] il
E | i UU [JU
—0.4 r
|
_0'8 | 1 1 1 1 1 1 1 i 1 1 1 i il 1 - L 1 i i 1 1 1 i L i L ]

2 4 6 8 10 12 4 16 18 20
Displacement

22 24 26 28 30

which are close to, but inside, the unit circle; thus, the process is covariance
stationary. It can be shown that the autocorrelation function for an AR(2)
process is
p0) =1
P
1)=
p(l) T
p(r) =@ p(r — 1) + @up( — 2),

1=2,3....

Using this formula, we can evaluate the autocorrelation function for the
process at hand; we plot it in Figure 8.11. Because the roots are complex, the
autocorrelation function oscillates, and because the roots are close to the unit
circle, the oscillation damps slowly.

Finally, let's step back once again to consider in greater detail the precise
way that finite-order autoregressive processes approximate the Wold repre-
sentation. As always, the Wold representation is

= B(L),,

where B(/l) is of infinite order. The AR(1), as compared to the MA(1), is sim-
ply a different approximation to the Wold representation. The moving aver-
age representation associated with the AR(1) process is

‘ 1

= 1—o Lsr-
Thus, when we fit an AR(1) model, we're using T—_]tP_Z’ a rational polynomial
with degenerate numerator polvnomial (degree 0) and denominator polyno-
mial of degree 1. to approximate B(L). The moving average representation
associated with the AR(1) process is of infinite order, as is the Wold represen-
tation, but it does not have infinitely many free coefficients. In fact, only one
parameter, ¢, underlies it.
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The AR(p) is an obvious generalization of the AR(1) strategy for approxi-
mating the Wold representation. The moving average representation associ-
ated with the AR(p) process is

o1

Y=o
When we fit an AR(p) model to approximate the Wold representation we're
still using a rational polvnomial with degenerate numerator polynomial
(degree 0), but the denominator polynomial is of higher degree.

NN
3. Autoregressive Maving Average (ARMA) Models

Autoregressive and moving average models are often combined in attempts to
obtain better and more parsimonious approximations to the Wold repre-
sentation, yielding the autoregressive moving average process, ARMA(p, g¢)
process for short. As with moving average and autoregressive processes, ARMA
processes also have direct motivation.® First, if the random shock that drives an
autoregressive process is itself a moving average process, then it can be shown
that we obtain an ARMA process. Second. ARMA processes can arise from ag-
gregation. For example, sums of AR processes, or sums of AR and MA
processes, can be shown to be ARMA processes. Finally, AR processes observed
subject to measurement error also turn out to be ARMA processes.

The simplest ARMA process that's not a pure autoregression or pure mov-
ing average is the ARMA(1, 1), given by

Y =@y +& +0g_y
g ~ WN(O,0%),
or, in lag operator form,
(1—¢L)y,=(1+06L)k,,

where |8] < 1 is required for stationarity and 8] < 1 is required for invert-
ibility.” If the covariance stationarity condition is satisfied. then we have the
moving average representation

_(+eL)

=0=eh _‘PL_)e,.

which is an infinite distributed lag of current and past innovations. Similarly,
if the invertibility condition is satisfied, then we have the infinite autoregres-
sive representation,

b

% For more extensive discussion, see Granger and Newbold (1986)

7 Both stationarity and invertibility need to be checked in the ARMA case, because both aute-
regressive and moving average components are present.
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The ARMA(p, 9) process is a natural generalization of the ARMA(1, 1) that
allows for multiple moving average and autoregressive lags. We write

V=@ oy + e (ppy‘_p-}-E,-i-e]E‘k[ + -+ 0,,8,-,,
& ~ WN(0,0?),

or
®(L)y, = O(L)e,,
where
S(L)y=1—@ L—@, L — -+ — @, L*
and

OWL)=14+6L+6,L*+--- +8,L".

If the inverses of all roots of @ (L) are inside the unit circle, then the process is co-
variance stationary and has convergent infinite moving average representation

)
)'—(P(L)

El.

If the inverses of all roots of @ (L) are inside the unit circle, then the process is
invertible and has convergent infinite autoregressive representation

o(L)
om ="

As with autoregressions and moving averages, ARMA processes have a fixed
unconditional mean but a time-varving conditional mean. In contrast to pure
moving average or pure autoregressive processes, however, neither the auto-
correlation nor partial autocorrelation functions of ARMA processes cut off at
any particular displacement. Instead, each damps gradually, with the precise
pattern depending on the process.

ARMA models approximate the Wold representation by a ratio of two
finite-order lag operator polynomials, neither of which is degenerate. Thus,
ARMA models use ratios of full-fledged polynomials in the lag operator to
approximate the Wold representation,

ARMA models, by allowing for both moving average and autoregressive com-
ponents, often provide accurate approximations to the Wold representation
that nevertheless have just a few parameters. That is, ARMA models are often
both highly accurate and highlv parsimonious. In a particular situation, for ex-
ample, it might take an AR(5) to get the same approximation accuracy as
could be obtained with an ARMA(2, 1), but the AR(5) has five parameters to
be estimated, whereas the ARMA(2, 1) has only three.
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4. Application: Specifying and Estimating Models
for Emplayment Forecasting

In Chapter 7, we examined the correlogram for the Canadian employment
series, and we saw that the sample autocorrelations damp slowly and the sam-
ple partial autocorrelations cut off, just the opposite of what's expected for a
moving average. Thus, the correlogram indicates that a finite-order moving
average process would not provide a good approximation to employment dy-
namics. Nevertheless, nothing stops us from fitting moving average models, so
let's fit them and use the AIC and the SIC to guide model selection.

Moving average models are nonlinear in the parameters; thus, estimation
proceeds by nonlinear least squares (numerical minimization). The idea is the
same as when we encountered nonlinear least squares in our study of non-
linear trends—pick the parameters to minimize the sum of squared residuals—
but finding an expression for the residual is a little bit trickier. To understand
why moving average models are nonlinear in the parameters, and to get a feel
for how they’re estimated, consider an invertible MA(1) model, with a
nonzero mean explicitly included for added realism,

V1=“'+El+e£,_| .

Substitute backward m times to obtain the autoregressive approximation

y = +0y =0y a4+ (=1)"0"y,_, +E,.

1+6 + ]
Thus, an invertible moving average can be approximated as a finite-order
autoregression. The larger is m, the better the approximation. This lets us
(approximately) express the residual in terms of observed data, after which we
can use a computer to solve for the parameters that minimize the sum of
squared residuals,

2
iL, 0 —argmmz: (y, (1 :L_e +0y-1 — 0%y u+ -+ (=D)"E"y,_ n))

ph 1=1

"

T

2 Z ( - (’— + Oy,-n - O Y2+ -+ (—1)"”] émyl-..)> .
=1
The parameter estimates must be found using numerical optimization meth-
ods, because the parameters of the autoregressive approximation are re-
stricted. The coefficient of the second lag of y is the square of the coefficient
on the first lag of ¥, and so on. The parameter restrictions must be imposed in
estimation, which is why we can’t simply run an ordinary least-squares regres-
sion of yon lags of itself.

The next step would be to estimate MA(q) models, g =1, 2, 3, 4. Both the
AIC and the SIC suggest that the MA(4) is best. To save space, we report only
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LS // Dependent variable is CANEMP. TABLE 8.1
Sample: 1962:1 1993:4 Employment MA(4)
Included observations: 128 Model
Convergence achieved after 49 iterations

Variable Coefficient Std. Error t-Statistic Prob.

C 100.5438 0.843322 119.2234 0.0000

MA(1) 1.587641 0.063908 24.84246 0.0000

MA(2) 0.994369 0.089995 11.04917 0.0000

MA(3) -0.020305 0.046550 —0.436189 0.6635

MA(4) —0.298387 0.020489 —14.56311 0.0000

R? 0.849951 Mean dependent var. 101.0176

Adjusted R? 0.845071 SD dependent var. 7.499163

SE of regression 2.951747 Akaike info criterion 2.203073

Sum squared resid. 1071.676 Schwarz criterion 2.314481

Log likelihood —317.6208 Fstatistic 174.1826

Durbin-Watson stat. 1.246600 Prob(F-statistic) 0.000000

Inverted MA roots 41 —.56 + .72i —.56 ~ .72i —-.87

the results of MA(4) estimation in Table 8.1. The results of the MA(4) estima-
tion, although better than lower-order MAs, are nevertheless poor. The R? of
0.84 is rather low, for example, and the Durbin-Watson statistic indicates that
the MA(4) model fails to account for all the serial correlation in employment.
The residual plot, which we show in Figure 8.12, clearly indicates a neglected
cycle, an impression confirmed by the residual correlogram (Table 8.2 and
Figure 8.13).

120 FIGURE 812
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TABLE B 2 Sample: 1962:1 1993:4
Employment MA(4)  Included observations: 128
Model, Residual Q-statistic probabilities adjusted for 4 ARMA term(s)

Correlogram Acorr. P. Acorr. Std. Error Ljung-Box p-value
1 0.345 0.345 .088 15.614
2 0.660 0.614 .088 73.089
3 0.534 0.426 .088 111.00
4 0.427 —-0.042 .088 135.49
5 0.347 -0.398 .088 151.79 0.000
6 0.484 0.145 .088 183.70 0.000
7 0.121 -0.118 .088 185.71 0.000
8 0.348 —0.048 .088 202.46 0.000
9 0.148 —0.019 .088 205.50 0.000
10 0.102 -0.066 088 206.96 0.000
11 0.081 —0.098 088 207.89 0.000
12 0.029 —-0.113 .088 208.01 0.000

If we insist on using a moving average model, we'd want to explore orders
greater than 4, but all the results thus far indicate that moving average
processes don’t provide good approximations to employment dynamics. Thus,
let’s consider alternative approximations, such as autoregressions. Auto-
regressions can be conveniently estimated by ordinary least-squares regres-
sion. Consider, for example, the AR(1) model,

G =¢(—p)+e
& ~ WN(0,c%).
We can write it as
y=c+ey-+E§,
where ¢ = u(1 — ¢). The leasi-squares estimators are

,
¢, ¢ = argmin E(y, —c—@y1)

re =1

a1 . .

o =7Z()l-(—‘9)t—l)2-
=1

The implied estimate of w is i = ¢/(1 — ). Unlike the moving average case,
for which the sum-of-squares function is nonlinear in the parameters,
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requiring the use of numerical minimization methods, the sum of squares
function for autoregressive processes is linear in the parameters, so that esti-
mation is particularly stable and easy. In the AR(1) case, we simply run an or-
dinary least-squares regression of y on one lag of y; in the AR(p) case, we
regressy on p lags of y.

We estimate AR(f) madels, p =1, 2, 3, 4. Both the AIC and the SIC suggest
that the AR(2) is best. To save space, we report only the results of AR(2)
estimation in Table 8.3. The estimation results look good, and the residuals
(Figure 8.14) look like white noise. The residual correlogram (Table 8.4 and
Figure 8.15) supports that conclusion.

Finally, we consider ARMA(p, q) approximations to the Wold representa-
tion. ARMA models are estimated in a fashion similar to moving average

FIGURE B.13
Employment MA(4)
Model: Residual
Sample
Autocorrelation
and Partial
Autocorrelation
Functions, with
Plus or Minus Two-
Standard-Error
Bands
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TABLE B 3 LS // Dependent variable is CANEMP.

Employment AR(2)  Sample: 1962:1 1993:4

Model Included observations: 128

Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.
c 101.2413 3.399620 29.78017 0.0000
AR(1) 1.438810 0.078487 18.33188 0.0000
AR(2) —0.476451 0.077902 —6.116042 0.0000
R? 0.963372 Mean dependent var. 101.0176
Adjusted R? 0.962786 SD dependent var. 7.499163
SE of regression 1.446663 Akaike info criterion 0.761677
Sum squared resid. 261.6041 Schwarz criterion 0.828522
Log likelihood —227.3715 Fstatistic 1643.837
Durbin-Watson stat. 2.067024 Prob(Fstatistic) 0.000000
Inverted AR roots 92 .52

models; they have autoregressive approximations with nonlinear restrictions
on the parameters, which we impose when doing a numerical sum of squares
minimization. We examine all ARMA(p, q) models with p and g less than or
equal to 4; the SIC and AIC values appear in Tables 8.5 and 8.6. The SIC se-
lects the AR(2) (an ARMA(2, 0)), which we've already discussed. The AIC,
which penalizes degrees of freedom less harshly, selects an ARMA(3, 1) model.

FIGURE B.14
Employment AR(2)
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Sample: 1962:1 1993:4 TABLE 8 4
Included observations: 128
Q-statistic probabilities adjusted for 2 ARMA term (s) %ﬁﬁ?%ﬁ-ﬁiﬁz{z)
Acorr, P. Acorr. Std. Error Ljung-Box pvalue Correlogram
1 —0.035 —0.035 .088 0.1606
2 0.044 0.042 .088 0.4115
3 0.011 0.014 088 0.4291 0.512
4 0.051 0.050 .088 0.7786 0.678
5 0.002 0.004 .088 0.7790 0.854
6 0.019 0.015 .088 0.8272 0.935
7 -0.024 -0.024 .088 0.9036 0.970
8 0.078 0.072 .088 1.7382 0.942
9 0.080 0.087 .088 2.6236 0918
10 0.050 0.050 088 2.9727 0.936
11 —0.023 —0.027 .088 3.0504 0.962
12 —-0.129 -0.148 .088 5.4385 0.860
MA Order TABLE RS
Employment AIC
0 1 2 3 4 Values, Various
0 2.86 2.32 2.47 2.20 ARMA Models
1 1.01 0.83 0.79 0.80 0.81
AR Order 2 0.762 0.77 0.78 0.80 0.80
3 0.77 0.761 0.77 0.78 0.79
4 0.79 0.79 0.77 0.79 0.80
MA Order TABLE B B
Employment SIC
0 1 2 3 4 Values, Various
0 291 2.38 2.56 2.31 ARMA Models
1 1.05 0.90 0.88 0.91 0.94
AR Order 2 0.83 0.86 0.89 0.92 0.96
3 0.86 0.87 0.90 0.94 0.96
4 0.90 0.92 0.93 0.97 1.00
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FIGURE B.I15
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Model: Residual
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Standard-Error
Bands
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The ARMA(3, 1) model looks good: the estimation results appear in Table 8.7,
the residual plot in Figure 8.16, and the residual correlogram in Table 8.8 and
Figure 8.17.

Although the ARMA(3, 1) looks good, apart from its lower AIC, it looks no
better than the AR(2), which basically seemed perfect. In fact, there are at least
three reasons to prefer the AR(2). First, for the reasons discussed in Chapter 5,
when the AIC and the SIC disagree, we recommend using the more parsimo-
nious model selected by the SIC. Second, if we consider a model selection strat-
egy involving examination of not just the AIC and SIC but also autocorrela-
tions and partial autocorrelations, which we advocate, we're led to the AR(2).
Finally, and importantly, the impression that the ARMA(3, 1) provides a richer
approximation to employment dynamics is likely spurious in this case. The
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LS // Dependent variable is CANEMP.
Sample: 1962:1 1993:4

Included observations: 128
Convergence achieved after 17 iterations

Variable Coefficient Std. Error t-Statistic Prob.
C 101.1378 3.538602 28.58130 0.0000
AR(1) 0.500493 0.087503 5.719732 0.0000
AR(2) 0.872194 0.067096 12.99917 0.0000
AR(3) —0.4433%55 0.080970 ~5.475560 0.0000
MA(1) 0.970952 0.035015 27.72924 0.0000
R? 0.964535 Mean dependent var. 101.0176
Adjusted R? 0.963381 SD dependent var. 7.499163
SE of regression 1.435043 Akaike info criterion 0.760668
Sum squared resid. 253.2997 Schwarz criterion 0.872076
Log likelihood —225.3069 Fstatistic 836.2912
Durbin-Watson stat. 2.057302 Prob (fstatistic) 0.000000
Inverted AR roots .93 .51 —.94
Inverted MA roots -.97

ARMA(3, 1) has a inverse autoregressive root of —0.94 and an inverse moving
average root of —0.97. Those roots are of course just estimates, subject to sam-
pling uncertainty, and are likely to be statistically indistinguishable from one
another, in which case we can cancel them, which brings us down to an
ARMA(2, 0), or AR(2), model with roots virtually indistinguishable from those

TABLE B.7
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TARLE B R
Employment
ARMA(3, 1) Model,
Residual

Sample: 1962:1 1993:4
Included observations: 128
Qsstatistic probabilities adjusted for four ARMA term(s)

Correlogram Acorr. P. Acorr. Std. Error Ljung-Box p-value
1 -0.032 —0.032 09 0.1376
2 0.041 0.040 09 0.3643
3 0.014 0.017 09 0.3904
4 0.048 0.047 - 0.6970
5 0.006 0.007 .09 0.7013 0.402
6 0.013 0.009 .09 0.7246 0.696
7 -0.017 —0.019 09 0.7650 0.858
8 0.064 0.060 . 1.3384 0.855
9 0.092 0.097 .09 25182 0.774
10 0.039 0.040 . 2.7276 0.842
11 -0.016 —-0.022 .09 2.7659 0.906
12 -0.187 =0.153 .09 5.4415 0.710
FIGURE 87 0.2 -

Employment
ARMA(3, 1) Model:
Residual Sample
Autacorrelation

and Partial
Autocorrelation
Functions, with
Plus or Minus Two-
Standard-Error
Bands

162

Sample Autocorrelation

Sample Partial Autocorrelation

0.1

0.0

=0.1

0.2

0.1

0.0

-0.1

-0.2

1 1 1 L L L A i L 1 1 L
1 2 3 4 5 6 7 8 9 10 11 12
Displacement
MR S
1 2 3 4 5 6 7 8 9 10 11 12
Displacement




Modeling Cycles: MA, AR. and ARMA Models

of our earlier-estimated AR (2) process! We refer to this situation as one of com-
mon factors in an ARMA model. Be on the lookout for such situations, which
arise frequently and can lead to substantial model simplification.

Thus, we arrive at an AR(2) model for employment. In the next chapter,

we'll learn how to use it to produce point and interval forecasts.

Exercises, Problems, and Complements

1.

2.

(ARMA lag inclusion) Review Table 8.1. Why is the MA(3) term included even
though the pvalue indicates that it is not significant? What would be the costs and
benefits of dropping the insignificant MA(3) term?

(Shapes of correlograms) Given the following ARMA processes, sketch the
cxpected forms of the autocorrelation and partial autocorrelation functions.
(Hint: Examine the roots of the various autoregressive and moving average lag
operator polynomials.)

1
. M= > | €
a (1 ~1.05L — 0.091}) :

b, y = (1-0.4L)%,

1
. = (']—_sz)ap.

(The autocovariance function of the MA(1) process, revisited) In the text, we
wrote

602, 1=1

YY) = E(yi Y1) = E((€ + 0€1-1 ) (€1— + B2 _1)) = {0. otherwise .

Fill in the missing steps by evaluating explicitly the expectation
E((e, + 8g,-1) (/-1 + 8€,_,_))).

(ARMA algebra) Derive expressions for the autocovariance function,
autocorrelation function, conditional mean, unconditional mean, conditional
variance, and unconditional variance of the following processes:

a. y=p+8€+ 011+ 68,2

b. ¥y =@y_1+8&+0g

(Diagnostic checking of model residuals) If a forecasting model has extracted
all the systematic information from the data, then what's left—the residual—
should be white noise. More precisely, the true innovations are white noise,
and if a model is a good approximation to the Wold representation, then its
I-step-ahead ftorecast errors should be approximately white noise. The model
residuals are the in-sample analog of out-of-sample 1-step-ahead forecast
errors—hence the usefulness of various tests of the hypothesis that residuals
are white noise.

The Durbin-Watson test is the most popular. Recall the Durbin-Watson test
statistic, discussed in Chapter 2,
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Thus,
W= 2(1 —p(1),

so that the Durbin-Watson test is effectively based only on the first sample

autocorrelation and really only tests whether the first autocorrelation is 0. We

say therefore that the Durbin-Watson is a test for first-order serial correlation. In

addition, the Durbin-Waltson test is not valid in the presence of lagged dependent

variables.® On both counts, we'd like a more general and flexible framework for
diagnosing serial correlation. The residual correlogram, comprised of the
residual sample autocorrelations, the sample partial autocorrelations, and the
associated Q-statistics, delivers the goods.

a. When we discussed the correlogram in the text, we focused on the case of an
observed time series. in which case we showed that the Q-statistics are
distributed as x,,, Now, however, we want to assess whether unobserved model
disturbances are white noise. To do so, we use the model residuals, which are
estimates of the unobserved disturbances. Because we fit a model to get the
residuals, we need to account for the degrees of frcedom used. The upshot
is that the distribution of the Q-statistics under the white noise hypothesis is
belter approximated by a x:,_,‘ random variable, where £ is the number of
parameters estimated. That's why, for example, we don’t report (and in fact
the software doesn't compute) the pvalues for the (statistics associated with
the residual correlogram of our employment forecasting model until m > &,

b. Durbin’s A-test is an alternative to the Durbin-Watson test. As with the Durbin-
Watson test, it’s designed to detect first-order serial correlation, but it’s valid
in the presence of lagged dependent variables. Do some background reading
on Durbin's Atest, and report what you learned.

c. The Breusch-Godfrey test is another alternative to the Durbin-Watson test. It’s
designed to detect pth-order serial correlation, where p is selected by the user,
and is also valid in the presence of lagged dependent variables. Do some
background reading on the Breusch-Godfrey procedure, and report what you
learned.

d. Which do you think is likely to be most useful to you in assessing the
propertes of residuals from forecasting models: the residual correlogram,
Durbin's Atest, or the Breusch-Godfrey test? Why?

® Following standard, if not strictly appropriate, practice, in this book we often report and exam-
ine the Durbin-Watson statistic even when lagged dependent variables are included. We always
supplement the Durbin-Watson statistic, however, with other diagnostics such as the residual cor-
relogram, which remain valid in the presence of lagged dependent variables and which almost
always produce the same inference as the Durbin-Watson satistic.
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6.

(Mechanics of fitting ARMA models) The book’s web page presents data for daily

transfers over BankWire, a financial wire transfer system in a country responsible

for much of the world’s finance, over a recent span of 200 business days.

a. Is trend or seasonality operative? Defend vour answer.

b. Using the methods developed in Chapters 7 and 8, find a parsimonious
ARMA(p, ¢) model that fits well. and defend its adequacy.

(Modeling cvclical dvnamics) As a research analvst at the U.S. Department of

Energy. you have been asked 1o model nonseasonally adjusted U.S. imports of

crude oil.

a. Find a suitable time series on the web.

b. Create a model that captures the trend in the series.

c. Adding to the model from part b, create a model with trend and a full set of
seasonal dummy variables.

d. Observe the residuals of the model from part & and their correlogram. Is
there evidence of neglected dyvnamics? 1If so, what to do?

(Aggregation and disaggregation: top-down forecasting model vs. bottom-up
forecasting model) Rclated to the issue of methods and complexity discussed in
Chapter 3 is the question of aggregation. Often we want to forecast an aggregate,
such as total sales of' a manufacturing firm, but we can take either an aggregated
or disaggregated approach.

Suppose. for exampile, that total sales is composed of sales of three products. The
aggregated, or top-down or macro, approach is simply to model and forecast total
sales. The disaggregated, or bottom-up or micro, approach is to mode] and forecast
separatcly the sales of the individual products and then to add them together.

Perhaps surprisingly, it’s impossible to know in advance whether the aggregated
or disaggregated approach is bertter. It all depends on the specifics of the
situation; the only way to tell is (o try hboth approaches and compare the
forecasting results.

However, in veal-world situations characterized by likelv model misspecification
and parameter estimation uncertainty, there are reasons to suspect that the
aggregated approach may be preferable. First, standard (e.g., lincar) models fit o
aggregated series may be less prone to specification error, because aggregation
can produce approximately linear relationships even when the underlving
disaggregated relationships are not linear. Second, if the disaggregated series
depends in part on a common factor (e.g., general business conditions), then it
will emerge more clearly in the aggregate data. Finally, modeting and forecasting
ol one aggregated series, as opposed to manv disaggregated scries, rely on far
fewer parameter cstimates.

Of course, if our interest centers on the disaggregated components, then we
have no choice but 10 take a disaggregated approach.

Tt is possible that an aggregate forecast may be useful in forecasting
disaggregated series. Whve (Hint: See Fildes and Stekler, 2000.)

(Nonlinear forecasting models: regime switching) In this chapter, we've studied
dynamic linear models, which are wemendously important in practice. Thev're
called linear because v, is a simple linear function of past y's or past €'s. In some
forecasting situations, however. good statistical characterization of dynamics may
require some notion of regime switching, as between “good” and “bad” states.
which is a type of nonlinear model.
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Models incorporating regime switching have a long tradition in business cycle
analvsis, in which expansion is the good state, and contraction (recession) is the
bad state. This idea is also manifest in the great interest in the popular press; for
example, in identitving and forecasting turning points in economic activiwy, It is
only within a regime-switching framework that the concept of a wrning point has
intrinsic meaning; wurning points are naturally and immediately defined as the
times separating expansions and contractions.

Threshold models are squarely in line with the regime-switching wadition. The
following threshold model, for example, has three regimes, two thresholds, and a
d-period delay regulating the switches:

PRULR ¢(u)).’_] + Eﬁ"’. oM L Vr—d
= ™4 9™y, +e$"‘" 9" <« Srod < O

[}
oy +«p‘”)’;-| + E} ) o = Yi-d -

The superscripts indicate “upper,” “middle,” and “lower” regimes, and the regime
operative at any time { depends on the observable past history of y—in particular,
on the value of y,_,.

Although observable threshold models are of interest, models with latent (or
unobservable) states as opposed to observed states may be more appropriate in
many business, economic, and finmancial contexts. In such a setup, time series
dvnamics are governed by a linite<dimensional parameter vector that switches
(potentially each period) depending on which of two unobservable states is
realized, with state transitions governed by a first-order Markov process (meaning
that the state at any time { depends only on the state at time ( — 1, not at time
1—2,1—3 ewc.).

To make matters concrete, let's take a simple example. Let {5}, be the
(latent) sample path of a two-state hirst-order autoregressive process, taking just
the two values 0 or 1. with the transition probability matrix given by

M= ( oo 1- hx)) .
1-fm pu

The ijth element of M gives the probability of moving from srate i (at time £ — 1)
to state j (at time #). Note that there are only two free parameters. the staving
probabilities, i and pr;. Let{y/}[, be the sample path of an observed time
series that depends on {s;}_, such that the density of y, conditional on s, is

_(_\'r - “’11)2 )

\ 1
SO 550) = == cxp( 367

Thus, y, is Gaussian white noise with a potentially switching mean. The two
means around which y, moves are of particular interest and may, for example,
correspond to episodes of differing growth rates (*booms” and “recessions,”
“bull” and “bear” markets, etc.).

(Difficulties with nonlinear optimization) Nonlinear optimization is a tricky
business, fraught with problems. Some eve-opening reading includes Newbold,
Agiakloglou, and Miller (1994) and McCullough and Vinod (1999).
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Some problems are generic. It's relatively easy to tind a local optimum, tor
example, but much harder o be confident that the local optimum is global.
Simple checks such as trving a variety of startup values and checking the
optimum to which convergence occurs are used routinely, but the problem
nevertheless remains. Other problems may be software specific. For example,
some software mav use highly accurate analytic derivatives, whereas other
software uses approximate numerical derivatives. Even the same software
package may change algorithms or details of implementation across versions,
leading to different results. Software for ARMA model estimation is unavoidably
exposed 10 all such problems, because estimation of anv model involving MA
terms requires numerical optimization of a likelihood or sum-of-squares
function.

Bibliographical and Computational Notes

Characterization of time series by meuans of autoregressive. moving average, or ARMA
models was suggested, more or less simultaneously, by the Russian statistician and
economist E. Slutsky and the British statistician G. U. Yule. Slutskv (1927) remains a
classic. The Slutsky-Yule framework was modernized, extended, and made part of an
innovative and operational modeling and forecasting paradigm in a more recent
classic, a 1970 book by Box and Jenkins, the latest edition of which is Box, Jenkins.
and Reinsel (1994). In fact, ARMA and related models are ofien called Box-Jenkins
models.

Granger and Newbold (1986) contains more detailed discussion of 1 number of
topics that arose in this chapter, including the idea of moving average processes as
describing economic equilibrium disturbed by transient shocks. the Yule-Walker
equation, and the insight that aggregation and measurement error lead nauurally to
ARMA processes.

The sample autocorrelations and partial autocorrelations, 1ogether with related
diagnostics, provide graphical aids to model selection that complement the Akaike
and Schwarz information criteria iniroduced earlier. Not long ago, the sample
autocorrelation and partial autocorrelation functions were often used alone to guide
forecast model selection, a tricky business that was more art than science. Use of the
Akaike and Schwarz criteria resulis in more svstematic and replicable model
selection, but the sample autocorrelation and partial autocorrelation functions
nevertheless remain important as basic graphical summaries of dynamics in time
series data. The two approaches are complements, not substitutes.

Our discussion of estimation was a bit fragmented; we discussed estimation of
moving average and ARMA models using nonlinear least squares, whereas we
discussed estimation of autoregressive models using ordinary least squares. A more
unified approach proceeds by writing each model as a regression on an intercept,
with a serially correlated disturbance. Thus, the moving average model is

=R + €
E, = O(L),
v, ~ WN(O, o),
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the autoregressive model is
y=u+E
S(L)E, = v,
v, ~ WN(,a%),
and the ARMA model is
w=ptg
O (L), = O(L)y,
v, ~ WN(@O.0%).

We can estimate each model in identical fashion using nonlinear least squares.
Eviews and other forecasting packages proceed in precisely that way.”

This framework—regression on a constant with serially correlated disturbances—
has a number of attractive features. First, the mean of the process is the regression
constant term.!” Second, it leads us naturally toward regression on more than just a
constant, as other right-hand-side variables can be added as desired. Finally, it exploits
the fact that because autoregressive and moving average models are special cases of the
ARMA model, their estimation is also a special casc of estimation of the ARMA model.

Our description of estimating ARMA models—compute the autoregressive
representation, truncate it, and estimate the resulting approximate model by
nonlinear least squares—is conceptually carrect but intentionally simplificd. The
actual estimation methods implemented in modern software are more sophisticated,
and the precise implementations varv across software packages. Beneath it all,
however, all estimation methods are closely related to our discussion, whether
implicitly or explicitly. You should consult your software manual for details.
(Hopetully they're provided!)

Pesaran, Pierse, and Kumar (1989) and Granger (1990) study the question of top-
down versus bottom-up forecasting. For a comparative analvsis in the context of
torecasting Eurc-area macroeconomic activity, see Stock and Watson (2003).

Our discussion of regime-switching models draws heavilv on Diebold and
Rudebusch (1996). Tong (1983) is a kev reference on abservable-state threshold
models, as is Hamilton (1989) for latent-state threshold maodels. There are a number
of extensions of those basic regime-switching models of potential interest for
torecasters, such as allowing for smooth as opposed to abrupt transitions in threshold
models with observed states (Granger and Terdsvirta, 1993) and allowing for time-
varving transition probabilities in threshold models with latent stares (Diebold, Lee,
and Weinbach, 1994).

Concepts for Review

Moving Average (MA) model Stochastic process

Autoregressive (AR) modcl MA(1) process

Autoregressive moving average (ARMA) Cutoft in the autocorrelation function
model Invertibility

¥ That's why, for example, information on the number of iicrations required for convergence is
presented even for estimation of the autoregressive model.

" Hence the notation "u" for the intercept.
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Autoregressive representation Breusch-Godfrey test

MA(q) process Aggregation

Complex roots Disaggregation

Condition for invertibility of the MA(¢) Top-down forecasting model
Yule-Walker equation Bouom-up forecasting model
AR(p) process Linear model

Condition for covariance stationarity Nonlinear model

ARMA(p, g) process Regime switching

Common factors Threshold model

First-order serial correlation Box-Jenkins model

Durbin’s A-test
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Forecasting Cycles

R O T
|. Dptimal Forecasts

By now you've gotten comfortable with the idea of an information set. Here
we'll use that idea extensively. We denote the time 7 information set by Q. At
first pass it seems most natural to think of the information set as containing
the available past history of the series,

Qr={ryr-nyr-2...},
where, for theoretical purposes, we imagine history as having begun in the in-
finite past.
So long as y is covariance stationary, however, we can just as easily express
the information available at time 7 in terms of current and past shocks,
Qr={en&r-1,€7-2,.. .} .
Suppose, for example, that the process to be forecast is a covariance stationary
AR(1),
Y =®y-1+E.
Then immediately,
Er=Jyr—@ir-
€r-1 = Y1-1 — @Yr-2
€72 = Yr-2 — @yr-3,
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and so on. In other words, we can figure out the current and lagged €’s from
the current and lagged y's. More generally, for any covariance stationary and
invertible series, we can infer the history of € from the history of y and the his-
tory of y from the history of €.

Assembling the discussion thus far, we can view the time-T information set
as containing the current and past values of yand g,

Qr=1{yr yr-1, y7-2> - -, E7, Er_1, E7_ps .. .} .
Based on that information set, we want to find the optimal forecast of y at
some future time T + k. The optimal forecast is the one with the smallest loss
on average—that is, the forecast that minimizes expected loss. It turns out that
under reasonably weak conditions, the optimal forecast is the conditional
mean, E(yr., | 7), the expected value of the future value of the series being
forecast, conditional on available information.

In general, the conditional mean need not be a linear function of the
elements of the information set. Because linear functions are particularly
tractable, we prefer to work with linear forecasts—forecasts that are linear in
the elements of the information set—by finding the best linear approximation
to the conditional mean, called the linear projection, denoted P(yr., | 7).
This explains the common term “linear least-squares forecast.” The linear
projection is often very useful and accurate, because the conditional mean is
often close to linear. In fact, in the Gaussian case, the conditional expectation
is exactly linear, so that E(y7.s | 27) = P(yr4s | 27)-

P =91

2. Forecasting Maving Average Processes

OPTIMAL POINT FORECASTS FOR FINITE-ORDER
MOVING AVERAGES

Our forecasting method is always the same: We write out the process for the
future time period of interest, T + A, and project it on what's known at time T,
when the forecast is made. This process is best learned by example. Consider
an MA(2) process,

Yy =€+ 0&_| +6E_
€, ~ WN(0,0%) .
Suppose we're standing at time 7, and we want to forecast yr.. First we write
out the process for T+ 1,
yr+e1 =€ + 087 + 67, .

Then we project on the time-T information set, which simply means that all
future innovations are replaced by 0. Thus,

yrenr = Plyra | Q7) = 0187+ 8Er, .

——
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To forecast two steps ahead, we note that
Y142 = Erso + O1€70( + GEr,
and we project on the time-T information set to get
yreor = &Er.

Continuing in this fashion, we see that

yrenr =10,
forall & > 2.
Now let's compute the corresponding forecast errors.! We have
eT41.7 = ET4 (white noise)
€T T = Ersy + €Ty, (MA(1))

eranT = ETn + OEra + BEriay (MA(2)),

forall & > 2.
Finally, the forecast error variances are
2 2
o, =0

o; =0a?(1+8})

oy =a%(1+6]+6)),

for all & > 2. Moreover, the forecast error variance for & > 2 is just the uncon-

ditional variance of y,.
Now consider the general MA(g) case. The model is

Y =€+ € +---0E€_,.

First, consider the forecasts. If k < ¢, then the forecast has the form
yr+nr =0 + “adjustment,”

whereas if h > g, then the forecast is

Yrear=0.

Thus, an MA(q) process is not forecastable (apart from the unconditional
mean) more than ¢ steps ahead. All the dynamics in the MA(q) process, which
we exploit for forecasting, “wash out” by the Lime we get to horizon ¢, which
reflects the autocorrelation structure of the MA(¢g) process. (Recall that, as we

showed in Chapter 8, it cuts off at displacement ¢.)
Second, consider the corresponding forecast errors. They are

eronr =MA(h— 1)

! Recall that the forecast error is simply the difference between the actual and forecasted values.

That is, e74p 7= YT+h = 5T+0.1-
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for h < ¢ and
ETenT = MA(q)

for & > q. The hstep-ahead forecast error for & > ¢ is just the process itself,
minus its mean.
Finally, consider the forecast error variances. For & < ¢,

0': <var(y):
whereas for 4 > ¢,
2
o, =var(y,) .

In summary, we've thus far studied the MA(2) and then the general MA(g)
processes, computing the optimal Astep-ahead forecast, the corresponding
forecast error, and the forecast error variance. As we’ll now see, the emerging
patterns that we cataloged turn out to be quite general.

OPTIMAL POINT FORECASTS FOR INFINITE-ORDER
MOVING AVERAGES

By now you're getting the hang of it, so let’s consider the general case of an
infinite-order MA process. The infinite-order moving average process may
seem like a theoretical curiosity, but precisely the opposite is true. Any covari-
ance stationary process can be written as a (potentially infinite-order) moving
average process, and moving average processes are easy to understand and ma-
nipulate, because they are written in terms of white noise shocks, which have
very simple statistical properties. Thus, if you take the time to understand
the mechanics of constructing optimal forecasts for infinite moving average
processes, you'll understand everything, and you'll have some powerful tech-
nical tools and intuition at your command.
Recall from Chapter 7 that the general linear process is

>
»= Z big_i,

=0

X
where g ~ WN(0,a?), by = 1, and 0?)_ b, < 00. We proceed in the usual

=)
way. We first write out the process at the future time of interest:
Ireh =€+ bi€rppr -+ D€y + b€y -

Then we project yr., on the time-7 information set. The projection vields Os
for all of the future €'s (because they are white noise and hence unfore-
castable), leaving

YronT = O4ET 4+ brr€r_1 + -+ .
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It follows that the hstep-ahead forecast error is serially correlated; it follows an
MA(h — 1) process,

h-1

ereat = (Y74n = Yren7) = Z bi€rih-i»
=0

with mean 0 and variance

-1
2 2 2
o, =0" E b .

=0

A number of remarks are in order concerning the optimal forecasts of the
general linear process and the corresponding forecast errors and forecast
error variances. First, the 1-step-ahead forecast error is simply £7..,. €7, is that
part of y7., that can’t be linearly forecast on the basis of €, (which, again, is
why it is called the innovation). Second, although it might at first seem strange
that an optimal forecast error would be serially correlated, as is the case when
h > 1, nothing is awry. The serial correlation can’t be used to improve fore-
casting performance, because the autocorrelations of the MA(A — 1) process
cut off just before the beginning of the time-T information set (€7, €1, ...}.
This is a general and remendously important property of the errors associ-
ated with optimal forecasts: Errors from optimal forecasts can't be forecast using in-
Sformation available when the forecast was made. If you can forecast the forecast
error, then you can improve the forecast, which means that it couldn’t have
been optimal. Finally, note that as h approaches infinity ¥4 r approaches 0,

<
.- 2 9
the unconditional mean of the process. and o, approaches o) bf, the

unconditional variance of the process, which reflects the fact the{t=“21$ h ap-
proaches infinity, the conditioning information on which the forecast is based
becomes progressively less useful. In other words, the distant future is harder
to forecast than the near future!

INTERVAL AND DENSITY FORECASTS

Now we construct interval and density forecasts. Regardless of whether the
moving average is finite or infinite, we proceed in the same way, as follows. The
definition of the hstep-ahead forecast error is

€14hT = YT4h — YT+nT -

Equivalently, the /step-ahead realized value, y74,, equals the forecast plus the
error,

¥r-h = Yreart €TanT .
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If the innovations are normally distributed, then the future value of the series
of interest is also normally distributed, conditional on the information set
available at the time the forecast was made, and so we have the 95% #A-step-
ahead interval forecast yr., r £ 1 .960,.% In sxmllar fashion, we construct the
hstep-ahead density forecast as N(yr-u. 7. 0‘,,) The mean of the conditional
distribution of yy., is yr.s. 7. which of course must be the case because we con-
structed the point forecast as the conditional mean, and the variance of the
conditional distribution is cr,, the variance of the forecast error.

As an example of interval and density forecasting, consider again the
MA (2) process,

ye =€+ 0,8y + 68y
g, ~ WN(@0,a?).

Assuming normality, the l-step-ahead 95% interval forecast is yr.17 =
(6187 + BEr—)) £ 1.960, and the l-step-ahead density forecast is N(6er +
&er_ 1. o).

REREN
3. Making the Forecasts Operational

So far we've assumed that the parameters of the process being forecast are

known. In practice, of course, they must be estimated. To make our forecast-

ing procedures operational, we simply replace the unknown parameters in

our formulas with estimates and the unobservable innovations with residuals.
Consider, for example, the MA(2) process,

»=€+08_ ) +0E_ ..

As you can readily verify using the methods we've introduced, the 2-step-ahead
optimal forecast, assuming known parameters, is

Yrenr = GEy,
with corresponding forecast error
eriar = Er2 + 0i€ry
and forecast error variance

oi(1+67).

¢ Confidence intervals a1 anv other desired confidence level may be constructed in similar fash-
ion, by using a different critical point of the standard normal distribution. A Y0% interval fore-
cast, for example, is y7.), 7 £ 1.640,. In general. for a Ganssian process. a (1 — a) 100% confi-
dence interval is y744, 7 £ 2a/204. where 2,4 is that point on the M0, 1) distribudon such thar
prob(z > zqp2) = af2.
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To make the forecast operational, we replace unknown parameters with esti-
mates and the time-7 innovation with the time-7"residual, vielding
Yrio7 = Bu€r
and forecast error variance
65 =06%(1+187).
Then, if desired, we can construct operational 2—step—ahead interval and den-
sity forecasts, as §74a 7 £ 2420 and N(¥7.z,7, 0 ;)

The strategy of taking a forecast formula derived under the assumption of
known parameters, and replacing unknown parameters with estimates, is a
natural way to operationalize the construction of point forecasts. However,
using the same strategy to produce operational interval or density forecasts in-
volves a subtlety that merits additional discussion. The forecast error variance
estimate so obtained can be interpreted as one that ignores parameter esti-

mation uncertainty, as follows. Recall once again that the actual future value of
the series is

Yrez = Eppg + 0Erpy + 6,87

and that the operational forecast is

= =24
5
m

L]

5T+‘2.T =
Thus, the exact forecast error is
Eront = Yrea — Frear = Erea + 0871 + (B — Bu)ET,

the variance of which is very difficult to evaluate. So we make a convenient
approximation: We ignore parameter estimation uncertainty by assuming
that estimated parameters equal true parameters. We therefore set (8, — 62) 10
0, which yields

ervar=Erpe +0Esy
with variance
2 9 2
o, =c*(1+86;),
which we make operational as

Gy =06%1+87).

)
4. The Chain Rule of Forecasting

POINT FORECASTS OF AUTOREGRESSIVE PROCESSES

Because any covariance stationary AR(p) process can be written as an infinite
moving average, there's no need for specialized forecasting techniques for
autoregressions. Instead, we can simply transform the autoregression into a
moving average and then use the techniques we developed for forecasting
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moving averages. It turns out, however, that a very simple recursive method for
computing the optimal forecast is available in the autoregressive case.

The recursive method, called the chain rule of forecasting, is best learned
by example. Consider the AR(1) process,

Yy =@y-1+E
£ ~ WN(O, o?) .

First we construct the optimal 1-step-ahead forecast, and then we construct the
optimal 2-step-ahead forecast, which depends on the optimal 1-step-ahead
forecast, which we’ve already constructed. Then we construct the optimal
3-step-ahead forecast, which depends on the already-computed 2-step-ahead
forecast. which we’ve already constructed, and so on.

To construct the 1-step-ahead forecast, we write out the process for time
T+1,

Y1 = @¥7 +Ep4r .
Then, projecting the right-hand side on the time-T information set, we obtain
yrev1r =QYyr.
Now let’s construct the 2-step-ahead forecast. Write out the process for time
T+2,
Yr+a = @Y1 +E742 .
Then project directly on the time-T information set to get
YT = QYT -
Note that the future innovation is replaced by 0, as always, and that we have
directly replaced the time T + 1 value of y with its earlier-constructed optimal
forecast. Now let's construct the 3-step-ahead forecast. Write out the process
for time T + 3,
Y143 = @¥742 +E7us .
Then project directly on the time-7T information set,
Y748, 7T = @YT42,T -

The required 2-step-ahead forecast was already constructed.

Continuing in this way. we can recursively build up forecasts for any and all
future periods—hence the name (chain rule of forecasting). Note that for the
AR(1) process, only the most recent value of y is needed to construct optimal

torecasts, for any horizon, and for the general AR(p) process, only the p most
recent values of yare needed.

POINT FORECASTS OF ARMA PROCESSES

Now we consider forecasting covariance-stationary ARMA processes. Just as
with autoregressive processes, we could always convert an ARMA process to an
infinite moving average and then use our earlier-developed methods for
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forecasting moving averages. But also as with autoregressive processes, a sim-
pler method is available for forecasting ARMA processes directly, by combining
our earlier approaches to moving average and autoregressive forecasting.

As always, we write out the ARMA(p, g) process for the future period of
interest,
¥ren = @ ¥74i—1 + -+ Qp¥ren-p + E€r4n + B1€rsu-1 + -0 + Q€1 4, .

On the right-hand side we have various future values of y and €, and perhaps
also past values, depending on the forecast horizon. We replace everything on
the right-hand side with its projection on the time-T information set. That is,
we replace all future values of y with optimal forecasts (built up recursively
using the chain rule) and all future values of € with optimal forecasts (0).
yielding
Yrent = @¥1ep-1r + o F @ VrehpT + Erent + Oi€rpanir + -
+ eq£'1'+h—q.'l' -
When evaluating this forinula, note that the optimal time-T “forecast” of any

value of y or £ dated time T or earlier is just y or € itself.
As an example, consider forecasting the ARMA (1, 1) process,

Y =@y +& +0€
&~ WN@O,d%).
Let's find y7,.7. The process at time T+ 1 is
Y141 = @¥yr+Ery + 0€7 .
Projecting the right-hand side on &, vields
Yra1.T = @yr+0€r.
Now let’s find yy.s . The process at time T+ 2 is
¥T+2 = @¥re1 + €402 + 0€7a .
Projecting the right-hand side on Q7 yields
Y1427 = @¥r17 -
Substituting our earlier-computed 1-step-ahead forecast yields
Yre2,7 = @(@yr + 0€7)
= @*yr + @0€7T .
Continuing, it is clear that
YT+h T = @Y¥T+h-1.T»
forall £ > 1.

INTERVAL AND DENSITY FORECASTS

The chain rule, whether applied to pure autoregressive models or to ARMA
models, is a device for simplifving the computation of point forecasts. Interval
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and density forecasts require the /-step-ahead forecast error variance, which
we get from the moving average representation, as discussed earlier. It is

h-1
2 9 2
o, =0 E b; .

=0

which we operarionalize as

h-1t
-y e
=0 E b;
i=0

Note that we don’t actually estimate the moving average representation;
rather, we solve backward for as many #'s as we need, in terms of the original
model parameters, which we then replace with estimates.

Let’s illustrate by constructing a 2-step-ahead 95% interval forecast for the
ARMA(], 1) process. We already constructed the 2-step-ahead point forecast,
y7+2.7; we need only compute the 2-step-ahead forecast error variance. The
process is

Y =@y-1+€&+0€_.
Substitute backward for y,., to get
=@(pyi-2 + &1 +08_y) +& + 08¢,
=g+ (¢p+0)E_+--

We need not substitute back any farther, because the 2-step-ahead forecast
error variance is 0, =o2(l + b ) where b, is the coefficient on €,_, in the
moving average representation of the ARMA(I, 1) process, which we just

calculated to be (¢ +0). Thus, the 2step-ahead interval forecast
is yreo7 = 1.9600, or (9?yr + ¢Ber) £1.960,/1 + (¢ + 6)2. We make this
operational as (ézyr + ¢bey) £ 1.966 Vit @+ 9)2.

REREN
3. Application: Forecasting Employment

Now we put our forecasting technology to work to produce point and interval
forecasts for Canadian employment. Recall that the best moving average
model was an MA(4), while the best autoregressive model, as well as the best
ARMA model and the best model overall, was an AR(2).

First, consider forecasting with the MA(4) model. In Figure 9.1, we show
the employment history together with operational 4-quarter-ahead point and
interval extrapolation forecasts. The 4-quarter-ahead extrapolation forecast
reverts very quickly to the mean of the employment index. In 1993.4, the last
quarter of historical data, employment is well below its mean, but the forecast
calls for a quick rise. The forecasted quick rise seems unnatural because em-
ployment dynamics are historically very persistent. If employmentis well below
its mean in 1993.4, we'd expect it to stay well below its mean for some time.
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The MA(4) model is unable to capture such persistence. The quick rever-
sion of the MA(4) forecast to the mean is a manifestation of the short memory
of moving average processes. Recall, in particular, that an MA(4) process has
a four-period memorv—all autocorrelations are 0 beyond displacement 4.
Thus, all forecasts more than four steps ahead are simply equal to the uncon-
ditional mean (100.2), and all 95% interval forecasts more than four steps
ahead are plus or minus 1.96 unconditional standard deviations. All of this is
made clear in Figure 9.2, in which we show the employment history together
with 12-step-ahead point and interval extrapolation forecasts.
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FIGURE 9.3
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In Figure 9.3, we show the 4-quarter-ahead forecast and realization. Our
suspicions are confirmed. The actual employment series stays well below its
mean over the forecast period, whereas the forecast rises quickly back to the
mean. The mean squared forecast error is a large 55.9.

Now consider forecasting with the AR(2) model. In Figure 9.4, we show
the 4-quarter-ahead extrapolation forecast, which reverts to the unconditional
mean much less quickly, as seems natural given the high persistence of em-
ployment. The 4quarter-ahead point forecast, in fact, is still well below the
mean. Similarly, the 95% error bands grow gradually and haven't approached
their long-horizon values by four quarters out.
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Figures 9.5 and 9.6 make clear the very different nature of the autoregres-
sive forecasts. Figure 9.5 presents the 12-step-ahead extrapolation forecast,
and Figure 9.6 presents a much longer-horizon extrapolation forecast. Even-
tually the unconditional mean is approached, and eventually the error bands
do go flat, but only for very long-horizon forecasts, due to the high persistence
in employment, which the AR(2) model captures.
Figure 9.7 shows the employment history, 4-quarter-ahead AR(2) extrapo-
lation forecast, and the realization. The AR(2) forecast appears quite accu-
rate; the mean squared forecast error is 1.3, drasticallv smaller than that of the
MA(4) forecast.
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FIGURE 897
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Exercises, Problems, and Complements

(Forecast accuracy across horizons) You are a consultant to MedTrax, a large
pharmaceutical company, which released a new ulcer drug 3 months ago and is
concerned about recovering rescarch and de\'elnpmenl costs. Accordingly,
MedTrax has approached vou for drug sales projections at 1- through 12-month-
ahead horizons, which it will use to guide potential sales force realignments,

In briefing vou, MedTrax indicated that it expects your long-horizon forecasts
(e.g., 12-month-ahead) to be just as accurate as vour short-horizon forecasts
(e.g., I-month-ahead). Explain to MedTrax why that is not likclv to be the case,
even if you do the best forecasting job possible.

(Mechanics of forecasting with ARMA models: BankWire continued) On the
book’s web page, you will find data for daily transters over BankWire, a wire
transfer system in a country responsible for much of the world’s finance, over a
recent span of 200 business days.

a. In Chapter 8’s Exercises, Problems, and Complements, you were asked to find
a parsimonious ARMA(p, ¢) model that fits the transfer data well and to
defend its adequacy. Repeat the exercise, this time using only the first 175 days
for model selection and fitting. Is it necessarily the case that the selected
ARMA model will remain the same as when all 200 davs are used? Does yours?

b. Use your estimated model to produce point and interval forecasts for days
176 through 200. Plot them and discuss the forecast pattern.

¢. Compare vour forecasts with the actual realizations. Do the forecasts perform
well? Why or why not?

d. Discuss precisely how vour software constructs point and interval forecasts. It
should certainly match our discussion in spirit. but it may ditfer in some of
the details. Are you uncomfortable with any of the assumptions made? How, if
at all, could the forecasts be improved?
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3. (Forecasting an AR(1) process with known and unknown parameters) Use the
chain rule to forecast the AR(1) process,

Y =@yt +E&.

For now, assume that all parameters are known.
a. Show that the optimal forecasts are

YT+ T=@)T

yreaT = 02yT

b
NhT=Q )T -
b. Show that the corresponding forecast errors are
er+1.7 = (¥7+1 — ¥7+1.7) = €141

er+2, 7T = (¥T+2 — yTo2.7) = 9 E1u1 + €742

A1
er+h T = (¥T+h — YT4+hT) =Er4p + @ETwp—y + -+ @7 €741 .

c. Show that the forecast error variances are

h-1
2 2 2
G, =0 ¢ .
i=f

d. Show that the limiting forecast error variance is
. 2 a

lim o, =

A= 1—¢

g

the unconditional variance of the AR(1) process.

Now assume that the parameters are unknown and so must be estimated.

€. Make your expressions for both the forecasts and the forecast error variances
operational, by inserting least-squares estimates where unknown parameters
appear, and use them to produce an operational point forecast and an
operational 90% interval torecast for ¥r,0 7.

4. (Forecasting an ARMA(2, 2) process) Consider the ARMA(2, 2) process:
Yo =@1¥-1 + Pay—g +E +01€ + 6 u.
a. Verify that the optimal 1-step-ahead forecast made at time T'is
FT+1.T = @1¥7+ Payr-1 + €T + kT .
b. Verify that the optimal 2-step-ahead forecast made at time T'is
ITHAT = @ ¥T-1T + @237 + BEr,

and express it purely in terms of elements of the time-7 information set.
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¢. Verify that the optimal 3-step-ahead forecast made at time T'is
Y13, 7T = @137+2, T + @237+, T »

and express it purely in terms of elemenis of the time-T information set.
d. Show that for any forecast horizon 4 greater than or equal to 3,

YT+ T = @\ ¥T4h=1.T + @2¥T4h-0.T -

(Optimal forecasting under asymmetric loss) One of the conditions required
for optimality of the conditional mean forecast is symmetric loss. We make
that assumption for a number of reasons. First, the conditional mean is
usually easy to compute. In contrast. optimal forecasting under asymmetric
loss is rather involved, and the tools for doing so are still under development.
(See, e.g., Christoffersen and Diebold. 1997.) Second, and more impartantly,
symmetric loss often provides a good approximation to the loss structure
relevant in a particular decision environment.

Symmetric loss is not always appropriate, however. Here we discuss some
aspects of forecasting under asymmeunic loss. Under asymmetric loss, optimal
forecasts are biased, whereas the conditional mean forecast is unbiased.” Bias
is optimal under asymmetric loss because we can gain on average by pushing
the torecasts in the direction such that we make relatively few errors of the
more costly sign.

Many asymmetric loss functions are possible. A few, however, have proved
particularly useful, because of their flexibility and tractability. One is the inex
loss function,

L{e) = b(exp(ae)—ae—1), a#0,b>0.

It’s called /inex because when a > 0, loss is approximately linear to the left of the
origin and approximately exponential to the right, and conversely when
a < (. Another is the linlin loss function, given by

Lie) = ale), ife>0

(e) = [blel, ife<0’

Its name comes from the linearity on each side of the origin.

a. Discuss three practical forecasting situations in which the loss function might
be asymmetric. Give detailed reasons for the asymmetry, and discuss how you
might produce and evaluate forecasts.

b  Explore and graph the linex and linlin loss functions for various values of a
and &. Discuss the roles played by @ and bin each loss function. In particular,
which parameter or combination of parameters governs the degree of
asymmetryr What happens to the linex loss function as a gets smaller? What
happens 1o the linlin loss function as a/happroaches 1?

% A forecast is unbiased if its error has zero mean, The error from the conditional mean forecast
has zero mean, by construction,
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6.

{Truncation of infinite distributed lags, state space representations, and the
Kalman filter) This complement concerns practical implementation of formulas
that involve innovations (€'s). Earlier we noted that as long as a process is
invertible, we can express the £'s in terms of the y’s. If the process involves a
moving average component, however, the €'s will depend on the infinite past
history of the jy's, so we need to truncate to make it operational, Suppose, for
example, that we're forecasting the MA(1) process,

_Y{ =€ + BG,_l .
The operational 1-step-ahead forecast is
YT = dér .

But what, precisely, do we insert for the residual, €77 Back substitution yields the
autoregressive representation,

&=y +0y-1 — 0y 2+
Thus,
€r=yr+0y7-1~ yr2+- -,

which we are forced to truncate at ime T = ], when the data begin. This yields
the approximation

ET~ yr+ 0571 — 0% yr g+ + 087y,

Unless the sample size is very small, or 8 is very close to 1, the approximation will
be very accurate, because 8 is less than 1 in absolute value (by invertibility), and
we’re raising it to higher and higher powers. Finally, we make the expression
operational by replacing the unknown moving average parameter with an
estimate, yielding

u . a9 P
Er X yT+0yr 1 -0 yro+ - +07y
In the engineering literature of the 1960s and then in the statistics and
econometrics literatures of the 1970s, important tools called stale-space
representations and the Kalman filter were developed. Those tools provide a
convenient and powerful framework for estimating a wide variety of forecasting
models and constructing optimal forecasts, and they enable us to tailor the
forecasts precisely to the sample of data at hand, so that no truncation is
necessary.

(Point and interval forecasts allowing for serial correlation—Nile.com continued)
The book’s website has data for the Internet retailer Nile.com, giving the number
of hits at its website each day from January 1, 1998, through September 28, 1998.
Your marketing firm, CyberMedia, which specializes in developing quick,
intensive marketing strategies based on short-term projections, is hired to develop
a forecasting model for hits at the Nile.com website.

a. In Chapter 6, Problem 6, you estimated a trend + seasonal model for
Nile.com hits, ignoring the possible presence of cvclical dynamics. Now
generalize your carlier model to allow for cyclical dynamics, if present, via
AR(p) disturbances. Write the full specification of your model in general
notation (e.g., with p left unspecified).
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b. Estimate three versions of vour full model, corresponding to p =0, 1, 2, 3,

while leaving the original trend and seasonal specifications intact, and select
the one that optimizes SIC.

Using the model selected in part b, write theoretical expressions for the 1- and
2-day-ahead point forecasts and 95% interval forecasts, using estimated
parameters.

d. Calculate those point and interval forecasts for Nile.com for 9/29 and 9/30.

(Bootstrapping simulation to acknowledge innovation distribution uncertainty
and parameter estimation uncertainty) A variety of simulation-based methods fall
under the general heading of “bootstrap.” Their common ¢lement, and the
reason for the name boofstrap, is that they build up an approximation to an object
of interest directly from the data. Hence, they “pull themselves up by their own
bootstraps.” For example, the object of interest might be the distribution of a
random disturbance, which has implications for interval and density forecasts,
and about which we might sometimes feel uncomfortable making a possibly
erroneous assumplion such as normality,

a.

The density and interval forecasts that we've discussed relv crucially on
normality. In many situations, normality is a perfectly reasonable and useful
assumption; after all, that’s why we call it the “normal” distribution.
Sometimes, however, such as when we forecast high-frequency financial asset
returns, normality may be unrealistic. Using bootstrap methods, we can relax
the normality assumption. Suppose, for example, that we want a 1-step-ahead
interval forecast for an AR(1) process. We know that the future observation of
interest is

YT+l = QYT+ ET4 -

We know yr, and we can cstimate ¢ and then proceed as if ¢ were known,
using the operational point forecast, 7417 = ¢yr. If we want an operational
interval forecast, however, we've thus far relied on a normality assumption, in
which case we usc §1.1.7 % 20/20. To relax the normality assumption, we can
proceed as follows. Imagine that we could sample from the distribution of
Er+1—whatever that distribution might be. Take R draws, {E(T”+l },":,, where R
is a large number, such as 10,000. For each such draw, construct the
corresponding forecast of yr4 as

~4) _ A (i)
ST r=@IT Y Ep gy -

Then form a histogram of the j'!,'l,‘ r values, which is the density forecast. And
given the density forecast, we can of course construct interval forecasts at any
desired level. If, for example, we want a 90% interval, we can sort the 5‘,']“ r
values from smallest to largest, find the 5th percentile (call it a) and the 95th
percentile (call it ), and use the 90% interval forecast [a, 8].

The only missing link in this strategy is how to sample from the distribution of
E741. It turns out that it’s easy to do—we simplv assign probability 1/7"to each
of the observed residuals (which are estimates of the unobserved €'s) and
draw from them R times with replacement. Describe how you might do so.
Note that the interval and density forecasts we've constructed thus far—even
the one earlier based on bootstrap techniques—make no attempt to account
for parameter cstimation uncertainty. Intuitively, we would expect confidence
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intervals obtained by ignoring parameter estimation uncertainty to be more
narrow than thev would be if parameter uncertainty were accounted for,
thereby producing an artificial appearance of precision. In spite of this defect,
parameter uncertainty is usually ignored in practice, for a number of reasons.
The uncertainty associated with estimated parameters vanishes as the sample
size grows: in fact. it vanishes quickly. Furthermore, the fraction of forecast
error atributable to the difference between estimated and true parameters is
likely to be small compared with the fraction of forecast error coming from
other sources, such as using 1 model that does a poor job of approximating
the dynamics of the variable being torecast.

d. Quite apart from the reasons already given for ignoring parameter estimation
uncertainty, the biggest reason is probably that, until very recendy,
mathematical and computational ditficulties made attempts 10 account for
parameter uncertainty infeasible in many situations of practical interest.
Modern computing speed, however, lets us use the bootstrap to approximate
the effects of parameter estimation uncertainty. To continue with the AR(1)
example, suppose that we know that the disturbances are Gaussian but that we
want to attempt to account for the effects of parameter estimation uncertainty
when we produce our 1-step-ahead density forecast. How could we use the
bootstrap to do so?

e. The “real sample” of data ends with observation y7, and the optimal point
forecast depends onlv on y7. It would therefore seem desirable that all of
your R “bootstrap samples” of data also end with y7. Do you agree? How
might you enforce that property while still respecting the AR(1) dynamics?
(This is tricky.)

f. Can you think of a way 1o assemble the results thus far to produce a density
forecast that acknowledges both innovadon distribution uncertainty and
paramcter estimation uncertainty? (This is very challenging.)

Bibliographical and Computational Notes

The methods discussed in this chapter were developed by Wiener, Kolmogorov, and
Wold more than 50 years ago, and they underlie all modern forecasting software. It's
important to understand them so that you're the master of your software, not the
opposite.

For a proof of our assertion of optimality of the conditional mean forecast, as well
as a precise statement of the conditions under which the result holds, see any good
advanced text, such as Hamilton (1994).

Linex loss was introduced by Varian (1974) in the context of real estate assessment
and was further studied by Zellner (1986). Harvey (1993) gives a lucid exposition of
state-space representations and the Kalman filter. Efron and Tibshirani (1993) offer a
good introduction o the bootstrap and its many uses. Stine (1987) and Breidt. Davis,
and Dunsmuir (1995) show how to use the bootstrap to produce interval and density
forecasts under weak assumptions. Chatfield (1993, 1995) argues that the fraction of
forecast error attributable to the ditference between estimated and true parameters is
likely much smaller than the fraction of forecast error coming from other sources, such
as model misspecification. Clements and Hendry (1994, 1998) provide insightful
discussion of a variety of advanced topics in applied forecasting,
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Concepts for Review

Expected loss Linex loss function
Linear forecast Linlin loss function
Linear least-squares forecast Bootstrapping

Forecast error variance
Chain rule of forecasting

Innovation distribution uncertainty
Parameter estimation uncertainty
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Putting It All Together:
A Forecasting Model
with Trend, Seasonal,
and Cyclical
Components

I. Assembling What We've Learned

Thus far, we've focused on modeling trend, seasonals, and cycles one at a time.
In Chapter 5, we introduced models and forecasts of trend. We forecasted
retail sales, and we used a model that included only trend. The data were sea-
sonally adjusted, so it wasn’t necessary to model seasonality, and, although cy-
cles were likely present, we simply ignored them. In Chapter 6, we introduced
models and forecasts of seasonality. We forecasted housing starts, and we
used a model that included only seasonal dummies. We didn’t need a trend,
and again we simply ignored cycles. In Chapters 7-9, we introduced models
and forecasts of cycles. We forecasted employment, and we used autoregres-
sive, moving average, and ARMA models. We didn’t need trends or seasonals,
because employment had no trend and had been seasonally adjusted.

In many forecasting situations, however, more than one component is
needed to capture the dynamics in a series to be forecast; frequently they're
all needed. Here we assemble our tools for forecasting trends, seasonals, and
cycles; we use regression on a trend and seasonal dummies, and we capture
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cyclical dynamics by allowing for ARMA effects in the regression disturbances.
The full model is
"

A ]
y=TO) +) vDi+Y 8 HDV,+> 5 TDV, +¢,
i=) i=] i=]

& (L), = O(Lyy,
S(L)y=1—¢L—---—¢,L*
OL)=1+6L+---+8,L

v, ~ WN(Q,o?).

T;(0) is a trend, with underlying parameters 8. For example, linear trend has
8 = B; and

T,(0) = B TIME,
and quadratic trend has 6 = (8, B2) and
7,(8) = B, TIME, + B, TIME | .

In addition to the trend, we include seasonal dummies, holiday dummies, and
trading-day dummies.! The disturbances follow an ARMA(p, ¢) process, of
which pure autoregressions and pure moving averages are special cases. In any
particular application, of course, various trend effects, seasonal and other cal-
endar effects, and ARMA cyclical effects may not be needed and so could be
dropped.? Finally, v, is the underlying innovation that drives everything.
Now consider constructing an h-step-ahead point forecast at time T, yry, 7.
Attime T+ h,
5 r] v
yror = Trs®) + D viDiren+ D 8 CHDV, 7, + Y 8 TDV, ., +&ru .
i=1 =1 =

=1

Projecting the right-hand-side variables on what’s known at time T (i.e., the
time-T information set, £27), yields the point forecast

5 U va
yrent=Tra®) +)_¥:Dires+ 3 8 HDV, ., 4+ 8 TDV, 1, +Erhr.
i i=l|

i=1 i=1

As with the pure trend and seasonal models discussed earlier, the trend and
seasonal variables on the right-hand side are perfectly predictable. The only
twist concerns the cyclical behavior that may be lurking in the disturbance
term, future values of which don’t necessarily project to 0, because the distur-
bance is not necessarily white noise. Instead, we construct €, 7 using the
methods we developed for forecasting cycles.

! Note that, because we include a full set of seasonal dummies, the trend does not contain an
intercept, and we don’t include an intercept in the regression.

2If the seasonal dummies were dropped, then we’d include an intercept in the regression.
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As ahways, we make the point forecast operational by replacing unknown
parameters with estimates, yielding

s v vy
. 2 N 2HD aTD ’ .
yrenT =Tren(8) +Z YiDien +Z 5 HDV, ., + Z o, TDV . . +€rnr.
=1 =1 =\

To construct €., 1, in addition to replacing the parameters in the formula for
€744, 7 With estimates, we replace the unobservable disturbances, the g,’s, with
the observable residuals, the ¢,'s.

We use our earlier-developed operational expressions for cycle forecast
error variances to produce an hstep-abead interval forecast; it's simply
FT+h1 L 207204, where G, is the operational estimate of the variance of the
error in forecasting €., and zq,y is the appropriate critical point of the N(0, 1)
density. For example, a 95% interval forecast is y;.4 5+ 1.960,. Finally, the
complete /step-ahead density forecast is N(¥ 74,71, 6: ).

Once again, we don’t actually have to do any of the computations just
discussed; rather, the computer does them all for us. So Jet’s get on with an
application, now that we know what we’re doing.
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2. Application: Forecasting Liquor Sales

We'll forecast monthly U.S. liquor sales. We graphed a short span of the
series in Chapter 6 and noted its pronounced seasonality—sales skyrocket
during the Christmas season. In Figure 10.1, we show a longer history of
liquor sales, 1968.01-1993.12. In Figure 10.2, we show log liquor sales; we
take logs to stabilize the variance, which grows over time.> The variance of
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* The nature of the logarithmic transformation is such that it “compresses” an increasing variance.
Make a graph of log(x) as a tunction of x, and you'll see why.

FIGURE 101
Ligquor Sales,
1968.01-1993.12
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log liquor sales is more stable, and it's the series for which we'll build fore-
casting models.?

Liquor sales dynamics also feature prominent trend and cyclical effects.
Liquor sales trend upward, and the trend appears nonlinear in spite of the fact
that we're working in logs. To handle the nonlinear trend, we adopt a qua-
dratic trend model (in logs). The estimation results are in Table 10.1. The
residual plot (Figure 10.3) shows that the fitted trend increases at a decreasing
rate; both the linear and quadratic terms are highly significant. The adjusted
R is 89%, reflecting the fact that trend is responsible for a large part of the
variation in liquor sales. The standard error of the regression is 0.125; it’s an
estimate of the standard deviation of the error we'd expect to make in fore-
casting liquor sales if we accounted for trend but ignored seasonality and serial
correlation. The Durbin-Watson statistic provides no evidence against the
hypothesis that the regression disturbance is white noise.

The residual plot, however, shows obvious residual seasonality. The Durbin-
Watson statistic missed it, evidently because it's not designed to have power
against seasonal dynamics.> The residual plot also suggests that there may be a
cycle in the residual, although it’s hard to tell (hard for the Durbin-Watson sta-
tistic as well), because the pervasive seasonality swamps the picture and makes
it hard to infer much of anything.

The residual correlogram (Table 10.2) and its graph (Figure 10.4)
confirm the importance of the neglected seasonality. The residual sample
autocorrelation function has large spikes, far exceeding the Bartlett bands, at

! From this point onward, for brevity we'll simply refer to “liquor sales,” but remember that we've
taken logs.

3 Recall that the Durbin-Watson test is designed to detect simple AR(1) dynamics. It also has the
ability to detect other sorts of dvnamics, but evidently not those relevant to the present applica-
tion, which are very different from a simple AR(1).
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LS // Dependent variable is LSALES. TABLE 104

Sample: 1968:01 1993:12 Log Liquor Sales

Included observations: 312 Quadratic Trend
. . .. Regression

Variable Coefficient Std. Error #Statistic Prob.

C 6.237356 0.024496 254.6267 0.0000

TIME 0.007690 0.000336 2291552 0.0000

TIME2 —1.14E-05 9.74E07 —11.72695 0.0000

R 0.892394 Mean dependent var. 7.112383

Adjusted B¢ 0.891698 SD dependent var. 0.379308

SE of regression 0.124828 Akaike info criterion -4.152073

Sum squared resid. 4.814823 Schwarz criterion —4.116083

Log likelihood 208.0146 Fsuanistic 1281.296

Durbin-Watson stat, 1.752858 Prob (Fstatistic) 0.000000

the seasonal displacements 12, 24, and 36. It indicates some cyclical dynamics as
well; apart from the seasonal spikes, the residual sample autocorrelation and
partial autocorrelation functions oscillate, and the Ljung-Box statistic rejects the
white noise null hypothesis even at very small, nonseasonal, displacements.

In Table 10.3 we show the results of regression on quadratic trend and a full
set of seasonal dummies. The quadratic trend remains highly significant. The
adjusted R rises to 99%, and the standard error of the regression falls to 0.046,
which is an estimate of the standard deviation of the forecast error we ex-
pect to make if we account for trend and seasonality but ignore serial correla-
tion. The Durbin-Watson statistic, however, has greater ability to detect serial

8.0 FIBURE /O 3
Log Liquor Sales

"5 Quadratic Trend
Regression,
Residual Plot

0.6 - Fitted
0.4
0.2

0.0

F Residual

N D T S R Y St S T S A A T W S T S HO S S T

4
68 70 72 74 76 78 B0 B2 84 B6 88 90 92




196

Chapter 10

TABLE 10.2
Log Liquor Sales
Quadratic Trend
Regression,
Residual
Correlogram

Acorr. P. Acorr. Std. Error Ljung-Box p-value

1 0.117 0.117 .056 4.3158 0.038
2 —0.149 —0.165 .056 11.365 0.003
3 —0.106 —0.069 056 14.943 0.002
4 -0.014 —0.017 .056 15.007 0.005
5 0.142 0.125 056 21.449 0.001
6 0.041 —0.004 .056 21.979 0.001
7 0.134 0.175 .056 27.708 0.000
8 —0.029 —0.046 .056 27.975 0.000
9 -0.136 —0.080 .056 33.944 0.000
10 —0.205 —0.206 .056 47.611 0.000
11 0.056 0.080 .056 48.632 0.000
12 0.888 0.879 .056 306.26 0.000
13 0.055 —0.507 056 307.25 0.000
14 —0.187 —0.159 056 318.79 0.000
15 —0.159 -0.14 .056 327.17 0.000
16 —0.059 —0.002 056 328.32 0.000
17 0.091 —0.118 .056 331.05 0.000
18 -0.010 —0.055 .056 331.08 0.000
19 0.086 —0.032 .056 333.57 0.000
20 —0.066 0.028 .056 335.03 0.000
2] -0.170 0.044 .056 344.71 0.000
22 -0.231 0.180 .056 362.74 0.000
23 0.028 0.016 .056 363.00 0.000
24 0.811 —0.014 .056 586.50 0.000
25 0.013 —0.128 .056 586.56 0.000
26 —0.221 —0.136 .056 603.26 0.000
27 —0.196 -0.017 .056 616.51 0.000
28 —0.092 —0.079 056 619.42 0.000
29 0.045 —-0.094 .056 620.13 0.000
30 -0.043 0.045 .056 620.77 0.000
31 0.057 0.041 056 621.89 0.000
32 —0.095 —0.002 .056 625.07 0.000
33 -0.195 0.026 056 638.38 0.000
34 -0.240 0.088 .056 658.74 0.000
35 0.006 —0.089 056 658.75 0.000
36 0.765 0.076 .056 866.34 0.000
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correlation now that the residual seasonality has been accounted for, and it
sounds a loud alarm.

The residual plot of Figure 10.5 shows no seasonality, as that's now picked
up by the model, but it confirms the Durbin-Watson’s warning of serial corre-
lation. The residuals are highly persistent and hence predictable. We show the
residual correlogram in tabular and graphical form in Table 10.4 and Fig-
ure 10.6. The residual sample autocorrelations oscillate and decay slowly, and
they exceed the Bartlett standard errors throughout. The Ljung-Box test
strongly rejects the white noise null at all displacements. Finally, the residual
sample partial autocorrelations cut off at displacement 3. All of this suggests
that an AR(3) would provide a good approximation to the disturbance’s Wold
representation.

FIGUFE O 4
Log Liquor Sales
Quadratic Trend
Regression,
Residual Sample
Autocorrelation
and Partial
Autocorrelation
Functions
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YA E1OD3 LS // Dependent variable is LSALES.

Log Liquor Sales Sample: 1968:01 1993:12

Quadratic Trend Included observations: 312

Regressiontwith . variable Coefficient Std. Error ¢Statistic Prob.
TIME 0.007656 0.000123 62.35882 0.0000
TIME2 —-1.14E-05 3.56E-07 —32.06823 0.0000
D1 6.147456 0.012340 498.1699 0.0000
D2 6.088653 0.012353 492.8890 0.0000
D3 6.174127 0.012366 499 3008 0.0000
D4 6.175220 0.012378 498.8970 0.0000
D5 6.246086 0.012390 504.1398 0.0000
D6 6.250387 0.012401 504.0194 0.0000
D7 6.295979 0.012412 507.2402 0.0000
D8 6.268043 0.012423 504.5509 0.0000
DY 6.203832 0.012433 498.9630 0.0000
D1y 6.229197 0.012414 500.5968 0.0000
D11 6.259770 0.012453 502.6602 0.0000
D12 6.580068 0.012463 527.9819 0.0000
R 0.986111 Mean dependent var, 7.112383
Adjusted R 0.985505 SD dependent var, 0.379308
SE of regression 0.045666 Akaike info criterion —6.128963
Sum squared resid. 0.621448 Schwarz criterion —5.961008
Log likelihood 527.4094 Fstatistic 1627.567
Durbin-Watson stat. 0.586187 Prob(#:statistic) 0.000000

FITIRE ‘OS5
Log Liquor Sales
Quadralic Trend
Regression with
Seasonal Dummies,
Rexidual Plot
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Acorr. P. Acorr. Std. Error Ljung-Box pvalue TAEBLE T «
Log Liquor Sales
| 0.700 0.700 056 154.34 0000 Quadratic Trend
2 0.686 0.383 056 302.86 0000  LEession with s
3 0.725 0.369 036 469.36 0.000  Residual
4 0.569 —0.141 .056 572.36 0.000  Correlogram
5 0.569 0.017 .056 675.58 0.000
6 0.577 0.093 .056 782.19 0.000
7 {).460) ~0.078 .056 850.06 0.000
8 0.480 0.043 056 924.38 0.000
9 0.466 0.030 .056 994.46 0.000
10 0.327 ~0.188 036 1029.1 0.000
1 0.364 0.019 056 1072.1 0.000
12 0.355 0.089 056 1113.3 0.000
13 0.225 -0.119 056 1129.9 0.000
‘ 14 0.291 0.065 056 1157.8 0.000
15 0.211 ~0.119 056 11724 0.000
16 0.138 ~0.031 056 1178.7 0.000
17 0.195 0.053 056 1191.4 0.000
18 0.114 —0.027 .056 1195.7 0.000
19 0.055 —0.063 056 1196.7 0.000
20 0.134 0.089 056 1202.7 0.000
21 0.062 0.018 056 1204.0 0.000
22 -0.006 ~0.115 056 1204.0 0.000
23 0.084 0.086 056 1206.4 0.000
24 —0.039 -0.124 056 1206.9 0.000
25 —0.063 ~0.055 056 1208.3 0.000
26 —0.016 ~0.022 056 1208.4 0.000
27 —0.143 -0.075 036 1215.4 0.000
28 —0.135 —0.047 056 1221.7 0.000
29 —0.124 ~0.048 .056 1227.0 0.000
30 ~0.189 0.086 .056 1239.5 0.000
31 ~0.178 -0.017 056 1250.5 0.000
32 -0.139 0.073 056 1257.3 0.000
33 -0.226 —0.049 056 1275.2 0.000
34 ~0.155 0.097 056 1283.7 0.000
35 ~0.142 0.008 056 1290.8 0.000

36 —-0.242 —0.074 .056 1311.6 0.000
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FIGURE 106
Log Liquor Sales
Quadratic Trend
Regression with
Seasonal Dummies,
Residual Sample
Autocorrelation
and Partial
Auwtocorrelation
Functions
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In Table 10.5, then, we report the resuits of estimating a liquor sales model
with quadratic trend, seasonal dummies, and AR(3) disturbances. The Ris
now 100%, and the Durbin-Watson is fine. One inverse root of the AR(3) dis-
turbance process is estimated to be real and close to the unit circle (0.95), and
the other two inverse roots are a complex conjugate pair farther from the unit
circle. The standard error of this regression is an estimate of the standard de-
viation of the forecast error we'd expect to make after modeling the residual
serial correlation, as we've now done; that is, it's an estimate of the standard
deviation of v.% It's a very small 0.027, roughly half that obtained when we
ignored serial correlation.

% Recall that v is the innovation that drives the ARMA process for the regression disturbance, €.
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LS // Dependent variable is LSALES,
Sample: 1968:01 1993:12

Included observations: 312
Convergence achieved after 4 iterations

Variable Coefficient Std. Error +Statistic Prob.
TIME 0.008606 0.000081 8.768212 0.0000
TIME?2 —-1.41E-05 2.53E-06 —5.556103 0.0000
D1 6.073054 0.083922 72.36584 0.0000
D2 6.013822 0.083942 71.64254 0.0000
D3 6.099208 0.083947 72.65524 0.0000
D4 6.101522 0.083934 72.69393 0.0000
D5 6.172528 0.083946 73.52962 0.0000
D6 6.177129 0.083947 73.58364 0.0000
D7 6.223323 0.083939 74.14071 0.0000
D8 6.195681 0.08%943 73.80857 0.0000
D9 6.131818 0.083940 73.04993 0.0000
D10 6.157592 0.083934 73.36197 0.0000
D11 6.188480 0.083932 73.73176 0.0000
D12 6.509106 0.083928 77.55624 0.0000
AR(1) 0.268805 0.052909 5.080488 0.0000
AR(2) 0.239688 0.05%697 4.463723 0.0000
AR(3) 0.395880 0.053100 7.454150 0.0000
R 0.995069 Mean dependent var. 7.112383
Adjusted R 0.994802 SD dependent var. 0.379308
SE of regression 0.027347 Akaike info criterion —7.145319
Sum squared resid. 0.220625 Schwarz criterion ~-6.941373
Log likelihood 688.9610 Kstatistic 3720.875
Durbin-Watson stat. 1.886119 Prob (Fstatistic) 0.000000
Inverted AR roots 95 -.34 + .55i —.34 - 55i

We show the residual plot in Figure 10.7 and the residual correlogram in
Table 10.6 and Figure 10.8. The residual plot reveals no patterns; instead, the
residuals look like white noise, as they should. The residual sample autocorrela-
tions and partial autocorrelations display no patterns and are mostly inside the
Bartlett bands. The Ljung-Box statistics also look good for small and moderate
displacements, although their pvalues decrease for longer displacements,

All things considered. the quadratic trend, seasonal dummy, AR(3) speci-
fication seems tentatively adequate. We also perform a number of additional
checks. In Figure 10.9. we show a histogram and normality test applied to the
residuals. The histogram looks symmetric, as confirmed by the skewness

TABLE 10.5
Log Liquor Sales
Quadratic Trend
Regression with
Seasonal Dummies
and AR(3)
Disturbances
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FIGURE 10O0.7
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Quadratic Trend
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FIGURE 10.8
Log Liquor Sales
Quadratic Trend
Regression with
Seasonal Dummies
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Acorr. P. Acorr. Std. Error Ljung-Box pvalue
1 0.056 0.056 .056 0.9779 0.323
2 0.037 0.034 .056 14194 0.492
3 0.024 0.020 056 1.6032 0.659
4 —0.084 —0.088 .056 3.8256 0.430
5 —0.007 0.001 .056 3.8415 0.572
6 0.065 0.072 .056 5.1985 0.519
7 —0.041 —0.044 .056 5.7288 0.572
8 0.069 0.063 .056 7.2828 0.506
9 0.080 0.074 056 9.3527 0.405
10 -0.163 —0.169 056 18.019 0.055
11 —0.009 —0.005 .056 18.045 0.081
12 0.145 0.175 .056 24.938 0.015
13 -0.074 —-0.078 .056 26.750 0.013
14 0.149 0.113 .056 34.034 0.002
15 —0.039 —0.060 .056 34.532 0.003
16 —0.089 —0.058 .056 37.126 0.002
17 0.058 0.048 036 38.262 0.002
18 —0.062 —0.050 056 39.556 0.002
19 -0.110 -0.074 .056 43.604 0.001
20 0.100 0.056 .056 46.935 0.001
21 0.039 0.042 .056 47.440 0.001
22 —0.122 -0.114 .056 52.501 0.000
23 0.146 0.130 .056 59.729 0.000
24 —0.072 —0.040 .056 61.487 0.000
25 0.006 0.017 056 61.500 0.000
26 0.148 0.082 .056 69.024 0.000
27 —0.109 —0.067 .056 73.145 0.000
28 -0.029 —0.045 .056 73.436 0.000
29 —0.046 —0.100 .056 74.153 0.000
30 —0.084 0.020 .056 76.620 0.000
31 —0.095 -0.101 056 79.793 0.000
32 0.051 0.012 .056 80.710 0.000
33 -0.114 —0.061 056 85.266 0.000
3 0.024 0.002 .056 85,468 0.000
35 0.043 —0.010 056 86.116 0.000
36 —-0.229 -0.140 .056 104.75 0.000

TABLE 1D .G
Log Liquor Sales
Quadratic Trend
Regression with
Seasonal Dummies
and AR(3)
Disturbances,
Residual
Corvelogram
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FIGURE 10.9
Log Liquor Sales
Quadratic Trend
Regression with
Seasonal Dummies
and AR(3)
Disturbances,
Residual Histogram
and Normality Test

40 - Series: Residuals
Sample 1968:01 1993:12

Observations 312
301 § Mean 3.77E-16
Median —0.000160
= q Maximuin 0.078468
20l 1 | Minimum  —0.109856
. Std. Dev. 0.026635
Skewness 0.077911
Rurtosis 3.740378

10 -
Jarque-Bera  7.441714
Probability 0.024213
0 _ﬂ L] T Al ) T
-0.10 -0.05 0.00 0.05

near 0. The residual kurtosis is a bit higher than 3 and causes the Jarque-Bera
test to reject the normality hypothesis with a pvalue of .02, but the residuals
nevertheless appear to be fairly well approximated by a normal distribution,

even if they may have slightly fatter tails.

Now we use the estimated model to produce forecasts. In Figure 10.10 we
show the history of liquor sales and a 12-month-ahead extrapolation forecast
for 1994.7 To aid visual interpretation, we show only 2 years of history. The
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"We show the point forecast together with 95% intervals.
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forecast looks reasonable. It’s visually apparent that the model has done a
good job of picking up the seasonal pattern, which dominates the local be-
havior of the series. In Figure 10.11, we show the history, the forecast, and the
1994 realization. The forecast was very good!

Figure 10.12 shows 4 years of history together with a 60-month-ahead
(5-year) extrapolation forecast, to provide a better feel for the dynamics in the
forecast. The figure also makes clear the trend forecast is slightly downward. To
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FIGURE 10.13
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put the long-horizon forecast in historical context, we show in Figure 10.13
the 60-month-ahead forecast together with the complete history. Finally, in
Figure 10.14, we show the history and point forecast of the level of liquor sales
(as opposed to log liquor sales), which we obtain by exponentiating the fore-
cast of log liquor sales.?
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8 Recall that exponentiating “undoes” a natural logarithm.
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IR
3. Recursive Estimation Procedures for Diagnosing
and Selecting Forecasting Models

Recursive estimation means beginning with a small sample of data, estimating
amodel, adding an observation and reestimating the model, and continuing in
that fashion until the sample is exhausted.” Recursive estimation and related
techniques are useful in a variety of situations of importance in forecasting,
including stability assessment and model selection. On both counts, it's natural
to introduce them now.

ASSESSING THE STABILITY OF FORECASTING
MODELS: RECURSIVE PARAMETER ESTIMATION
AND RECURSIVE RESIDUALS

Business and economic relationships often vary over time; sometimes para-
meters evolve slowly, and sometimes they break sharply. If a forecasting model
displays such instability, it's not likely to produce good forecasts, so it’s impor-
tant that we have tools that help us to diagnose the instability. Recursive esti-
mation procedures allow us to assess and track time-varying parameters and
are therefore useful in the construction and evaluation of a variety of fore-
casting models,

First we introduce the idea of recursive parameter estimation. We work
with the standard linear regression model,

[
»= ZBi-’G,: +€
i=1

iid

e~ N(©O,0%,

t=1,..., T, and we estimate it using least squares. Instead of immediately
using all the data to estimate the model, however, we begin with a small subset.
If the model contains £ parameters, begin with the first kobservations and esti-
mate the model. Then we estimate it using the first ¥+ 1 observations and

¥ Strictly speaking, sequential might be a more descriptive adjective than recursive. Recursive updat-
ingrefers 1o the fact that an estimate based on ¢ 4 1 observations can sometimes be computed sim-
ply by appropriately combining the old estimate based on fobservations with the new observation,
(This is possible, for example, with linear least-squares regression.) Recursive updating achieves a
drastic reduction in computational requirements relative to complete reestitnation of the model
each time the sample is updated, which we might call “brute force updating.” For our purposes,
it's inconsequential whether we do recursive updating or brute force updating (and the speed of
modern computers often makes brute force attractive); we use recusive estimation as a blanket
term for any sequential estimation procedure, whether the computations are done by recursive or
brute force techniques.
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so on, until the sample is exhausted. At the end we have a set of recursive pa-
rameter estimates fS,-,,, fori=k% ..., Tandi=1..... k It often pays to com-
pute and examine recursive estimates, because they convey important infor-
mation about parameter stability—they show how the estimated parameters
move as more and more observations are accumulated. It's often informative
to plot the recursive estimates, to help answer the obvious questions of interest:
Do the coefficient estimates stabilize as the sample size grows? Or do they wan-
der around, or drift in a particular direction, or break sharply at one or more
points?

Now let's introduce the recursive residuals; Ateach t, 1=k, ..., T—1,we
can compute a l-step-ahead forecast, §,.,, =) [-?;,v,,x,-,,ﬂ. The corresponding

- i=1 - . .
forecast errors, or recursive residuals, are €.y, = 4| — ¥1+1,,. The variance of

these 1-step-ahead forecast errors changes as the sample size grows, because
under the maintained assumptions the model parameters are estimated more
precisely as the sample size grows. Specifically,

A v 2
(225 N N(Ov O"TI) ’

where r, > 1 for all tand r, is a somewhat complicated function of the data.'?

As with recursive parameter estimates, recursive residuals can reveal para-
meter instability in forecasting models. Often we’ll examine a plot of the re-
cursive residuals and estimated two standard-error bands (+24,/7;).!! This has
an immediate forecasting interpretation and is sometimes called a sequence
of l-step forecast tests—we make recursive 1-step-ahead 95% interval forecasts
and then check where the subsequent realizations fall. If many of them fall
outside the intervals, one or more parameters may be unstable, and the loca-
tions of the violations of the interval forecasts give some indication as to the
nature of the instability.

Sometimes it’s helpful to consider the standardized recursive residuals,

w _ Cr4l
1+14 = '
0./

t=k .... T— 1. Under the maintained assumptions,

id

w!*\,l -~ N(Ov l) .

If any of the maintained model assumptions are violated, the standardized re-
cursive residuals will fail to be iid normal, so we can learn about various model

" Derivation of a formula for #, is bevond the scope of this book. Ordinarily we'd ignore the in-
flation of var(#;41 ;) due to parameter estimation, which vanishes with sample size so that r, — 1,
and simply use the large-sample approximation &4, ~ N(0, o). Presendy, however, we're esti-
mating the regression recursively, so the initial regressions will always be performed on very small
samples, thereby rendering largesample approximations unpalatable.

" § is just the usual standard error of the regression, estimated from the full sample of data.
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inadequacies by examining them. The cumulative sum ("“CUSUM") of the
standardized recursive residuals is particularly useful in assessing parameter

stability. Because w, ., e N(0, 1), it follows that
H
CUSUM, = Zw,m. t=k,....T-1

is just a sum of iid M0, 1) random variables.' Probability bounds for the
CUSUM have been tabulated, and we often examine time series plots of the
CUSUM and its 95% probability bounds, which grow linearly and are centered
at 0.'3 If the CUSUM violates the bounds at any point, there is evidence of pa-
rameter instability. Such an analysis is called a CUSUM analysis.

As an illustration of the use of recursive techniques for detecting structural
change, we consider in Figures 10.15 and 10.16 two stylized data-generating
processes (bivariate regression models, satisfving the classical assumptions
apart from the possibility of a time-varying parameter). The first has a con-
stant parameter, and the second has a sharply breaking parameter. For each
we show a scatterplot of y versus x, recursive parameter estimates, recursive
residuals, and a CUSUM plot.

We show the constant parameter model in Figure 10.15. As expected, the
scatterplot shows no evidence of instability, the recursive parameter estimate
stabilizes quickly, its variance decreases quickly, the recursive residuals look
like zero-mean random noise, and the CUSUM plot shows no evidence of
instability.

We show the breaking parameter model in Figure 10.16; the results are dif-
ferent yet again. The true relationship between y and x is one of proportion-
ality, with the constant of proportionality jumping in midsample. The jump is
clearly evident in the scatterplot, in the recursive residuals, and in the recur-
sive parameter estimate. The CUSUM remains near 0 until midsample, at
which time it shoots through the 95% probability limit.

Model Selection Based on Simulated Forecasting
Performance

All the forecast model selection strategies that we've studied amount to strate-
gies for finding the model that's most likely 1o perform well in terms of out-of-
sample l-step-ahead mean-squared forecast error. In every case, we effectively
estimate out-of-sample 1-step-ahead mean-squared forecast error by adjusting
the in-sample mean-squared error with a degreesof-freedom penalty. The
important insight is that we estimate out-of-sample forecast accuracy using

2 Sums of zero-mean iid random variables are very important. In fact, thev're so important that
they have their own name. random walks, We'll study them in detail in Chapter 13.

'3 To make the standardized recursive residuals, and hence the CUSUM siatistic, operational, we
replace o with a.

209
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in-sample residuals. Recursive estimation suggests a different approach, which
is also more direct and flexible. Recursive estimation lets us estimate out-of-
sample forecast accuracy directly, using out-of-sample forecast errors.

We first introduce a procedure called cross validation, in reference to the
fact that the predictive ability of the model is evaluated on observations differ-
ent from those on which the model is estimated, thereby incorporating an au-
tomatic degrees-of-freedom penalty. It's actually not based on recursive estima-
tion, because we don’tlet the estimation samiple expand. Instead, we obtain the
various estimation samples by sequentially deleting observations. As we'll see,
however, it provides a natural introduction to a closely related recursive model
selection procedure that we’ll introduce subsequently, which we call recursive
cross validation.

Cross validation proceeds as follows. Consider selecting among [forecast-
ing models. Start with model 1, estimate it using all data observations except
the first, use it to forecast the first observation, and compute the associated
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squared forecast error. Then estimate it using all observations except the
second, use it to forecast the second observation, and compute the assocjated
squared error. Keep doing this—estimating the model with one observation
deleted and then using the estimated model to forecast the deleted observa-
tion—until each observation has been sequentially deleted, and average the
squared errors in predicting each of the T sequentially deleted observations.
Repeat the procedure for the other models, j = 2,..., J and select the
model with the smallest average squared forecast error.

As we've described it here, cross validation is mainly of use in cross section,
as opposed to time series, forecasting environments, because the “leave one
out” estimations required for cross validation only make sense in the absence
of dynamics. That is, it’s onlv in the absence of dynamics that we can simply
pluck out an observation, discard it, and proceed to estimate the model with
the remaining observations without further adjustment. It’s easy to extend the
basic idea of cross validation to the time series case, however, which leads to
the idea of recursive cross validation.

FiGURE VDB
Recursive Analysis
Breaking Parameter
Model
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Recursive cross validation proceeds as follows. Let the initial estimation
sample run from t = 1,..., 7", and let the “holdout sample” used for com-
paring predictive performance run from t = T"+ 1,..., T For each model,
proceed as follows. Estimate the model using observations t=1...., T". Then
use it to forecast observation 7" + 1, and compute the associated squared
error. Next, update the sample by one observation (observation 7" + 1), esti-
mate the model using the updated sample t=1,..., T" + 1, forecast obser-
vation 7~ + 2, and compute the associated squared error. Continue this re-
cursive reestimation and forecasting until the sample is exhausted, and then
average the squared errors in predicting observations 7" + | through T.
Select the model with the smallest average squared forecast error.

NEREN
4. Liquor Sales, Continued

In Figures 10.17-10.19, we show the results of a recursive analysis. Figure 10.17
presents the recursive residuals and their two-standard-crror bands under the
joint null hypothesis of correct specification and parameter constancy. The re-
cursive residuals rarely violate the 95% bands. Figure 10.18 shows the recursive
parameter estimates together with recursively computed standard errors. The
top row shows the 2 trend parameters, the next three rows show the 12 seasonal
dummy parameters. and the last row shows the 3 autoregressive parameters. All
parameter estimates seem to stabilize as the sample size grows. Finally, Fig-
ure 10.19 is a CUSUM chart, which reveals no evidence against the hypothesis
of correct specification and structural stability; the CUSUM never even ap-
proaches the 5% significance boundary.

FIGURE IDi{7
Log Liquor Sales
Quadratic Trend
Regression with
Seasonal Dummies
and AR(3)
Disturbances,
Recursive Residuals
and Two-Standard-
Ervor Bands

0.10 -
0.058 o, crmr—=tdm e~~~ ——— e -1
] v
=
é 0.00 | L ' a R ‘.I l‘ ..
7 X ‘ W ’l
-
2 1. L
£ -0.05 A ———————— e e ———————— _11
S |
&
-0.10 -
_0.15 L il 1 1 1 1 1 2 hJ A JU— 1 i 4 1 A ) I S N 1
70 72 74 76 78 8]0 82 84 86 88 90 92

Time




Putting 1t All Together: A Forecasting Model with Trend, Seasonal, and Cyclical Components 213

onj WIS FIGUME 102
opon p  Trend Parameters . [ Log Liquor Sales Quadratic Trend Regression
0006 . “:" with Seasonal Dummies and AR(3) Disturbances,

0004
.o

Recursive Parameter Estimates

XL LLH

yad PR e
— 2 "" \l * —uu(mn;'.’
g e P ST
T MY A4 RR D2 7276 M) R4 RE U2
12
10|, Seasonal Parameters
H
LN 4]
v
A

Y ) Lo e

72 76 s R4 A8 W2

T2 76 R0 RE HR Y2 72 76 R0 B4 88 92

Seasonal Parameters

4

b
. o Scen =y

o LM\ et e
]

I v TR ol s -9 i i gl T
72 TH R0 B4 AN Y2 72 76 R0 ¥4 A8 92 TOTH R B4 B 92 7”7 7 R0 84 88 92

. 1
Seasonal Parameters & A

v otememees

L TSR N

6B R 8K U2

i ] YT LA [[X1 3 o8 ,
. ,
0.2 ‘
my
02
0ipt Autoregressive
' b"-' Paramcters
o b e 0 ik e 00 L .

2076 R0 At B W FEEY I, U A 72 7% 80 84 88 Y2




214

Chapter 10

FIGURE 10189
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Exercises, Problems, and Complements

1.

3.

(Serially correlated disturbances vs. lagged dependent variables) Estimate the
quadratic trend model for log liquor sales with seasonal dummies and three lags
of the dependent variable included directly. Discuss vour results and compare
them with those we obtained when we instead allowed for AR(3) disturbances in
the regression.

(Assessing the adequacy of the liquor sales forecasting maodel wend specification)
Critique the liquor sales forecasting model that we adopted (log liquor sales with
quadratic trend, seasonal dummies, and AR(3) disturbances).
a. Ifthe trend is not a good approximation to the actual trend in the series.
would it greatly affect short-run forecastsz Long-run forecasts?
Fit and assess the adequacy of a model with loglinear trend.
¢. How might you fit and assess the adequacy of a froken linear wrend? How
might vou decide on the location of the break point:

(Improving nontrend aspects of the liquor sales forecasting model) '

a. Recall our earlicr argument from Chapter 8 that best practice requires using a
X, distribution rather than a x,, distribution to assess the significance of
Qsstatistics for model residuals, where w is the number ot autocorrelations
included in the Box-Picrce statistic and & is the number of parameters
estimated. In several places in this chapter, we failed to heed this advice when
evaluating the liquor sales modecl. If we were instead to compare the residual
Qsstatistic pvalues with a x,,_, distribution. how. if at all, would our
assessment of the model’s adequacy change?

Y| thank Ron Michener, University of Virginia, for suggesting parts @ and .
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b.

Return to the log-quadratic trend model with seasonal dummies, allow for
ARMA(p. ) disturbances, and do a systematic selection of p and g using the
AIC and SIC. Do AIC and SIC select the same meodel? If not, which do vou
prefer? If vour preferred forecasting model differs trom the AR(3) that we
used, replicate the analysis in the text using vour preferred model, and
discuss vour results,

Discuss and evaluate another possible model improvement: inclusion of an
additional dummy variable indicating the number of Fridays and/or
Sawurdays in the month. Does this maodel have lower AIC or SIC than the final
model used in the textr Do vou prefer it to the one in the textz Why or why
not?

(CUSUM analysis of the housing starts model) Consider the housing starts
forecasting model that we built in Chapter 6.

a.

Perform a CUSUM analysis of a housing starts forecasting model that does
not account for cvcles. (Recall that our model in Chapter 6 did not account
for cvcles). Discuss vour results.

Specify and estimate a model that dees account for cvcles.

Do a CUSUM analvsis of the model that accounts for cvcles. Discuss your
results und compare them with those of part a.

(Model selection based on simulated forecasting performance)

a.

Return to the retail sales dawa of Chapter 5, and use recursive cross validation
to select between the linear trend forecasting model and the quadratic trend
forecasting model. Which do vou selectz How does it compare with the model
selected by the AIC and SIC?

How did vou decide on a value of T~ when performing the recursive cross
validation on the retail sales data? What are the relevant considerations?

Onc virtue of recursive cross validation procedures is their flexibility. Suppose
that vour loss function is not 1-step-ahead mean squared crror; instead,
suppose it's an assmmetric function of the 1-step-ahcad error. How would you
modifi the recursive cross validation procedure to enforce the asymmetric
loss function? How would vou proceed if the loss function were 4-step-ahead
squared error? How would vou proceed if the loss tunction were an average of
I-step-ahead through 4-step-ahead squared error?

(Seasonal models with time-varying parameters: [orecasting AirSpeed passenger-
miles) You work for a hot new startup airline, AirSpeed. modeling and forecasting
the miles per person (“passenger-miles™) wraveled on their flights through the
four quarters of the vear. During the past 15 vears for which vou have daua, it's
well known in the industry that trend passenger-miles have been flat (i.e., there

is no rend); similarly, there have been no cyclical effects. Industry experts,
however, believe thar there are strong seasonal effects, which vou think might be
very important for modeling and forecasting passenger-miles.

a.

b.

Why might airline passenger-miles be scasonal?

Fit a quarterly seasonal maodel to the AirSpeed data, and assess the
importance of seasonal effects. Do the ~ and Fuests indicate that seasonality
is important? Do the Akaike and Schwarz criteria indicate that seasonality is
important? What is the estimated seasonal pattern?

Use recursive pracedures to assess whether the seasonal coefficients are
evolving over time. Discuss vour results,

215
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d. If the seasonal coetticients are evolving over time. how mighi you model that
evolution and thereby improve vour forecasting model? (Hint: Allow for
trends in the seasonal coefticients themselves.)

e. Compare 4quarter-ahead extrapolation forecasts from your models with and
without evolving seasonality.

(Formal models of unobserved components) We've used the idea of unobserved
components as informal motivation for our models of trends, seasonals, and
cycles. Although we will not do so, it's possible to work with formal unobserved
components models, such as

)‘4=7;+SI+C,+I,.

where T is the trend component; Sis the seasonal component: € is the cvelical
component; and /is the remainder, or “irregular,” component, which is white
noise. Typically we'd assume that each component is uncorrelated with all other
components at all leads and lags. Typical models for the various components
include the following:

Trend
T, = Bo + B TIME: (deterministic)
TT=p1+ T +&y (stochastc)
Seasonal
8 = Z'w D;, (deterministic)
i=l
l .
§=—¢€y (stochastic)
11—yl
Cycle
1
C = ———
= aCwD (Y (AR(1))
1+ Bl + B ?
= ARMA(2,
S —aD(—oD)  (ARMARZD
Irregular

I =ey.

(The restrictions associated with unobserved-components structures) The
restrictions associated with formal unobserved-components models are surely
false, in the sense that real-world dynamics are not likely to be decomposable in
such a sharp and tidy way. Rather, the decomposition is effectivelv an accounting
framework that we use simply because it's helpful to do so. Trend, seasonal, and
cyclical variation are so different—and so important in business, economic, and
financial series—that it's often helpful to model them separately to help ensure
that we model each adequately. A consensus has not vet emerged as to whether
it's more effective to exploit the unobserved components perspective tor intuitive
motivation, as we do throughout this book, or to enforce formal unobserved
components decompositions in hopes of benetitting from considerations related
to the shrinkage principle.
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9.

10,

(Additive unobserved-components decomposition aund multiplicative unobserved-
components decamposition) We introduced the formal unobserved components
decomposition,

)',:7;+S,+C(+I,.

where Tis the trend component. §is the seasonal component, Cis the cyclical
component, and /is the remainder, or “irregular,” component. Alternatively, we
could have introduced a multiplicative decomposition,

= T S G I,

a. Begin with the muhiplicative decompuosition and take logs. How does your
result relate to our original additive decomposition?

b. Does the exponential (loglinear) trend fit more naturally in the additive or
multiplicative decomposition framework? Whyz

(Signal, noise, and overfitting) Using our unobserved-components perspective,
we've discussed trends, seasonals, cveles, and noise. We've modeled and
forecasted each, with the exception of noise. Clearly we can't model or forecast
the noise; by construction, it's unforecasiable. Instead, the noise is what remains
after accounting for the other components. We call the other components signals,
and the signals are buried in noise. Good models fit signals, not noise. Data-
mining expeditions, in contrast, lead to models that often fit verv well over the
historical sample but that fail miserably for out-of-sample forecasting. That's
because such data mining effectively tailors the model to fit the idiosyncracies of
the insample noise, which improves the in-sample fit but is of no help in out-of-
sample forecasting,.

a. Choose vour favorite trending (but not seasonal) series, and select a sample
path of length 100. Graph it.

b. Regress the first 20) observations on a fifth-order polynomial time trend, and
allow for five autoregressive lags as well. Graph the actual and fined values
from the regression. Discuss.

c. Use vour estimated model to produce an 80-step-ahead extrapolation forecast.
Graphically compare your forecast with the actual realization. Discuss.

Bibliographical and Computational Notes

Nerlove, Grether, and Carvalho (1979 discuss unobserved components models and
their relationship to ARMA models. Thev also provide an insightful history of the use
of unohserved components decompositions for data description and forecasting.

Harvey (1990) derives and presents the formula for r, the key element of the vari-

ance of the recursive residual. We suggested using the standard error of the regression to
estimate 0. the standard deviation of the nonrecursive regression disturbance. as sug-
gested in the original work by Brown, Durbin, and Evans (1975). Since then, a number
of authors have used an alternarive estimator of o based on the recursive residuals, which
may lead to CUSUM tests with better small-sample power. For a discussion in the context
of the dynamic models useful fur forecasting, see Kriimer, Ploberger, and Alt (1988),

Efron and Tibshirani i 19931 give an insightful discussion of forecasting model se-

lection criteria as estimates ot out-ot-sample MSE, and the natural attractiveness in that
regard of numerical methods such as cross validation and its relatives.
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Recursive cross validation is often called predictive stochastic complexity; the basic the-
ory was developed by Rissanen (1989). Kuan and Liu (1995) make good use of recur-
sive cross validation to select models for forecasting exchange rates, and they provide
additional references to the literature on the subject.

Recursive estimation and related techniques are implemented in a number of
modern software packages.

Cancepts for Review

Recursive estimation Time-varying parameters

Recursive residuals Formal model of unobserved
Parameter instability components

Standardized recursive residuals Additive unobserved-components
CUSUM decomposition

CUSUM plot Multiplicative unobservedcamponents
Random walk decomposition

Cross validation Signal, noise, and overfitting

Recursive cross validation
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Forecasting with
Regression Models

The regression model is an explicitly multivariate model, in which variables
are explained and forecast on the basis of their own history and the histories
of other, related variables. Exploiting such cross-variable linkages may lead to
good and intuitive forecasting models and to better forecasts than those
obtained from univariate models.

Regression models are often called causal or explanatory models. For
example, in the linear regression model,

y=Bo+Bix +¢
g ~ WN(0,a?),

the presumption is that x helps determine, or cause, y, not the other way
around. For this reason, the lefthand-side variable is sometimes called the
endogenous variable, and the right-hand-side variables are called exogenous or
explanatory variables.

But ultimately regression models, like all statistical models, are models of
correlation, not causation. Except in special cases, all variables are endoge-
nous, and it’s best to admit as much from the outset. Toward the end of this
chapter we'll explicitly do so; we’ll work with systems of regression equations
called vector autoregressions (VARs). For now, however, we’ll work with the stan-
dard single-equation linear regression model, a great workhorse of forecast-
ing, which we can interpret as one equation of a larger system.
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L
I. Conditional Forecasting Models
and Scenario Analysis

A conditional forecasting model is one that can be used to produce forecasts
for a variable of interest. conditional on assumptions about other variables.
With the regression model, for example, we can forecast y conditional an an
assumed future value of x.! This sort of conditional forecasting is often called
scenario analysis or contingency analysis, because a conditional forecasting
model helps us answer the “what if " questions that often arise. If we condition
on the assumption, for example, that the kstep-ahead value of x is 1}, ,, then
our kstep-ahead conditional forecasi for y is

Y7en 11 X0y = Bo+ Bixt, -

Assuming normality, we use the conditional density forecast N(y74s 7! %}, ,, 0%),
and condirional interval forecasts follow immediately from the conditional
density forecast. As always, we make the procedure operational by replacing
unknown parameters with estimates.

NENEE
2. Accounting for Parameter Uncertainty
in Confidence Intervals for Conditional Forecasts

Forecasts are of course subject to error, and scenario forecasts are no excep-
tion. There are at least three sources of such error. One important source of
forecast error is specification uncertainty. All our models are intentional sim-
plifications, which hopetfully capture the salient properties of the data for fore-
casting purposes. By using modern tools such as information criteria, residual
correlograms, and so o, in conjunction with intuition and theory, we attempt
to minimize specification uncertainty.

A second source of forecast error is innovation uncertainty, which reflects
the fact that future innovations are not known when the forecast is made. This
is the source of forecast error that we've explicitly acknowledged in our com-
putations of interval and density forecasts. We've seen, for example, that the cu-
mulative effect of innovation uncertainty tends to grow with the forecast hori-
zon, resulting in interval and density forecasts that widen with the horizon.

A third source of forecast error is parameter uncertainty. The coefficients
that we use to produce forecasts are of course just estimates, and the estimates
are subject to sampling variability. Specification and innovation uncertainty

! To enhance pedagogical clarity. we work throughout this chapter with regression models con-
taining only one right-hand-side variable. Exiensions t» models with more than one right-hand-
side variable are suraightforward.
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are likely more important than parameter uncertainty (which vanishes as the
sample size grows); in addition, the effect of parameter uncertainty on fore-
cast uncertainty is difficult to quantity in many situations. For both these rea-
sons, parameter uncertainty is often ignored, as we have done thus far.

When using a conditional forecasting model, however, simple calculations
allow us to quantifv both innovation and parameter uncertainty. Consider, for
example, the very simple case in which x has a zero mean and

Y= Bx, +¢&.

Suppose we want to predict yr.» at xp4p = x5, If x50 = x7,, then

Yren = Bxpyy + Eren
Thus,

Yrear| Xpip = ﬁx;‘-H‘a '
with corresponding error

eTent = Yren = 3Ten7| ¥r0p = (B — é)x;--,, + &7y
Therefore,
var(ér,nr) = x;i,, var(B) + o?.

We won't do so here, but it can be shown that®

2
var(ﬁ) = 7(_7 .

Thus, we arrive at the final formula,

2

- *2 v
var(ére, 1) = T Xpgtoo .

2
Ex/

t=1
In this expression, the first term accounts for parameter uncertainty, while
the second accounts for the usual innovation uncertainty. Taken together, the
results suggest an operational density forecast that accounts for parameter
uncertainty,

b
o2
T
2
2
t=1

from which interval forecasts may be constructed as well.

A = 2 Ay
N BxT+h’ xT+h+° ’

2 See any of the elementary statistics or econometrics texts cited in Chapter 1.

221



222 Chapter 11

FIGURE 1.
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Note: Top panel interval forecasts don t acknowledge parameter uncertainty; bottom panel inter-
val forecgsls do acknowledge parameter uncertainty. To produce the figure, we set § = 0, a2 = 1,
and ¥ x; = 50.

Note that when parameter uncertainty exists, the closer x%,, is to its mean
(0), the smaller is the prediction-error variance. The idea can be shown to
carry over to more complicated situations when yand x don’t necessarily have
zero means and to models with more than one regressor: The closer x is to its
mean, the tighter is the prediction interval. We illustrate the situation in Fig-
ure 11.1; the top panel shows constant intervals (£1.960) that fail 1o account
for parameter uncertainty, and the bottom panel shows the intervals of vary-
ing width that account for parameter uncertainty. Finally, note that as the

sample size gets large, Z x gets large as well, so the adjustment for parameter

uncertainty vanishes, and the formula collapses to our old one.
The discussion of this section depends on the future value of x being
known with certainty, which is acceptable in the case of conditional forecasts,
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in which case we're simply conditioning on an assumption about future x3 If
we don’t want to condition on an assumption about future x, or if we’re using
certain more complicated models (e.g., those with dynamics), the formula
does not apply. We now turn to such situations and models.

A . B
3. Unconditional Forecasting Models

Nowithstanding the usefulness of scenario analyses, often we don’t want to
make forecasts of y conditional on assumptions about x; rather, we just want
the best possible forecast of y—an unconditional forecast. To get an uncondi-
tional forecast from a regression model, we often encounter the forecasting
the right-hand-side variables problem. That is, to get an optimal unconditional
point forecast for y, we can't insert an arbitrary value for fuure x; rather, we
need to insert the optimal point forecast, xr. 7, which yields the uncondi-
tional forecast

Yrent = Bu+ BrXranT -

Of course, we usually don’t have such a forecast for x, and the model at hand
doesn’t help us. (It’s a model for y—we don't have a model for x.)

One thing we might do is fit a univariate model to x (e.g.. an autoregres-
sive model), forecast x (i.e., form X7, 1), and then use that forecast of x to
forecast y. But just as easilv—in fact, preferably—we can estimate all the para-
meters simultaneously by regressing yon x,_y, X;_s_1. . ... If we want to forecast
only one step ahead, we could use the model

)‘I=Bo+sxr—]+€l-

The right-hand-side variable is lagged by one period, so the model is immedi-
ately useful for 1-step-ahead unconditional forecasting. More lags of x can of
course be included: the key is that all variables on the right are lagged by at
least one period. Forecasting more than one step ahead, however, again leads
to the problem of forecasting the right-hand-side variables—if we want to
forecast A steps ahead, all variables on the right must be lagged by at least
h periods.

In a few important special cases, the problem of forecasting the right-
hand-side variables doesn't arise, because the regressors are perfectlv deter-
ministic, so we know exactly what thev’ll be at any future time. The trend and
seasonal models discussed in Chapters 5 and 6 are leading examples. Such
cases are arypical, however.

3 The discussion also applies to forecasting in cross-sectional environments, in which forecasts are
almost always conditional. Suppose, for example, that we estimate a regression model relating ex-
penditure on restaurant meals to incone. using cross-section data on 1000 households for 1997.
Then, if we get 1997 income data for an additional set of people, we can use it to forecast their
restaurant expenditures.
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4. Distributed Lags, Polynomial Distributed Lags,
and Rational Distributed Lags

An unconditional forecasting model like
w=8+ dx_1 +E&

can be immediately generalized to the distributed lag model,
Ny
y»= BO'*'Z&'M—F*‘& .
=1

We say that y depends on a distributed lag of past x's. The coefficients on
the lagged x’s are called lag weights, and their pattern is called the lag
distribution.

One way to estimate a distributed lag model is simply to include all N, lags
of xin the regression, which can be estimated by least squares in the usual way.
In many situations, however, N, might be quite a large number, in which case
we’d have to use many degrees of freedom to estimate the model, violating the
parsimony principle. Often we can recover many of those degrees of freedom
without seriously worsening the model’s fit by constraining the lag weights
to lie on a low-order polynomial. Such polynomial distributed lags promote
smoothness in the lag distribution and may lead to sophisticatedly simple
models with improved forecasting performance.

Polynomial distributed lag models are estimated by minimizing the sum of
squared residuals in the usual way, subject to the constraint that the lag
weights follow a low-order polynomial whose degree must be specified. Sup-
pose, for example, that we constrain the lag weights to follow a second-degree
polynomial. Then we find the parameter estimates by solving the problem

T N, 2
min Z ¥r—Bo— Z Sx-, ) ,
B8 N, +1 =1

subject to
&=Pi)=a+bi+ci® i=1,...,N,.

This converts the estimation problem from one of estimating 1 + N, parame-
ters, Bg, 8y, ..., By,, to one of estimating four parameters, By, 4, b, and ¢ Some-
times additional constraints are imposed on the shape of the polynomial,
such as

P(N,)=0,

which enforces the idea that the dynamics have been exhausted by lag N..
Polynomial distributed lags produce aesthetically appealing, bui basically

ad hoc, lag distributions. After all, why should the lag weights necessarily fol-

low a low-order polynomial? An alternative and ofien preferable approach
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makes use of the rational distributed lags that we introduced in Chapter 7 in
the context of univariate ARMA modeling. Rational distributed lags promote
parsimony, and hence smoothness in the lag distribution, but they do so in a
way that’s potentially much less restrictive than requiring the lag weights to fol-
low a low-order polynomial. We might, for example, use a model like

where A(L) and B(L) are low-order polynomials in the lag operator. Equiva-
lently, we can write

B(L)y, = A(L)x, + B(L)g, ,

which emphasizes that the rational distributed lag of x actually brings both
lags of x and lags of y into the model. One way or another, it's crucial to allow
for lags of y, and we now study such models in greater depth.

BEREEEN -
8. Regressions with Lagged Dependent Variables,

Regressions with ARMA Disturbances, and Transfer

Function Models

There’s something missing in distributed lag models of the form
N
n=pm+ Z&'xr—i +€.
i=]

A multivariate model (in this case, a regression model) should relate the cur-
rent value y to its own past and 1o the past of x. But as the model is presently
written, we've left out the past of y! Even in diswributed lag models, we always
want to allow for the presence of the usual univariate dynamics, Put differ-
ently, the included regressors may not capture all the dynamics in y, which we
need to model one way or another. Thus, for example, a preferable model in-
cludes lags of the dependent variable,

N, AL
y=PBo+ Za:_\‘r-l + Z 8,’%-,‘ +&.
=] i=1

This model. a distributed lag regression model with lagged dependent vari-
ables, is closely related to. but not exactly the same as, the rational distributed
lag model introduced earlier. (Why?) You can think of it as arising by begin-
ning with a univariate autoregressive model for y and then introducing addi-
tional explanatory variables. If the lagged y’s don’t play a role, as assessed with
the usual tests, we can alwavs delete them, but we never want to eliminate from
the outset the possibilitv that lagged dependent variables play a role. Lagged
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dependent variables absorb residual serial correlation and can dramatically
enhance forecasting performance.

Alternatively, we can capture own-variable dvnamics in distributed lag re-
gression models by using a distributed lag regression model with ARMA dis-
turbances. Recall that our ARMA(p, ) models are equivalent to regression
models, with only a constant regressor and with ARMA(p, ¢) disturbances:

¥y =B+ E
. _9W
T

v, ~ WN(O, ?) .

We want to begin with the univariate model as a baseline and then generalize
it to allow for multivariate interaction, resulting in models such as

N,
¥ =B+ z&'x:—.’ + &
i=1

(L)
(L)

v, ~ WN(Q, ¢?).

,:

v,

Regressions with ARMA disturbances make clear that regression (a statistical
and econometric tool with a long tradition) and the ARMA model of time
series dynamics (a more recent innovation) are not at all competitors; rather,
when used appropriately. they can be highly complementary.

It turns out that the distributed lag regression model with autoregressive
disturbances—a great workhorse in econometrics—is a special case of the
more general model with lags of both yand xand white noise disturbances. To
see this, let’s take the simple example of an unconditional (I-step-ahead)
regression forecasting model with AR(1) disturbances:

Yi=Bu+Bix-_1 +E&
€ =¢&_) + v
v, ~ WN(©,o?).
In lag operator notation, we write the AR(1) regression disturbance as
(I -9l =uv,,
or

1
£ = ——u.
T -eL)

Thus, we can rewrite the regression model as

1

Y =By +Brx + ﬂ_—wv:-
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Now multiply both sides bv (1 — ¢ L) to get
—¢Lllyy=Q0-0)Bo+B:(1-¢L)xy + v,
or
Y=¢y-+ T —@Bu+Pixis —ePix_2+ v, .

Thus, a model with one lag of x on the right and AR(1) disturbances is equiv-
alent to a model with y,_y, x,_;, and x,_, on the right-hand side and white
noise errors, subject to the restriction that the coefficient on the second lag of
x,_y is the negative of the product of the coefficients on y,_, and x,_,.

Distributed lag regressions with lagged dependent variables are more
general than distributed lag regressions with dynamic disturbances. Transfer
function models are more general still and include both as special cases. The
basic idea is to exploit the power and parsimony of rational distributed lags in
modeling both own-variable and cross-variable dynamics. Imagine beginning
with a univariate ARMA model,

_ C(L)E
= D(L) ]
Name Model Restrictions TABLE 1t The
Transfer Function
i A(L) C(L) . Model and Various
Transfer function = m)-x, + m ,  None Special Cases
Standard distributed lag Y= AL)x + & BlLy=C(L)=D(L)=1
L
Rational distributed lag = %\7 + & C(Ly=D(L)y=1
. - ] — —
Univariate AR ¥ = ms, ALy=0,C(L)=1
Univariate MA ¥ = C(L)g, A(L)=0,D(LY=1
C
Univariate ARMA = %E, A(L)=0
Distributed lag with B(L)y; = A(L)x; + €, 0r
lagged dependent variables AL) 1
o= —_ C =1,D =
i B(L) X Bl )El (L)=1,D(L) = B(L)
. . C(l ) _
Distributed lag with yo = A(Lyx; + —— DL BL)y=1
ARMA disturbances "
Distributed lag with ¥ = ALy, + —— D(l) B(L)=C(L)=1

AR disturbances

* Table 11.1 displays a variety of important forecasting models, all of which are special cases of the

transfer function model.
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which captures own-variable dynamics using a rational distributed lag. Now ex-
tend the model to capture crossvariable dynamics using a rational distributed
lag of the other variable, which yields the general transfer function model,

A(L) C(L)
= —X ———E, -
B(L) D(L)

~

Distributed lag regression with lagged dependent variables is a potentially re-
strictive special case, which emerges when C(L) =1 and B(L) = D(L). (Verify
this for yourself.) Distributed lag regression with ARMA disturbances is also a
special case, which emerges when B(L) = 1. (Verify this, too.)

In practice, the important thing is to allow for own-variable dvnamics some-
how, in order to account for dynamics in y not explained by the right-hand-side
variables. Whether we do so by including lagged dependent variables, or by
allowing for ARMA disturbances, or by estimating general transfer function
models, can occasionally be important, but usually it’s a comparatively minor
Issue.

NEREE
B. Vector Autoregressions

A univariate autoregression involves one variable. In a univariate autoregres-
sion of order p, we regress a variable on p lags of itself. In contrast, a multi-
variate autoregression—that is, a vector autoregression, or VAR—involves N
variables. In an N-variable vector autoregression of order p, or VAR(p), we
estimate N different equations. In each equation, we regress the relevant left-
hand-side variable on p lags of itself and p lags of every other variable.” Thus, the
right-hand-side variables are the same in every equation—p lags of every
variable.

The key point is that, in contrast to the univariate case, vector autoregres-
sions allow for cross-variable dynamics. Each variable is related not only to its
own past but also to the past of all the other variables in the system. In a two-
variable VAR(1), for example, we have two equations, one for each variable
(y and y). We write

Y =@u¥a-t + Praye—1 + €,

Y20 = Qo ¥1,-1 + Poa ¥, -1 + €y, .

Each variable depends on one lag of the other variable in addition to one lag of
itself; that's one obvious source of multivariate interaction captured by the VAR
that may be useful for forecasting. In addition, the disturbances may be corre-
lated, so that when one equation is shocked., the other will typically be shocked

" Trends, seasonals, and other exogenous variables may also be included, as long as thev're all
included in every equation.
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as well, which is another rvpe of multivariate interaction that univariate models
miss. We summarize the disturbance variance-covariance structure as

€. ~ WN(O, c’IL,)
€2, ~ WN(0. 63)
cov(€, ,, €2,) = Ojs .

The innovations could be uncorrelated, which occurs when o,y = 0, but they
needn’t be.

You might guess that VARs would be hard to estimate. After all, they're
fairly complicated models, with potentially many equations and many right-
hand-side variables in each equation. In fact, precisely the opposite is true.
VARs are very easy to estimate, because we need only run N linear regressions.
That's one reason why VARs are so popular—OLS estimation of autoregressive
models is simple and stable, in contrast to the numerical estimation required
for models with moving average components.® Equation-by-equation OLS
estimation also turns out to have very good statistical properties when each
equation has the same regressors, as is the case in standard VARs. Otherwise,
a more complicated estimation procedure called seemingly unrelated regression,
which explicitly accounts for correlation across equation disturbances, would
be required to obtain estimates with good statistical properties.’

When fitting VARSs to data, we use the Schwarz and Akaike criteria, just as
in the univariate case. The formulas differ, however, because we're now work-
ing with a multivariate system of equations rather than a single equation. To
get an AIC or SIC value for a VAR system, we could add up the equation-by-
equation AICs or SICs, but, unfortunately, doing so is appropriate only if the
innovations are uncorrelated across equations, which is a very special and un-
usual situation. Instead, explicitly multivariate versions of the AIC and SIC—
and more advanced formulas—are required that account for cross-equation
innovation correlation. It’s bevond the scope of this book to derive and pre-
sent those formulas, because they involve unavoidable use of matrix algebra,
but fortunately we don’'t need to. Thev're preprogrammed in many computer
packages, and we interpret the AIC and SIC values computed for VARs of var-
ious orders in exactly the same way as in the univariate case: We select that
order p such that the AIC or SIC is minimized.

We construct VAR forecasts in a way that precisely parallels the univariate
case. We can construct ]-step-ahead point forecasts immediately, because all
variables on the right-hand side are lagged by one period. Armed with the
1-step-ahead forecasts, we can construct the 2-step-ahead forecasts, from which

5 Estimation of MA and ARMA models is stable enough in the univariate case but rapidlv becomes
unwieldy in multivariate siruations. Hence. multivariate ARMA models are used infrequendly in
practice, in spite of the potential thev hold for providing parsimonious approximations to the
Wold representation,

7 For an exposition of seeminglv unrelated regression, see Pindyck and Rubinfeld (1991).
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we can construct the 3-step-ahead forecasts, and so on in the usual way, follow-
ing the chain rule of forecasting. We construct interval and density forecasts in
ways thar also parallel the univariate case. The multivariate nature of VARs
makes the derivations more tedious, however. so we bypass them. As always, to
construct practical forecasts we replace unknown parameters by estimates.

P
1. Predictive Causality

There's an important statistical notion of causality that's intimately related to
forecasting and naturally introduced in the context of VARs. It is based on two
key principles: First, cause should occur before effect; second, a causal series
should contain information useful for forecasting that is not available in the
other series (including the past history of the variable being forecast). In
the unrestricted VARs that we've studied thus far, everything causes evervthing
else, because lags of every variable appear on the right of every equation.
Cause precedes effect because the right-hand-side variables are lagged, and
each variable is useful in forecasting every other variable.

We stress from the outset that the notion of predictive causality contains
little if any information about causality in the philosophical sense. Rather,
the statement "y, causes y,” is just shorthand for the more precise but long-
winded statement "y, contains useful information for predicting y; (in the
linear least-squares sense), over and above the past histories of the other
variables in the svstem.” To save space, we simply say that y, causes y;.

To understand what predictive causality means in the context of a VAR(p),
consider the jth equation of the N-equation system, which has y;on the left
and p lags of each of the .\ variables on the right. If y, causes y;, then at least
one of the lags of y, that appear on the right side of the y,cquation must have
a nonzero coefficient,

It's also useful to consider the opposite situation, in which y; does not cause
3 In that case, all of the lags of that y, that appear on the right side of the y;
equation must have zero coefficients.” Statistical causality tests are based on
this formulation of noncausality. We use an F-test to assess whether all coeffi-
cients on lags of y; are jointly 0.

Note that we’ve defined noncausality in terms of I-step-ahead prediction
errors, In the bivariate VAR, this implies noncausality in terms of lstep-ahead
prediction errors, for all A (Why?) In higher dimensional cases, things are
trickier; l-step-ahead noncausality does not necessarily imply noncausality at
other horizons. For example, variable i may l-siep-cause variable j, and vari-
able j may l-step-cause variable & Thus, variable / 2-step-causes variable & but
does not 1-step-cause variable k.

¥ Note that in such a situation the error variance in forecasting y; using lags of all variables in
the svstem will be the same as the error variance in forecasting y, using lags of all variables in the
systemn excep! v
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Causalitv tests are ottet ised whien Dwldmy and assessing forecasting
maodels, because they can it e us aboart thase parts of the workings of com-
plicated multivariate models thar are particularly relevant for forecasting. just
staring at the coetficients of an estimated VAR (and in complicated systems
there are many coefficients) rarelv vields insights into its workings. Thus, we
need tools that help us to see through to the practical forecasting properties
of the model that concern us. And we often have keen interest in the answers
to questions such as "Does vi contribute toward improving forecasts of y;2" and
“Does jy; contribute toward improving forecasts of y;:™ If the results violate
intuition or theory, then we might scrutinize the model more closely. [n a sit-
uation in which we can’t reject a certain noncausality hvpothesis, and neither
intuition nor theory makes us uncomfortable with it, we might want to impose
it, by omitting certain lags of certain variables from certain equations.

‘arious types of causalitv hvpotheses are sometimes entertained. In any
equation (the jth. sav), we 've already discussed testing the simple noncausality
hypothesis that

a. No lags of variable /aid in 1-step-ahead prediction of variable ;.

We can broaden the idea, however. Sometimes we test stronger noncausality
hypotheses such as

b. No lags of a set of other variables aid in l-step-ahead prediction of vari-
able j.
c. No lags of anry ather variables aid in 1-step-ahead prediction of variable j.

All of hypotheses a, b, and ¢ amount to assertions that various coefficients are 0,
Finally, sometimes we test noncausality hypotheses that involve more than one
equation, such as

d. No variable in a set A causes any variable in a set B, in which case we say
that the variables in A are block noncausal for those in B.

This particular noncausality hvpothesis corresponds to exclusion restrictions
that hold simultaneously in a number of equations. Again, however, standard
test procedures are applicable.

[ T I O B AR I
8. Impulse-Respanse Functions and Variance
Decompaositions

The impulse-response function is another device that helps us to learn about
the dynamic properties of vector autoregressions of interest to forecasters.
We'll introduce it first in the univariate context, and then we'll move to VARs,
The question of interest is simple and direct: How does a unit innovation to a
series affect it, now and in the future? To answer the question, we simply read
off the coefficients in the moving average representation of the process.
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We're used to normalizing the coefficient on g, to unity in moving average
representations, but we don’t have to do so: more generally, we can write

= bo€r + €y + b€y + -
g ~ WN(0,0Y) .

The additional generality introduces ambiguity, however, because we can al-
ways multiply and divide every g, by an arbitrary constant m, vielding an equiv-
alent model but with different parameters and innovations,

1 1 1
= (bn‘rn)(—e,) + (bym) (—E/-u) + (bam) (—El_u) +e
m m m

£ ~ WN(,c?)
or

_n=bg b +bE , + -

-
E; ~ WN (0. m) y

where b, = b;m and€, = & .

To remove the ambiguity, we must set a value of m. Typically we set m =1,
which yields the standard form of the moving average representation. For
impulse-response analysis, however, a different normalization turns out to be
particularly convenient; we choose m = o, which vields

n = (o) (ler) + (bo) (lgl-l) + (o) (151-‘1) + -
o (4 a

€, ~ W}V(O, 0'2) "
or
yo=by€, + Big,_, +big_y + -
g ~ WN(@©, 1),

where ¥, = b,0 and €, = &, Taking m = ¢ converts shocks to “standard devia-
tion units,” because a unit shock to €, corresponds to a one-standard-deviation
shock to €.

To make matters concrete, consider the univariate AR(1) process,

Y =@y T &
g, ~ WN(0,¢?).
The standard moving average form is
Yo =€+ & +¢7€ s+ ---
€ ~ WN(,0?),
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and the equivalent representation in standard deviation units is
»= bue: + b]E:_l + 1)28:_2 + ..
€ ~ WN(0,1),

where b, = ¢’ and €, = % The impulse-response function is {bg, &, ...}. The
parameter k, is the contemporaneous effect of a unit shock to g or, equiva-
lently, a one-standard-deviation shock to €,; as must be the case, then, b, = .
Note well that by gives the immediate effect of the shock at time ¢, when it hits.
The parameter b;, which multiplies €, _,, gives the etfect of the shock one pe-
riod later, and so on. The full set of impulse-response coefficients, {&, &, . . .},
tracks the complete dynamic response of y to the shock.

Now we consider the multivariate case. The idea is the same, but there are
more shocks to track. The key question is, “How does a unit shock to g; affect
3;» now and in the future, for all the various combinations of i and j?”
Consider, for example, the bivariate VAR(1),

Y= @Y1 Pt €y
Y20 = @ ¥i-1 + Qoa¥a 1 + Ex
€., ~ WN(0, o})
€2, ~ WN(0, 0})

COV(E], ) =0y .

The standard moving average representation, obtained by back substitution, is
=€y + e €1 + Q€21+
Yo =&z + @€y -) + Py 1+ -
€1, ~ WN(0, a})
€2, ~ WN(0. 63)
cov(€), &) = Oy .

Just as in the univariate case, it proves fruitful to adopt a different normaliza-
tion of the moving average representation for impulse-response analysis. The
multivariate analog of our univariate normalization by o is called normalization
by the Cholesky factor” The resulting VAR moving average representation has a
number of useful properties that parallel the univariate case precisely. First,
the innovations of the transformed system are in standard deviation units.
Second, although the current innovations in the standard representation have
unit coefficients, the current innovations in the normalized representation
have nonunit coefficients. In fact, the first equation has only one current

¥ For detailed discussion and derivation of this advanced topic, see Hamilion (1994).
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innovation, &;,. (The other has a 0 coefficient.) The second equation has both
current innovations. Thus, the ordering of the variables can matter.!®
If y; is ordered first, the normalized representation is

o= bngy, + b+ by,
Yo = b€, + bg€h, + b€l g + bl oy +-
g,~ WN(©O,1
€, ~ WN(O,1)
cov(e}, &) =0
Alternatively, if yo ordered first, the normalized representation is
yo. = bu€h, + b€l + béﬁe;.l—l +--
Yo =BUE; + bio€s, + BEL s + b€l +
€, ~ WNOU1)
&, ~ WN(QO,1)
cov(E), &) =0

Finally, the normalization adopted yields a 0 covariance between the distur-
bances of the transformed system. This is crucial, because it lets us perform
the experiment of interest—shocking one variable in isolation of the others,
which we can do if the innovations are uncorrelated but can’t do if they’re cor-
related, as in the original unnormalized representation.

After normalizing the system, for a given ordering—say, y; first—we com-
pute four sets of impulse-response functions for the bivariate model: response

of y to a unit normalized innovation to )1. Ib“, b,,, b“, ...}, response of y, to
a unit normalized innovation to jv, {b,g, bfz....}, response of j to a unit
normalized innovation to ), {b;,, b;z, bﬁg, ...}, and response of w to a unit
normalized innovation to yi, [b.“, ,,, b,,, ...}. Typically we examine the set of

impulse-response functions graphically. Often it turns out that impulse-
response functions aren’t sensitive to ordering, but the only way to be sure is to
check.!!

In practical applications of impulse-response analysis, we simply replace
unknown parameters by estimates, which immediately yields point estimates
of the impulse-response functions. Getting confidence intervals for impulse-
response functions is trickier, however, and adequate procedures are still
under development.

" In higher-dimensional VARs, the equation that's first in the ordering has only one current in-
novation, €],. The equation that’s second has only current innovations €|, and g5,: the equation
that’s third has only current innovations €}, €),, and €5,; and so on.

1! Note well that the issues of normalization and ordering only affect impulse-response analysis;
for forecasting, we only need the unnormalized model.
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Another way of characterizing the dynamics associated with VARs,
closely related to impulse-response functions, is the variance decomposition.
Variance decompositions have an immediate link to forecasting—they answer
the question "How much of the hstep-ahead forecast error variance of vari-
able 7 is explained by innovations to variable j, for A =1, 2, ... ?" As with
impulse-response functions, we typically make a separate graph for everv (i, ;)
pair. Impulse-response functions and the variance decomnpositions present the
same information (although they do so in different ways). For that reason, it’s
not strictly necessary to present both, and impulse-response analysis has
gained greater popularity. Hence, we offer only this brief discussion of vari-
ance decomposition. In the application to housing starts and completions that
follows, however, we examine both impulse-response functions and variance
decompositions. The two are highly complementary, as with information cri-
teria and correlograms for model selection, and the variance decompositions
have a nice forecasting motivation.

NN
9. Application: Housing Starts and Completions

We estiiate a bivariate VAR for U.S. seasonally adjusted housing starts and
completions, two widely watched business cycle indicators, 1968.01-1996.06.
We use the VAR to produce point extrapolation forecasts. We show housing
starts and completions in Figure 11.2. Both are highly cyclical, increasing dur-
ing business cycle expansions and decreasing during contractions. Moreover,

FIGURE 1.2 U.S. Housing Starts and Completions, 1968.01-1996.06
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completions tend to lag behind starts, which makes sense because a house
takes time to complete.

We split the data into an estimation sample, 1968.01-1991.12, and a holdout
sample, 1992.01-1996.06, for forecasting. We therefore perform all model
specification analysis and estimation, to which we now turn, on the
1968.01-1991.12 data. We show the starts correlogram in Table 11.2 and Fig-
ure 11.3. The sample autocorrelation function decays slowly, whereas the sam-
ple partial autocorrelation function appears to cut off at displacement 2. The
patterns in the sample autocorrelations and partial autocorrelations are
highly statistically significant, as evidenced by both the Bartlett standard errors
and the Ljung-Box Q-tatistics. The completions correlogram, in Table 11.3
and Figure 11.4, behaves similarly.

TABLE W2
Starts Correlogram

Sample: 1968:01 1991:12
Included observations: 288

Acorr. P. Acorr. Std. Error Ljung-Box p-value

1 0.937 0.937 0.059 255,24 0.000
2 0.907 0.244 0.059 495.53 0.000
3 0.877 0.054 0.059 720.95 0.000
4 0.838 -0.077 0.059 927.39 0.000
5 0.795 —0.096 0.059 1113.7 0.000
6 0.751 —0.058 0.059 1280.9 0.000
7 0.704 ~0.067 0.059 1428.2 0.000
8 0.650 —0.098 0.059 1554.4 0.000
9 0.604 0.004 0.059 1663.8 0.000
10 0.544 -0.129 0.059 1752.6 0.000
11 0.496 0.029 0.059 1826.7 0.000
12 0.446 —0.008 0.059 1886.8 0.000
13 0.405 0.076 0.059 1936.8 0.000
14 0.346 —0.144 0.059 1973.3 0.000
15 0.292 -0.079 0.059 1999.4 0.000
16 0.233 -0.111 0.059 2016.1 0.000
17 0.175 —0.050 0.059 2025.6 0.000
18 0.122 -0.018 0.059 2030.2 0.000
19 0.070 0.002 0.059 2031.7 0.000
20 0.019 -0.025 0.059 2031.8 0.000
21 -0.034 —0.032 0.059 2032.2 0.000
22 -0.074 0.036 0.059 2033.9 0.000
23 —0.123 —0.028 0.059 2038.7 0.000
24 —0.167 -0.048 0.059 2047 4 0.000
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We’ve not yet introduced the cross-correlation function. There's been no
need, because it’s not relevant for univariate modeling. It provides important
information, however, in the multivariate environments that now concern us.
Recall that the autocorrelation function is the correlation between a variable
and lags of itself. The cross-correlation function is a natural multivariate ana-
log; it’s simply the correlation between a variable and lags of another variable.
We estimate those correlations using the usual estimator and graph them as a
function of displacement along with the Bartlett two-standard-error bands,
which apply just as in the univariate case.

The cross-correlation function (Figure 11.3) for housing starts and com-
pletions is very revealing. Starts and completions are highly correlated at all

FIGURE Wt 3
Starts, Sample
Autocorrelations
and Partial
Autocorrelations
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TABLE .3 Sample: 1968:01 1991:12
Completions Included observations: 288
Correlogram
Acorr. P. Acorr. Std. Error Ljung-Box pvalue
1 0.939 0.939 0.059 256.61 0.000
2 0.920 0.328 0.059 504.05 0.000
3 0.896 0.066 0.059 739.19 0.000
4 0.874 0.023 0.059 963.73 0.000
5 0.834 -0.165 0.059 1168.9 0.000
6 0.802 —0.067 0.059 1359.2 0.000
7 0.761 —0.100 0.059 1531.2 0.000
8 0.721 -0.070 0.059 1686.1 0.000
9 0.677 —0.055 0.059 1823.2 0.000
10 0.633 —0.047 0.059 1943.7 0.000
1 0.583 —0.080 0.059 2046.3 0.000
12 0.533 -0.073 0.059 2132.2 0.000
13 0.483 -0.038 0.059 2203.2 0.000
14 0.434 —0.020 0.059 2260.6 0.000
15 0.390 0.041 0.059 2307.0 0.000
16 0.337 —0.057 0.059 2341.9 0.000
17 0.290 —-0.008 0.059 2367.9 0.000
18 0.234 —-0.109 0.039 2384.8 0.000
19 0.181 —0.082 0.059 2395.0 0.000
20 0.128 —0.047 0.059 2400.1 0.000
21 0.068 —-0.133 0.059 2401.6 0.000
22 0.020 0.037 0.059 2401.7 0.000
23 -0.038 -0.092 0.059 2402.2 0.000
24 -0.087 —0.003 0.059 2404.6 0.000

displacements, and a clear pattern emerges as well: Although the contempo-
raneous correlation is high (0.78), completions are maximally correlated with
starts lagged by roughly 6-12 months (around 0.90). Again, this makes good
sense in light of the time it takes to build a house.

Now we proceed to model starts and completions. We need to select the
order, p, of our VAR(p). Based on exploration using multivariate versions of
SIC and AIC, we adopt a VAR(4).

First consider the starts equation (Table 11.4), residual plot (Figure 11.6).
and residual correlogram (Table 11.5 and Figure 11.7). The explanatory power
of the model is good, as judged by the R? as well as the plots of actual and fitted
values, and the residuals appear white, as judged by the residual sample auto-
correlations, partial autocorrelations, and Ljung-Box statistics. Note as well that
no lag of completions has a significant effect on starts, which makes sense—
we obviously expect starts to cause completions, but not conversely. The
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completions equation (Table 11.6), residual plot (Figure 11.8), and residual
correlogram (Table 11.7 and Figure 11.9) appear similarly good. Lagged starts,
moreover, most definitely have a significant effect on completions.

Table 11.8 shows the results of formal causality tests. The hypothesis that
starts don’t cause completions is simply that the coefficients on the four lags
of starts in the completions equation are all 0. The Fstatistic is overwhelmingly
significant, which is not surprising in light of the previously noticed highly
significant #statistics. Thus, we reject noncausality from starts to completions
at any reasonable level. Perhaps more surprising is the fact that we also reject
noncausality from completions to starts at roughly the 5% level. The causality
appears bidirectional, in which case we say there is feedback.

To get a feel for the dynamics of the estimated VAR before producing fore-
casts, we compute impulse-response functions and variance decompositions.

FIGURE 1.4
Completions, Sample
Aulocorrelations
and Partial
Autocorrelations
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Note: We graph the sample correlation between completions at time t and starts at time
t—4,i=1,2,...,24
TABLE ti.4a LS // Dependent variable is STARTS.
VAR Starts Sample (adjusted): 1968:05 1991:12
Equation Included observations: 284 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

Cc 0.146871 0.044235 3.820264 0.0010

STARTS(-1) 0.659939 0.061242 10.77587 0.0000

STARTS(-2) 0.229632 0.072724 3.157587 0.0018

STARTS(-3) 0.142859 0.072655 1.966281 0.0503

STARTS(—4) 0.007806 0.066032 0.118217 0.9060

COMPS(—1) 0.031611 0.102712 0.307759 0.7585

COMPS(—2) —0.12078] 0.103847 —1.163069 0.2458

COMPS(-3) —0.020601 0.100946 —0.204078 0.8384

COMPS(~4) -—0.027404 0.094569 —0.289779 0.7722

R 0.895366 Mean dependent var. 1.574771
Adjusted R? 0.892528 SD dependent var. 0.382362
SE of regression 0.125350 Akaike info criterion —4.122]118
Sum squared resid. 4.320952 Schwarz criterion —4.006482
Log likelihood 191.3622 Fstatistic 294.7796
Durbin-Watson stat. 1.991908 Prob{F=statistic) 0.000000
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Sample: 1968:01 1991:12 TABLE NS
Included observations: 284 VAR Starts
Equation, Residual
Acorr. P. Acorr. Std. Error Ljung-Box pvalue Correlogram
i 0.001 0.001 0.059 0.0004 0.985
2 0.003 0.003 0.059 0.0029 0.999
3 0.006 0.006 0.059 0.0119 1.000
4 0.023 0.023 0.059 0.165H0 0.997
5 —-0.013 -0.013 0.059 0.2108 0.999
6 0.022 0.021 0.059 0.3463 0.999
7 0.038 0.038 0.059 0.7646 0.998
8 -0.048 —0.048 0.059 1.4362 0.994
9 0.056 0.056 0.059 2.3528 0.985
10 -0.114 -0.116 0.059 6.1868 0.799
11 —0.038 —-0.038 0.059 6.6096 0.830
12 —0.030 —-0.028 0.059 6.8763 0.866
18 0.192 0.193 0.059 17.947 0.160
14 0.014 0.021 0.059 18.010 0.206
15 0.063 0.067 0.059 19.199 0.205
16 —0.006 -0.015 0.059 19.208 0.258
17 -0.039 —0.035 0.059 19.664 0.292
18 -0.029 —0.043 0.059 19.927 0.337
19 —-0.010 -0.009 0.059 19.959 0.397
20 0.010 —-0.014 0.059 19.993 0.458
21 -0.057 —0.047 0.059 21.003 0.459
22 0.045 0.018 0.059 21.644 0.481
23 -0.038 0.011 0.059 22.088 0.515

24 —-0.149 —0.141 0.059 29.064 0.218
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FIGURE 117
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We present results for starts first in the ordering, so that a current innovation
to starts affects only current starts, but the results are robust to reversal of the
ordering.

Figure 11.10 displays the impulse-response functions. First let’s consider
the own-variable impulse responses—that is, the effects of a starts innovation
on subsequent starts or a completions innovation on subsequent completions.
The effects are similar. In each case, the impulse response is large and decays
in a slow, approximately monotonic fashion. In contrast, the cross-variable im-
pulse responses are very different. An innovation to starts produces no move-
ment in completions at first, but the effect gradually builds and becomes
large, peaking at about 14 months. (It takes time to build houses.) An innova-
tion to completions, however, produces little movement in starts at any time.
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LS // Dependent variable is COMPS. TABLE 1.6
Sample(adjusted): 1968:05 1991:12 VAR Completions
Included observations: 284 after adjusting endpoints Equation
Variable Coefficient Std. Error t-Statistic Prob.

¢ 0045347 0.025794 1.758045 0.0799

STARTS(-1) 0.074724 0.035711 2.092461 0.0373

STARTS(-2) 0.040047 0.042406 0.944377 0.3458

STARTS(—-3) 0.047145 0.042366 1.112805 0.2668

STARTS(—4) 0.082331 0.038504 2.138238 0.0334

COMPS(-1) 0.236774 0.059893 3.953313 0.0001

COMPS(-2) 0.206172 0.060554 3.404742 0.0008

COMPS(—3) 0.120998 0.058863 2.055593 0.0408

COMPS(-4) 0.156729 0.055144 2.842160 0.0048

R 0.936835 Mean dependent var. 1.547958

Adjusted R* 0.934998 SD dependent var. 0.286689

SE of regression 0.073093 Akaike info criterion —5.200872

Sum squared resid. 1.469205 Schwarz criterion —5.085236

Log likelihood 344.5453 F-statistic 509.8375

Durbin-Wiatson stat. 2.013370 Prob (F-statistic) 0.000000
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TABLE 17 Sample: 1968:01 1991:12
VAR Compleiions Included observations: 284
Equation, Residual
Correlogram Acorr. P. Acorr. Std. Error Ljung-Box p-value
1 —0.009 —0.009 0.059 0.0238 0.877
2 —-0.035 —0.035 0.059 0.3744 0.829
3 —0.037 —0.037 0.059 0.7640 0.858
4 -0.088 -0.090 0.059 3.0059 0.557
5 —0.105 —0.111 0.059 6.1873 0.288
6 0.012 0.000 0.059 6.2291 0.398
7 —0.024 —0.041 0.059 6.4047 0.493
8 0.041 0.024 0.059 6.9026 0.547
9 0.048 0.029 0.059 7.5927 0.576
10 0.045 0.037 0.059 8.1918 0.610
11 —(.009 —0.005 0.059 8.2160 0.694
12 —0.050 —0.046 0.059 8.9767 0.705
13 —-0.038 -0.024 0.059 9.4057 0.742
14 —0.055 —0.049 0.059 10,318 0.739
15 0.027 0.028 0.059 10.545 0.784
16 —-0.005 —0.020 0.059 10.553 ().836
17 0.096 0.082 0.059 13.369 0.711
18 0.011 —0.002 0.059 13.405 0.767
19 0.041 0.040 0.059 13.929 ().788
20 0.046 0.061 0.059 14.569 0.801
21 -0.096 -0.079 0.059 17.402 (1.686
22 0.039 0.077 (0.059 17.875 0.713
23 -0.113 -0.114 0.059 21.824 0.531
24 -0.136 -0.125 0.059 27.622 0.276

Figure 11.11 shows the variance decompositions. The fraction of the error
variance in forecasting starts due to innovations in starts is close to 100% at
all horizons. In contrast. the fraction of the error variance in forecasting com-
pletions due to innovations in starts is near 0 at short horizons, but it rises
steadily and is near 100% at long horizons, again reflecting time-to-build
effects.

Finally, we construct forecasts for the out-of-sample period, 1992.01-1996.06.
The starts forecast appears in Figure 11.12. Starts begin their recovery before
1992.01, and the VAR projects continuation of the recovery. The VAR fore-
casts captures the general pattern quite well, but it forecasts quicker mean




Forecasting with Regression Models 245
- 015~ FIGURE 13
B ) VAR Completions
-“E' 010 - Equation, Residual
£ Sample
2 003 Autocorrelations
g ? and Partial
= Autocorrelations
2 000
-
. —0.04
3 ‘
2 -010+
175
"_U_]5;111.l T | | NS EENTR SN T UR U S S |
2 4 6 8 10 12 14 16 18 20 22 24
Displacement
0.15
0.10
E
£E o005
Lo
2 £
£E o
£z
EE -0.05
F
~0.10
—0.15 bt 1 12 &t [T ST R NS S N |
2 4 8 10 12 14 16 18 20 22 24
Displacement
Sample: 1968:01 1991:12 TABLE 1.8
Lags: 4 Housing Starts and
Obs: 284 Completions,
) L. o Causality Tests
Null Hypothesis: F Statistic Probability
STARTS does not cause COMPS 26.2658 0.00000
COMPS does not cause STARTS 2.23876 0.06511
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FIGURE n.i0 Response to One SD Innovations
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reversion than actually occurs, as is clear when comparing the forecast and
realization in Figure 11.13. The figure also makes clear that the recovery of
housing starts from the recession of 1990 was slower than the previous recov-
eries in the sample, which naturally makes for difficult forecasting. The com-
pletions forecast suffers the same fate, as shown in Figures 11.14 and 11.15.
Interestingly, however, completions had not vet turned by 1991.12, but the
forecast nevertheless correctly predicts the turning point. (Why?)
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Exercises, Problems, and Complements

1.

(Econometrics. time series analysis, and forecasting) As recently as the early
1970s, time series analysis was mostly univariace and made lidle use of economic
theory. Econometrics, in contrast, stressed the crossvariable dynamics associated
with economic theory. with equations estimated using multiple regression.
Econometrics, moreover, made use of simultaneous systems of such equations,
requiring complicated estimation methods. Thus, the econometric and time
series approachces to forecasting were very different.'?

As Klein (1981) notes, however, the complicated econometric system
estimation methods had little pavoff for practical forecasting and were therefore
largely abandoned. whereas the rational distributed lag patterns associated with
time series models led to large improvements in practical forecast accuracy.”?
Thus, in more recent times, the distinction hetween econometrics and time series
analvsis has largely vanished, with the union incorporating the best of both. In
many respects, the VAR is a modern embodiment of both econometric and time
series traditions. VARs use economic considerations to determine which variables
to include and which (if any) restrictions should be imposed, allow for rich
multivariate dvnamics. typically require only simple estimation techniques, and
are explicit forecasting models.

(Forecasting crop vields) Consider the following dilemina in agricultural crop
vield forecasting:

The possibility of forecasting crop vields several years in advance would, of course, be of
great value in the planning of agricultural production. However, the success of long-
range crop forecasts is contingent not only on our knowledge of the weather factors de-
termining vield, but also on our ability to predict the weather. Despite an abundant
literature in this field, no firm basis for reliable long-range weather forecasts has yet been
found. (Sanderson, 1953, p. 3)

a. How is the situation related to our concerns in this chapter and, specifically,
to the issue of conditional versus unconditional forecasting?

b.  What variables other than weather might be useful for predicting crop vieldr

¢. How would vou suggest that the forecaster should proceed?

{Regression forecasting models with expectations, or anticipatory, data) A

number of surveys exist of anticipated market conditions, investment intentions,

buyving plans, advance commitments, consumer sentiment, and so on,

a. Search the Internet for such series, and report your results. A good place 10
start is the Resources for Economists page mentioned in Chapter ],

2 Klein and Young ( 1980) and Klein (1983) provide good discussions of the traditional econo-
metric simultaneous equations paradigm, as well as the link between structural simultaneous
equations inodels and reduced-form rime series models. Wallis (1995) provides a good summary
of modern large-scale macroeconomewic modeling and torecasting, and Pagan and Robertson
(2002) provide an intriguing discussion of the variety of macroeconomic forecasting approaches
currently emploved in cenual hanks around the world.

13 For an acerbic asscesinent circa the mid-1970s, see Jenkins (1979),
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b. How might vou use the series vou found in an unconditional regression
forecasting model ot GDP? Are the implicit forecast horizons known for all
the anticipatory series you found? If not, how might vou decide how to lag
them in vour regression forecasting model?

¢. How would you test whether the anticipatory series vou found provide
incremental forecast enhancement, relative to the own past history of GDP?

4. (Business cvcle analvsis and forecasting: expansions, cuntractions, turning points,
and leading indicators'?) The use of anticipatory data is linked o business cycle
analysis in general and to leading indicators in particular. During the first half
of the 20th century, much research was devoted to obtaining an empirical
characterization of the business cycle. The most prominent example of this work
is Burns and Mitchell (1946), whose summary empirical definition is as follows:

Business cvcles are a Iype of fluctuation found in the aggregate economic activity of na-
tions that organize their wovk mainly in business enterprises: a cycle consists of expan-
sions occurring at about the same time in many economir activities, followed by similarly
general recessions, contractions, and revivals which merge into the expansion phase of
the next cycle. (p. 3)

The comovement among individual economic variables is a kev feature of Burns
and Mitchell’s definition of business cycles. Indeed, the comovement among
series, taking into account possible leads and lags in timing, is the centerpiece of
Burns and Mitchell's methodology. In their analysis, Burns and Mitchell consider
the historical concordance of hundreds of series, including those measuring
commodity output, income, prices, interest rates, banking transactions, and
transportation services, and they classify series as leading, lagging, or coincident.
One way to define a leading indicator is to say that a series x is a leading indicator
for a series y if x causes y in the predictive sense. According to that detinition, for
example, our analvsis of housing starts and completions indicates that starts are a
leading indicator for completions.

Leading indicators have the potential to be used in forecasting equations
in the same way as anticipatory variables. Inclusion of a leading indicator,
appropriately lagged, can improve forecasts. Zellner and Hong (1989) and
Zellner, Hong, and Min (1991), for example. make good use of that idea in their
ARLI (autoregressive leading-indicator) models for forecasting aggregate output
growth. In those models. Zellner et al. build forecasting models by regressing
output on lagged output and lagged leading indicators; they also use shrinkage
techniques to coax the forecasted growth rates toward the international average,
which improves forecast performance.

Burns and Mitchell use the clusters of turning points in individual series to
determine the monthly dates of the turning points in the overall business cycle
and to construct composite indexes of leading, coincident, and lagging
indicators. Such indexes have been produced by the National Bureau of
Economic Research (a think tank in Cambridge, Massachusetts). the Deparument
of Commerce (a U.S. government agency in Washington, D.C.), and the
Conference Board (a business membership organization based in New York).'?

* This complement draws in part on Diebold and Rudebusch (1996).
1 The indexes build on very early work, such as the Harvard “Index of General Business Condi-
tions.” For a fascinating discussion of the early work, see Hardy (1423). Chapler 7,
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Composite indexes of leading indicators are often used to gauge likely future
economic developments, but their uscfulness is by no means uncontroversial
and remains the subject of ongoing research. For example, leading indexes
apparently cause aggregate output in analyses of ex post historical data
(Auerbach, 1952). but thev appear much less useful in real-time forecasting,
which is what's relevant (Diebold and Rudebusch, 1991).

(Subjective information, Bavesian VARs, and the Minnesota prior) When building
and using forecasting models. we frequently have hard-to-quantify subjective
information, such as a reasonable range in which we expect a parameter 1o be.

‘e can incorporate such subjective information in a number of ways. One wav is
informal judgmental adjustment of estimates. Based on a variety of factors, for
example, we might feel that an estimate of a certain paramcter in a forecasting
model is too high, so we might reduce it a bit.

Bayesian analysis allows us to incorporate subjective information in a
rigorous and replicable way. We summarize subjective information about
parameters with a probability distribution called the prior distribution. and as
always we summarize the information in the data with the likelihood function.
The centerpiece of Bavesian analysis is a mathematical formula called Bayes” rule,
which tells us how to combine the information in the prior and the likelihood 10
form the posterior distribution of model parameters, which then feed their way
into forecasts.

The Minnesota prior (introduced and popularized by Robert Litterman and
Christopher Sims at the University of Minnesota) is commoniy used for Bayesian
estimation of VAR forecasting models, called Bavesian VARs, or BVARs. The
Minnesota prior is centered on a parameterization called a random walk, in which
the current value of each variable is equal to its lagged value plus a white noise
error term. Thus, the parameter estimates in BVARs are coaxed, but not forced,
in the direction of univariate random walks. This sort of stochastic restriction has
an immediate shrinkage interpretation, which suggests that it’s likely to improve
forecast accuracy.'” This hunch is verified by Doan, Litterman, and Sims (1984),
who studv forecasting with standard and Bayvesian VARs. Ingram and Whiteman
(1994) replace the Minnesota prior with a prior derived from macroeconomic
theory, and they obtain even beuter forecasting performance.

(Housing starts and compledons, continued) Our VAR analvsis of housing starts
and completions, as always, involved many judgment calls. Using the starts and
completions data, assess the adequacy of our models and forecasts. Among other
things, vou may want to consider the following questions:

a. Should we allow for a trend in the forecasting model?

b. How do the results change if, in light of the results of the causality tests, we
exclude lags of completions from the starts equation, reestimate by seemingly
unrelated regression, and forecast?

c. Are the VAR forecasts of starts and completions more accurate than univariate
forecasts?

{Nonlinear regression imodels 1: functional form and Ramsey’s test) The idea of

using powers of a right-hand-side variable to pick up nonlinearity in a regression
can also be used 1o test for linearity of functional form, following Ramsev (1969).

'* Effectively, the shrinkage allows us to recover a large number of degrees of freedom.
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If we were concerned that we'd missed some important nonlinearity, an obvious
strategy to capture it, based on the idea of a Taylor series expansion of a function,
would be to include powers and cross products of the various x variables in the
regression. Such a strategy would be wastetul of degrees of freedom, however,
particularly if there were more than just one or two right-hand-side variables in
the regression and/or if the nonlinearity were severe, so that fairly high powers
and interactions would be necessary to capture it. In light of this, Ramsey suggests
first fitting a linear regression and obraining the fitted values, _9,, t=1,...,T.
Then, to test for nonlinearity, we run the regression again with powers of §,
included. There is no need 1o include the fitst power of ﬁ,, because lhgn would be
redundant with the included x variables. Instead. we include powers 5',—, {', Seee
3", where mis a maximum power determined in advance. Note that the powers
of 3, are linear combinations of powers and cross products of the x variables—ijust
what the doctor ordered. Significance of the included set of powers of j; can be
checked using an Ftest or an asymptotic likelihood ratio test.

{Nonlinear regression models 2: logarithmic regression models) We 've already
seen the use of logarithms in our studies of trend and seasonality. In those setups,
however, we had occasion only to take logs of the left-hand-side variable. In more
general regression models, such as those that we're studving now, with variables
other than trend or seasonals on the right-hand side, it's sometimes useful to take
logs of both the left- and right-hand-side variables. Doing so allows us to pick up
multiplicative nonlinearity. To see this, consider the regression model,

Br
¥1 = Box, €& .

This model is clearly nonlinear due to the multiplicative interactions. Direct
estimation of its parameters would require special techniques. Taking natural
logs, however, yields the model

ny, =nBo+Pinx +g.

This transformed model can be immediately estimated by ordinary least squares,
by regressing log y on an intercept and log x. Such “log-log regressions™ often
capture nonlinearities relevant for forecasting, while maintaining the convenience
of ordinary least squares.

{Nonlinear regression models 3: neural networks) Neural networks amount to a
particular nonlincar functional form associated with repeatedly running lincar
combinations of inputs through nonlinear “squashing™ functions. The (-1
squashing function is useful in classification, and the logistic function is useful
for regression,

The neural net literature is tull of biological jargon, which serves to
obfuscate rather than clarifv. We speak. for example, of a “single-output feed-
forward neural nerwork with » inputs and 1 hidden laver with g neurons.™ But the
idea is simple. If the output is y and the inputs are x's, we write

4
ye=o B+ Y Bikir |

=1

where

"
hy =W 'Yiu+2’y,,x,, . i:l,.._,q

1=\
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are the “neurons” ("hidden units™), and the “activation functions” ¥ and & are
arbitrary, except that ¥ (the squashing function) is generally restricted to be
bounded. (Commonly ¢ (x) = x.) Assembling it all, we write

g n
w=®py+ Z B:Y | vio + Z'y,'jxj, = f(x;0),
i=1 i=1

which makes clear that a neural net is just a particular nonlinear functional form
for a regression model.

To incorporate dynamics, we can allow for autoregressive effects in the
hidden units. A dynamic (“recurrent”) neural network is

=B+ tﬁikit .

i=]

where

hiyy=W .YI"+Z-YU‘!I'+£81 h—i }oi=1.. o

=1

Compactly,

n=2= Bﬂ'*'iﬁi‘l’ 'Ym'*'Z'Yule'*'iahhr./—l :
r=]

i=1 j=1

Recursive back substitution reveals that y is a nonlinear function of the history of
the x's.

¥ = glx': ).
where ¥ = (x,....x)and x;= (x4, .. ., X))

The Matlab Neural Network Toolbox implements a varietv of networks. The
toolbox manual is itself a useful guide to the literature on the practical aspects
of constructing and forecasting with neural nets. Kuan and Liu (1995) use a
dynamic neural network to predict foreign exchange rates, and Faraway and
Chatfield (1995) provide un insighttul case study of the efficacy of neural
networks in applied forecasting. Ripley (1996) provides a fine and statistically
informed (in contrast to much of the neural net literature) survey of the use of
neural nets in a variety of fields.

(Spurious regression) Consider two variables y and x. both of which are highly

serially correlated, as are most series in business, finance, and economics. Sup-

pose in addition that yand vare completely unrelated but that we don’t know

they're unrelated, and we regress y on x using ordinary least squares.

a. If the usual regression diagnostics (e.g., K¢, tstatistics, Fstatistic) were reliable,
we'd expect to see small values of all of them, Why?

b. In fact the opposite occurs; we tend to see large £2, &, and Fstatistics, and
a very low Durbin-Watson statistic. Why the low Durbin-Watson? Why, given the
low Durbin-Watson. might vou expect misleading FZ, ¢, and Fstatistics?

c. This situation, in which highlv persistent series that are in fact unrelated
nevertheless appear highlv related, is called spurious regression. Study of the
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phenomenon dates to the early 20th century, and a key study by Granger and
Newbold (1974) drove home the prevalence and potential severity of the
problem. How might you insure vourself against the spurious regression
problem? (Hint: Consider allowing for lagged dependent variables, or
dvnamics in the regression disturbances, as we've advocated repearedly.)

11. (Comparative forecasting performance of VAR and univariate models) Using the
housing starts and completions data on the book’s web page, compare the
forecasting performance of the VAR used in this chapter with that of the obvious
competitor: univariate autoregressions. Use the same in-sample and out-of-sample
periods as in the chapter. Why might the forecasting performance of the VAR and
univariate methods differ? Why might vou expect the VAR completions forecast
to outperform the univariate autoregression, but the VAR starts forecast 1o be no
better than the univariate autoregression? Do your results support vour
conjectures?

Bibliographical and Computational Notes

Some software, such as EViews, automatically accounts for parameter uncertainty
when forming conditional regression forecast intervals by using variants of the
techniques we introduced in Section 2. Similar but advanced techniques are
sometimes used to produce unconditional forecast intervals for dynamic models,
such as autoregressions (see Littkepohl, 1991), but bootstrap simulation techniques
are becoming increasingly popular (Efron and Tibshirani, 1993).

Chatfield (1993) argues that innovation uncertainty and parameter estimation
uncertainty are likely of minor importance compared to specification uncertainty.
We rarely acknowledge specification uncertainty, because we don’t know how to
quantify “what we don’t know we don’t know.” Quantifving it is a major challenge
for future research, and useful recent work in that direction includes Chatfield
(1995).

The idea that regression models with serially correlated disturbances are more
restrictive than other sorts of transfer function models has a long history in
econometrics and engineering and is highlighted in a memorably tided paper, “Serial
Correlation as a Convenient Simplification, Not a Nuisance,” by Hendry and Mizon
(1978). Engineers have scolded econometricians for not using more general transfer
function models, as, [or example. in Jenkins (1979). But the fact is, as we've seen
repeatedly, that generality for generality’s sake in business and economic forecasting
is not necessarily helpful and can be positively harmful. The shrinkage principle
asserts that the imposition of restrictions—even false restrictions—can be helpful in
forecasting.

Sims (1980) is an influential paper arguing the virtues of VARs. The idca of
predictive causality and associated tests in VARs is due to Granger (1969) and Sims
(1972). who build on earlier work by the mathematician Norbert Weiner. Liitkepohl
(1991) is a good reterence on VAR analvsis and forecasting.

Gershenfeld and Weigend (1993) provide a perspective on time series forecasting
from the computer science/engineering/nonlinear/neural net perspective, and
Swanson and White (1995) compare and contrast a variety of linear and nonlinear
forecasting methods.
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Concepts for Review

Conditional forecasting model

Scenario analvsis

Contingency analysis

Specification uncertainn

Innovation uncertainty

Parameter uncertainty

Unconditional forecast model

Forecasting the right-hand-side variables
problem

Distributed lag model

Polynomial distributed lags

Rational distributed lags

Distributed lag regression model with

Transfer function model
Vector autoregression of order p
Cross-variable dynamics
Predictive causality
Impulse-response function
Vanance decomposition
Crosscorrelation function
Feedback

Bayesian analysis

Random walk

Functional form

Logarithmic regression models
Spurious regression

lagged dependent variables
Distributed lag regression model with
ARMA disturbances
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Evaluating and
Combining Forecasts

As we've stressed repeatedly, good forecasts lead to good decisions. The im-
portance of forecast evaluation and combination techniques follows immedi-
ately. Given a track record of forecasts, y44.s, and corresponding realizations,
¥r+4, We naturally want to monitor and improve forecast performance. In this
chapter we show how to do so. First we discuss evaluation of a single forecast.
Second, we discuss the evaluation and comparison of forecast accuracy. Third,
we discuss whether and how a set of forecasts may be combined to produce a
superior composite forecast.

RN
|. Evaluating a Single Forecast

Evaluating a single forecast amounts to checking whether it has the properties
expected of an optimal forecast. Denote by y, the covariance stationary time
series to be forecast. The Wold representation is

Ye=K+E+biE+ b€t
g ~ WN(0,0%).

257



258

Chapter 12

Thus, the /rstep-ahead linear least-squares forecast is
Yeang = W+ D€ 4+ bpar&_ -
and the corresponding Astep-ahead forecast error is
Crrni = Yoah — Yreht = Ern + D1€pior + - -+ B4

with variance
a1
9 e 2
g, =01+ E b;
=1

Four key properties of optimal forecasts, which we can easily check, are as
follows:

Optimal forecasts are unbiased.

Optimal forecasts have 1-step-ahead errors that are white noise.
Optimal forecasts have i-step-ahead errors that are at most MA(h ~ 1).
Optimal forecasts have Astep-ahead errors with variances that are
nondecreasing in A and that converge to the unconditional variance of
the process.

angor

TESTING PROPERTIES OF OPTIMAL FORECASTS
Optimal Forecasts Are Unbiased

If the forecast is unbiased, then the forecast error has a zero mean. A variety
of tests of the zero-mean hypothesis can be performed, depending on the as-
sumptions we're willing to maintain. For example, if ¢,.,, is Gaussian whire
noise (as might be reasonably the case for 1-step-ahead errors), then the stan-
dard *test is the obvious choice. We would simply regress the forecast error se-
ries on a constant and use the reported tstatistic to test the hypothesis that
the population mean is 0. If the errors are non-Gaussian but remain inde-
pendent and identically distributed (iid), then the ttest is still applicable in
large samples.

If the forecast errors are dependent, then more sophisticated procedures
are required. Serial correlation in forecast errors can arise for many reasons.
Multi-step-ahead forecast errors will be serially correlated, even if the forecasts
are optimal, because of the forecast period overlap associated with multi-step-
ahead forecasts. More generally, serial correlation in forecast errors may indi-
cate that the forecasts are suboptimal. The upshot is simply that when regress-
ing forecast errors on an intercept, we need to be sure that any serial
correlation in the disturbance is appropriately modeled. A reasonable starting
point for a regression involving /rstep-ahead forecast errors is MA(A — 1) dis-
turbances, which we'd expect if the forecast were optimal. The forecast may. of
course, nof be optimal, so we don’t adopt MA(/ — 1) disturbances uncritically;
instead, we try a variety of models using the AIC and SIC o guide selection in
the usual way.
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Optimal Forecasts Have 1-Step-Ahead Errors That Are
White Noise

Under various sets of maintained assumptions, we can use standard tests of the
white noise hypothesis. For example, the sample autocorrelation and partial
autocorrelation funciions, rogether with Bardett asvmptotic standard errors,
are often useful in that regard. Tests based on the first autocorrelation (e.g.,
the Durbin-Watson test), as well as more general tests, such as the Box-Pierce
and Ljung-Box statistics, are useful as well. We implement all of these tests by
regression on a constant term.

Optimal Forecasts Have h-Step-Ahead Errors That Are at
Most MA(h —1)

The MA(A ~ 1) structure implies a cutoff in the forecast error’s autocorrela-
tion function bevond displacement & — 1. This immediately suggests examin-
ing the statistical significance of the sample autocorrelations beyond displace-
ment & — 1 using the Bartlett standard errors. In addition, we can regress the
errors on a constant, allowing for MA(q) disturbances with g4 > (A —1), and
test whether the moving-average parameters beyond lag & — 1 are 0.

Optimal Forecasts Have h-Step-Ahead Errors with
Variances That Are Non-Decreasing in h

It's often useful to examine the sample /-step-ahead forecast error variances as
a function of 4, both to be sure they're nondecreasing in /4 and to see their
pattern, which often conveys useful information.

ASSESSING OPTIMALITY WITH RESPECT
TO AN INFORMATION SET

The key property of optimal forecast errors, from which all others follow (in-
cluding those cataloged earlier), is that they should be unforecastable on the
basis of information available at the time the forecast was made. This unfore-
castability principle is valid in great generality; it holds, for example, regard-
less of whether linear-projection optimality or conditional-mean optimality is
of interest, regardless of whether the relevant loss function is quadratic, and
regardless of whetlier the series being forecast is stationary.

Many of the tests of properties of optimal forecasts introduced above are
based on the unforecastability principle. For example, l-step-ahead errors had
better be white noise, because otherwise we could forecast the errors using
information readilv available when the forecast is made. Those tests, however,
make incomplete use of the unforecastability principle, insofar as they assess
only the univariate properties of the errors.

We can make a more complete assessment by broadening the information
set and assessing optimality with respect to various sets of information, by
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estimating regressions of the form

k-1

Crenr =y + Z ;X + U .

=1
The hypothesis of interest is that all the o’s are 0, which is a necessary condi-
tion for forecast optimality with respect to the information contained in the
x's. The particular case of testing optimality with respect to y.,4, is very im-
portant in practice. The relevant regression is

€rpng =0+ 0y Yans + U,

and optimality corresponds to (ag, a;) = (0, 0). Keep in mind that the distur-
bances may be serially correlated, especially if the forecast errors are multi-
step-ahead, in which case they should be modeled accordingly.

If this regression seems a little strange (o vou, consider what may seem like
a more natural approach to testing optimality, regression of the realization on
the forecast:

Yern = Bo + Bryeras + u .

This is called a Mincer-Zarnowitz regression. If the forecast is optimal with respect
to the information used to construct it, then we’d expect (Bs, B1) = (0, 1), in
which case

Yish = Ytk + u .

Note, however, that if we start with the regression
Yen = By + Bl)’H—hJ + ¥,

and then subtract y,,,, from each side, we obtain
€rihy = Oy + 0 Yrpns + Uy,

where (o, 1) = (0, 0) when (By, B1) = (0, 1). Thus, the two approaches are
identical.

RN
2. Evaluating Two or More Forecasts:
Comparing Forecast Accuracy

MEASURES OF FORECAST ACCURACY

In practice, it is unlikely that we'll ever stumble upon a fully optimal forecast;
instead, situations often arise in which a number of forecasts (all of them sub-
optimal) are compared and possibly combined. Even for very good forecasts,
the actual and forecasted values may be very different. To take an extreme ex-
ample, note that the linear least-squares forecast for a zero-mean white noise
process is simply O—the paths of forecasts and realizations will look very dif-
ferent, yet there does not exist a better linear forecast under quadratic loss.
This highlights the inherent limits to forecastability, which depends on the
process being forecast; some processes are inherently easv to forecast, while
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others are hard to forecast. In other words, sometimes the information on
which the forecaster conditions is very valuable, and sometimes it isn’t.

The crucial object in measuring forecast accuracy is the loss function,
L(¥h0 Yr4ns). often restricted to L{es,s,), which charts the “loss,” “cost,” or
“disutility” associated with various pairs of forecasts and realizations.! In addi-
tion to the shape of the loss function, the forecast horizon 4 is of crucial im-
portance. Rankings of forecast accuracy may of course be very difterent across
different loss functions and different horizons.

Let’s discuss a few accuracy measures that are important and popular. Accu-
racy measures are usually defined on the forecast errors, €,14r = Y44 — Ysps, OF
percent errars, prin, = (Y= — Yi=u.1)/ ¥i+n. Mean error,

1<
ME = ‘,7, Zewh.t )
=1

measurcs bias, which is one component of accuracy. Other things the same, we
prefer a forecast with a small bias. Error variance,

1 <& "
EV= 7_ ;(f’uh,/ - ME)",

measures dispersion of the forecast errors. Other things the same, we prefer a
forecast whose errors have small variance. Although the mean error and the
error variance are components of accuracy, neither provides an overall accu-
racy measure. For example, one forecast might have a small ME but a large EV,
and another might have a large ME and a small EV. Hence, we would like an
accuracy measure that somehow incorporates both ME and EV. The mean
squared error, 10 which we now turn, does just that.

The most common overall accuracy measures, by far, are mean squared
error,

1Ko
MSE = = Y e
=1
and mean squared percent error,

1 2
MSPE = — Y b

Often the square roots of these measures are used to preserve units, vielding
the root mean squared error,

RMSE =

! Because in many applications the loss tunction will be a direct function of the forecast error,
L(ys. ¥rn0) = Liessn ). we write Lie,4 () from this point on to economize on notation, while
recognizing that certain loss tunctions (such as direction of change) don't collapse to the
L(es4n,) form.
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To understand the meaning of “preserving units,” and why it's sometimes
helptul to do so, suppose that the forecast errors are measured in dollars.
Then the mean squared error, which is built up from squared errors, is mea-
sured in dollars squared. Taking square roots—that is, moving from MSE to
RMSE—brings the units back to dollars.

MSE can be decomposed into bias and variance components, reflecting
the rade-off between bias (ME) and variance (EV) in forecast accuracy under
quadratic loss. In particular, MSE can be decomposed into the sum of variance
and squared bias (you should verify this),

MSE = EV + ME? |

Somewhat less popular, but nevertheless common, accuracy measures are

mean absolute error,
r
T2 e
i\ = - Crongls
T =)

and mean absolute percent error,
1
MAPE = =) | prons| -
T =1

When using MAE or MAPE, we don't have to take square roots to preserve
units. Why?

STATISTICAL COMPARISON OF FORECAST ACCURACY

All the accuracy measures we've discussed are actually sample estimates of popu-
lation accuracy. Population MSE, for example, is defined as the expected
squared error,

MSE,, = Ele.,,).
which we estimate by replacing the expectation with a sample average,

v

1
MSE = =D ¢
t=1
vielding the sample MSE.
Once we've decided on a loss function, it is often of interest to know

whether one forecast is more accurate than another. In hypothesis-testing
terms, we might want to test the equal accuracy hypothesis,

a — h
E(L(els.)) = E(Lle].,.)) »
against the alternative hypothesis that one or the other is better. Equivalently,

we might want to test the hypothesis that the expected loss differential is 0,

E(d) = E(L{et.,.)) = E(L(el.,.)) = 0.

r+h.t

The hypothesis concerns population expected loss: we test it using sample
average loss.
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In fact, we can show that if 4, is a covariance stationary series, then the
large-sample distribution of the sample mean loss differential is”

JT(d - p) ~ NO, ),

-1
where d = T Y (L(e}.,,) —(el.,,) is the sample mean loss differential. f is
=1

t+hi
the variance of the sample mean loss differential, and @ is the population
mean loss differential. This implies that in large samples, under the null hy-
pothesis of a zero population mean loss differential, the standardized sample
mean loss differential has a standard normal distribution,
d
B=—~ AV(O,]),
T M

where f is a consistent estimator of [ In practice, using f = Y ¥,(7), where
T=—M
M = T'* and §,(7) denotes the sample autocovariance of the loss differential

at displacement 7, provides an adequate estimator in many cases.

Note that the statistic Bis just a tstatistic for the hypothesis of a zero pop-
ulation mean loss differential. adjusted to reflect the fact that the loss differ-
ential series is not necessarily white noise. We can compute it by regressing the
loss differential series on an intercept, taking care to correct the equation for
serial correlation. The procedure outlined here amounts to a “nonparametric”
way of doing so. It's called ranparametric because instead of assuming a partic-
ular model for the serial correlation, we use the sample autocorrelations of
the loss differential directly.

The nonparametric serial correlation correction is a bit tedious, however.
and it involves the rather arbitrary selection of the truncation lag, M. Alterna-
tively, and perhaps preferably, we can proceed by regressing the loss differential
on an intercept, allowing for ARMA(p, g) disturbances, and using information
criteria to select p and ¢. This model-based parametric serial correlation cor-
rection is easy to do, economizes on degrees of freedom, and makes use of
convenient model selection procedures.

N
3. Forecast Encompassing and Forecast Combination

In forecast accuracv comparison, we ask which forecast is best with respect to
a particular loss function. Such “horse races” arise constantly in practical work.
Regardless of whether one forecast is significantly better than the others. how-
ever, the question arises as to whether competing forecasts may be fruitfully
combined to produce a composite forecast superior to all the original fore-
casts. Thus, forecast combination, although obviously related to forecast accu-
racy comparison, is logically distinct and of independent interest.

? We simply assert the result. a proof of which is bevond the scope of this book.
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FORECAST ENCOMPASSING

We use forecast encompassing tests to determine whether one forecast incor-
porates (or encompasses) all the relevant information in competing forecasts.
If one forecast incorporates all the relevant information, nothing can be
gained by combining forecasts, For simplicity, let's focus on the case of two
forecasts, yr,,, and y;,, ,. Consider the regression

X
Yeern = Bﬂ)'/ﬂ+h,: + B".\r’»h.f + €rnt

If (B.. Bs) = (1, 0), we'll say that model a forecast-encompasses model & and if
(B., B.) = (0, 1), we'll say that model b forecast-encompasses model a. For
other (B,, B.) values, neither model encompasses the other, and both forecasts
contain useful information about y,.,. In covariance stationary environments,
encompassing hypotheses can be tested using standard methods.® If neither
forecast encompasses the other, forecast combination is potentially desirable.

FORECAST COMBINATION

Failure of each model’s forecasts to encompass other model!’s forecasts indi-
cates that both models are misspecified and that there may be gains from fore-
cast combination. It should come as no surprise that such situations are typical
in practice, because forecasting models are [ikely to be misspecified—they are
intentional abstractions of a much more complex reality.

Many combining methods have been proposed, and they fall roughly into
two groups, “variance-covariance” methods and “regression” methods. As we’ll
see, the variance-covariance forecast combination method is in fact a special
case of the regression-based forecast combination method, so there's really
onlv one method. However, for historical reasons—and, more important, to
build valuable intuition—it’s important to understand the variance-covariance
forecast combinarion, so let's begin with it. Suppose we have two unbiased
forecasts from which we form a composite as

V- — )
Yo =0, A —w)yl,, .

Because the weights sum to unity, the composite forecast will necessarily be

unbiased. Moreover, the combined forecast error will satisfy the same relation

as the combined forecast; that is,

—_ a ]
e =wep,,, + (1 —wle,,,,

r
1+ht

with variance o, = w0, + (1 — w)?(r:,, + 2w (1 - w)o;"b, where o, and u;, are
the forecast error variances and (r:,, is their covariance. We find the optimal
combining weight by minimizing the variance of the combined forecast error
with respect to w, which vields

4 Note that €44, may be serially correlated, particularly if 4 >1. and any such serial correlation
should be accounted for.
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9 e

- O~ Tap
W =-—>5"_"73"-
Oy, + Taa — 20,

The optimal combining weight is a simple function of the variances and co-
variances of the underlving forecast errors. The forecast error variance associ-
ated with the optimally combined forecast is less than or equal to the smaller
of a;, and 0,,,,, thus. in population, we have nothing to lose by combining fore-
casts and potentially much to gain. In practical applications, the unknown
variances and covariances that underlie the optimal combining weights are
unknown, so we replace them wit1h consistent estimates. That is, we estimate

. 22
w* by replacing o,; with g, = Z €rn ,e,+,, .» yielding the combining weight
estimates, Tis
ad 2
-~ U - 0‘(
@ = — ’4[1)\‘) 1h —
U’l"ﬁ + Gon — 2o.ul:

To gain intuition for the formula that defines the optimal combining
weight, consider the special case in which the forecast errors are uncorrelated,

so that o> —» = 0. Then

9

Y
w* = -

0'/?,, + 0':1.’:1

As o, approaches 0, forecast a becomes pl‘ogressivelv more accurate. The for-
mula for ©* indicates that as 0,,,, approaches 0, w’ approaches 1. so that all
weight is put on forecast a, which is desirable. Similarly, as g, approaches 0,
forecast bbecomes progressively more accurate. The formula for w* indicates
that as o}, a approaches 0, w* approaches 0. so that all weight is put on forecast
b, which is also desirable. In general, the forecast with the smaller error vari-
ance receives the higher weight, with the precise size of the weight depending
on the disparity between variances.

The full formula for the optimal combining weight indicates that the vari-
ances and the covariance are relevant, but the basic intuition remains valid.
Effectively, we're forming a portfolio of forecasts, and as we know from stan-
dard results in finance, the optimal shares in a portfolio depend on the
variances and covariances of the underlying assets.

Now consider the regression method of forecast combination. The form of
forecast-encompassing regressions immediately suggests combining forecasts
by simply regressing realizations on forecasts. This intuition proves accurate,
and in fact the optimal variance-covariance combining weights have a regres-
sion interpretation as the coefficients of a linear projection of y,., onto the
forecasts, subject to two constraints: the weights sum to unity, and the inter-
cept is excluded.

In practice, of course. population linear projection is impossible, so we sim-
plv run the regression on the available data. Moreover, it’s usually preferable
not to force the weights to add to unity, or to exclude an intercept. Inclusion of
an intercept, for example. facilitates bias correction and allows biased forecasts
to be combined. Tvpicallv. then. we simply estimate the regression,
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Yer = Bﬂ + Bl_‘yla-‘—k_l + B-’),Ib""’ +Ehr .

Extension to the fully general case of more than two forecasts is immediate.

In general, the regression method is simple and flexible. There are many
variations and extensions, because anyv regression tool is potentially applica-
ble. The key is to use generalizations with sound motivation. We'll give four ex-
amples in an attempt to build an intuitive feel for the sorts of extensions that
are possible: time-varying combining weights, dynamic combining regres-
sions, shrinkage of combining weights 1oward equality, and nonlinear com-
bining regressions,

Time-Varying Combining Weights

Relative accuracies of different forecasts may change, and if they do, we nat-
rally want to weight the improving forecasts progressively more heavily and the
worsening forecasts less heavily. Relative accuracies can change for a number of
reasons. For example, the design of a particular forecasting model may make it
likely to perform well in some situations, but poorly in others. Alternatively,
people’s decision rules and firms’ strategies may change over time, and certain
forecasting techniques may be relatively more vulnerable to such change.

We allow for time-varying combining weights in the regression framework
by using weighted or rolling estimation of combining regressions, or by allow-
ing for explicitly time-varying parameters. If, for example, we suspect that the
combining weights are evolving over time in a trendlike fashion, we might use
the combining regression

Yron = (By + ByTIME) + (B! + B! TIME) ", , + (B, + Bi TIME)y’ ., + €, .

which we estimate by regressing the realization on an intercept. time, each of
the two forecasts, the product of time and the first forecast, and the product of
time and the second forecast. We assess the importance of time variation by ex-
amining the size and statistical significance of the estimates of B.. Bs, and B,:.

Serial Correlation

It's a good idea to allow for serial correlation in combining regressions, far two
reasons. First, as always, even in the best of conditions we need to allow for the
usual serial correlation induced by overlap when forecasts are more than 1-step-
ahead. This suggests that instead of treating the disturbance in the combining
regression as white noise, we should allow for MA(% — 1) serial correlation,

Yerh = Bo 4+ Bayrs, + Bu¥rons + Erohs
Erny ~MA(R-1).

Second, and very important, the MA(h — 1) error structure is associated
with forecasts that are optimal with respect to their information sets. of which
there’s no guarantee. That is, although the primary forecasts were designed to
capture the dynamics in y, there’s no guarantee that thev do so. Thus, just as
in standard regressions, it’s important in combining regressions that we allow
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either for serially correlated disturbances or for lagged dependent variables,
to capture any dvnamics in y not captured by the various forecasts. A comnbin-
ing regression with ARMA(p. 9) disturbances,

Yi+n = B" + Bny;‘.',_’ + BI!,’V,ILI.,' + €rvht
EH,I.', ~ ARM)\(I), (I) ]

with pand ¢ selected using information criteria in conjunction with other di-
agnostics, is usually adequate.

Shrinkage of Combining Weights toward Equality

Simple arithmetic averages of forecasts—that is, combinations in which the
weights are constrained to be equal—sometimes perform very well in out-of-
sample forecast competitions, even relative to “optimal” combinations. The
equal-weights constraint eliminates sampling variation in the combining
weights at the cost of possibly introducing bias. Sometimes the benefits of im-
posing equal weights exceed the cost, so that the MSE of the combined fore-
cast is reduced.

The equal-weights constraint associated with the arithmetic average is an
example of extreme shrinkage; regardless of the information contained in the
data, the weights are forced into equality. We've seen before that shrinkage
can produce forecast improvements, but typically we want to coax estimates in
a particular direction, rather than to force them. In that way we guide our
parameter estimates toward reasonable values when the data are uninforma-
tive, while nevertheless paying a great deal of attention to the data when they
are informative.

Thus, instead of imposing a deterministic equal-weights constraint, we might
like to impose a stochastic constraint. With this in mind, we sometimes coax the
combining weights toward equality without forcing equality. A simple way to
do so is to take a weighted average of the simple average combination and the
least-squares combination. Let the shrinkage parameter y be the weight put
on the simple average combination, and let (1 — ) be the weight put on the
least-squares combination, where <y is chosen by the user. The larger is v, the
more the combining weights are shrunken toward equality. Thus, the com-
bining weights are coaxed toward the arithmetic mean, but the data are still
allowed to speak, when thev have something important to say.

Nonlinear Combining Regressions

There is no reason to force linearity of combining regressions, and various of
the nonlinear techniques that we've already introduced may be used. We
might, for example, regress realizations not only on forecasts but also on
squares and cross produicts of the various forecasts, to capture quadratic devi-
ations from linearity.

“ h 2 b 2
yH-ll = B" + B"_‘r-h s B")‘rl—h,y + B"'l(ylﬂo,l.r) + B"I'(.TI:-I:./)
+ Bd".\';-iu.\':’l-m +€ns .
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We assess the importance of nonlinearity by examining the size and staristical
significance of estimates of B,,, By, and B,,.: if the linear combining regression
is adequate, those estimates should differ significantly from 0. If, on the other
hand, the nonlinear terms are found to be important, then the full nonlinear
combining regression should be used.

Pba)
4. Application: OverSea Shipping Volume
on the Atlantic East Trade Lane

OverSea Services, Inc., is a major international cargo shipper. To help guide
fleet allocation decisions, each week OverSea makes forecasts of volume
shipped over each of its major trade lanes, at horizons ranging from 1 week
ahead through 16 weeks ahead. In fact, OverSea produces two sets of forecasts:
a quantitative forecast is produced using modern quantitative techniques, and
a judgmental forecast is produced by soliciting the opinion of the sales repre-
sentatives, many of whom have years of valuable experience.

Here we’ll examine the realizations and 2-week-ahead forecasts of volume
on the Atlantic East trade lane (North America to Europe). We have nearly
10 years of data on weekly realized volume (VOL) and weekly 2-week-ahead
forecasts (the quantitative forecast VOLQ, and the judgmental forecast
VOL)), from January 1988 through mid-July 1997, for a total of 499 weeks.

In Figure 12.1, we plot realized volume versus the quantitative forecast; in
Figure 12.2, we show realized volume versus the judgmental forecast. The two

FIGURE 121
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plots look similar, and both forecasts appear quite accurate; it’s not too hard
to forecast shipping volume just two weeks ahead.

In Figures 12.3 and 12.4, we plot the errors from the quantitative and judg-
mental forecasts, which are more revealing. The quantitative error, in particular,
appears roughly centered on 0, whereas the judgmental error seems to be a bit
higher than 0 on average. That is, the judgmental forecast appears biased in a
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FIGURE 12.4 6
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pessimistic way—on average, actual realized volume is a bit higher than fore-
casted volume.

Figures 12.5 and 12.6 present histograms and related statistics for the
quantitative and judgmental forecast errors. The histograms confirm our ear-
lier suspicions based on the error plots; the histogram for the quantitative
error is centered on a mean of —0.03, whereas that for the judgmental error is
centered on 1.02. The error standard deviations, however, reveal that the

FIGURE 12.5 Histogram and Related Statistics, Quantitative Forecast Error
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FIGURE 120 = Histogram and Related Statistics, Judgmental Forecast Error
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Series: EJ
50 — [ Sample 1/01/1988 7/18/1997
Observations 499
40 [ 1 Mean 1.023744
— Median 1.060523
[ Maximum 4,100623
36 —1 Minimum —2.481030
Std. Dev. 1.063681
920 Skewness —0.106148
Kurtosis 3.078680
10 Jarque-Bera 1.065789
Probability 0.586904
0 = T T T
-2 -1 0 1 2 3 4

judgmental forecast errors vary a bit less around their mean than do the quan-
titative errors. Finally, the Jarque-Bera test can’t reject the hypothesis that the
errors are normally distributed.

In Tables 12.1 and 12.2 and Figures 12.7 and 12.8, we show the correlo-
grams of the quantitative and judgmental forecast errors. In each case, the er-
rors appear to have MA(1) structure; the sample autocorrelations cut off at
displacement 1, whereas the sample partial autocorrelations display darped
oscillation, which is reasonable for 2-step-ahead forecast errors.

To test for the statistical significance of bias, we need to account for the
MA(1) serial correlation. To do so, we regress the forecast errors on a con-
stant, allowing for MA(1) disturbances. We show the results for the quantita-
tive forecast errors in Table 12.3 and those for the judgmental forecast errors

Sample: 1/01/1988 7/18/1997 TABLE 121

Included observations: 499 Cm'relo.gm'm,
Acorr. P. Acorr. Std. Error Ljung-Box pvalue gx:{';‘::’;f:;

1 0.518 0.518 .045 134.62 0.000

2 0.010 -0.353 .045 134.67 0.000

3 —0.044 0.205 .045 135.65 0.000

4 -0.039 —-0.172 045 136.40 0.000

5 0.025 0.195 045 136.73 0.000

6 0.057 —-0.117 .045 138.36 0.000
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TABLE 12.2 Sample: 1/01/1988 7/18/1997
Corvelogram, Included observations: 499
Judgmental Acorr. P. Acorr. Std. Error Ljung-Box pvalue
Forecast Error
1 0.495 0.495 045 122.90 0.000
2 -0.027 —-0.360 .045 123.26 0.000
3 —0.045 0.229 045 124.30 0.000
4 -0.056 —0.238 045 125.87 0.000
5 -0.033 0.191 045 126.41 0.000
6 0.087 -0.011 045 130.22 0.000
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in Table 12.4. The #statistic indicates no bias in the quantitative forecasts but
sizeable and highly statistically significant bias in the judgmental forecasts.

In Tables 12.5 and 12.6, we show the results of Mincer-Zarnowitz regres-
sions; both forecasts fail miserably. We expected the judgmental forecast to
fail, because it's biased, but until now no defects were found in the quantita-
tive forecast.

Now let's compare forecast accuracy. We show the histogram and de-
scriptive statistics for the squared quantitative and judgmental errors in Fig-
ures 12.9 and 12.10. The histogram for the squared judgmental error is
pushed rightward relative to that of the quantitative error, due to bias. The
RMSE of the quantitative forecast is 1.26, while that of the judgmental fore-
cast is 1.48.
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TABLE1Z 3
Quantitative
Forecast Error,
Regression on
Intercept, MA(1)

Disturbances

TLELE 12 4
Judgmental Forecast
Ervor, Regression on
Intercept, MA(1)

Disturbances

LS // Dependent variable is EQ.
Sample: 1/01/1988 7/18/1997
Included obscrvations: 499
Convergence achieved after 6 iterations

Variable Coefficient Std. Error t-Statistic Prob.

C -0.024770 0.079851 —-0.310200 0.7565

MA(1) 0.935393 0.015850 59.01554 0.0000

K 0.468347 Mean dependent var. —0.026572
Adjusted R2 0.467277 SD dependent var. 1.262817
SE of regression 0.921703 Akaike info criterion —0,159064
Sum squured resid. 422.2198 Schwarz criterion —0.142180
Log likelihood —666.3639 Fstatistic 487.8201
Durbin-Watson stat. 1.988237 Prob(#statistic) 0.000000
Inverted MA roots -94

Figure 12.11 shows the (quadratic) loss differential; it’s fairly small but
looks a little negative. Figure 12.12 shows the histogram of the loss differential;
the mean is —0.58, which is small relative to the standard deviation ot the loss
differential, but remember that we have not vet corrected for serial correla-
tion. In Table 12.7 we show the correlogram of the loss differential, which
strongly suggests MA(1) structure. The sample autocorrelations and partial

LS // Dependent variable is EJ.
Sample: 1/01/1988 7/18/1997
Included observations: 499
Convergence achieved after 7 iterations

Variable Coefficient Std., Error t-Statistic Prob.

c 1.026372 0.067191 15.27535 0.0000

MA(1) 0.961524 0.012470 77.10450 0.0000

R 0.483514 Mean dependent var. 1.023744
Adjusted R 0.482475 SD dependent var. 1.063681
SE of regression 0.765204 Akaike info criterion —0.531226
Sum squared resid. 291.0118 Schwarz criterion =0.514342
Log ltikelihoad —573.5094 F-statistic 465.2721
Durbin-Watson stat. 1.968750 Prob(F=statistic) 0.000000
Inverted MA roots —.96
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LS // Dependent variable is VOL.
Sample: 1/01 /1988 7,/18/1997
Included observations: 499
Convergence achieved after 10 iterations

TABLE '2 &
Mincer-Zarnowitz
Regression,
Quantitative

Variable Coefficient Std. Error t-Statistic Prob. Furecast Error
C 2.958191 0.341841 8.653696 0.0000

VOLQ 0.849539 0.016839 50.45317 0.0000

MA(1) 0.912559 0.018638 48.96181 0.0000

R 0.936972 Mean dependent var. 19.80609

Adjusted R 0.936718 SD dependent var. 3.403283

SE of regression 0.856125 Akaike info criterion —-0.304685

Sum squared resid. 363.5429 Schwarz criterion —0.279358

Log likelihood -629.0315 Fstatistic 3686.790

Durbin-Watson stat. 1.815577 Prob(F-stanstic) 0.000000

Inverted MA roots —.9]

Wald test:

Null hypothesis: CH=0C2)y=1

Fstatistic 39.96862 Probability 0.000000

Chi-square 79.93723 Probabilirty 0.000000

LS // Dependent variable is VOL. TABLE 12 5

Sample: 1/01/1988 7/18/1997 Mincer-Zarnowitz

Included observations: 499 Regression,

Convergence achieved after 11 iterations judg'mtn(al Forecast
Variable Coefficient Std. Error t-Statistic Prob. Error

c 2.592648 0.271740 9.5404928 0.0000

VOL] 0.916576 0.014058 65.20021 0.0000

MA(1) 0.949690 0.014621 64.95242 0.0000

R 0.952896 Mean dependent var. 19.80609

Adjusted R 0.952706 SD dependent var. 3.403283

SE of regression 0.740114 Akaike info criterion —(1.595907

Sum squared resid. 271.6936 Schwarz criterion —0.570581

Log likelihood —356.3713 Fstatistic 5016.993

Durbin-Watson stat. 1.917179 Prob(Fstatistic) 0.000000

Inverted MA roots -95

Wald test:

Null hypothesis: Cihh=0 C2y=1

Fstatistic 143.8323 Probability 0.000000

Chi-square 287.6647 Prabability 0.006000
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FIBURE 12.9 Hislogram and Related Statistics, Squared Quantitative Forecast Error
300 -
] Series: EQSQ
250 + Sample 1/01/1988 7/18/1997
Observations 499
200 - Mean 1.592217
Median 0.763750
150 - Maximum 21.74718
Minimum 5.61E-06
Std. Dev. 2.369751
100 Skewness 3.293315
Kurtosis 18.88079
50 |
Jarque-Bera 6145.666
Probability 0.000000
0 t t t T ¥ Y T T T T ~

0 2 4 6 8§ 10 12 14 16 18 20 22

autocorrelations, presented in Figure 12.13, confirm that impression. Thus, to
test for significance of the loss differential, we regress it on a constant and
allow for MA(1) disturbances; the results appear in Table 12.8. The mean loss
differential is highly statistically significant, with a pvalue less than 0.01; we
conclude that the quantitative forecast is more accurate than the judgmental

forecast under quadratic loss.

Now let’s combine the forecasts. Both failed Mincer-Zarnowitz tests, which
suggests that there may be scope for combining. The correlation between the

FIGURE 2.0 Histogram and Related Statistics, Squared Judgmental Forecast Exror

160
—‘l Series: E]SQ
Sample 1/01/1988 7/18/1997
120 L Observations 499
Mean 2.177201
Median 1.308296
Maximum 16.81511
80~ Minimum 4.63E-05
Std. Dev. 2.623644
Skewness 2.134531
40+ Kurtosis 8.646748
Jarque-Bera 1041.891
Probability 0.000000
] + . t 2y T T
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two forecast errors is (1,54, positive but not too high. In Table 12.9, we show the
results of estimating the unrestricted combining regression with MA(1) errors

(equivalently, a forecast encompassing test). Neither forecast encompasses the

other; both combining weights, as well as the intercept, are highly statistically
significantly different from 0. Interestingly, the judgmenial forecast actually
gets more weight than the quantitative forecast in the combination, in spite of
the fact that its RMSE was higher. That's because, after correcting for bias, the

judgmental forecast appears a bit more accurate.

FiGu iz 122 Histogram and Reluted Statistics, Loss Differential

FIGURE 2.1
Loss Differential

120 - 1
Series: DD
| Sample 1/01/1988 7/18/1997
100 rhl Observations 499
80r Mean -0.584984
Median —0.395646
60 - Maximum 21.65003
) Minimum -16.50010
Std. Dev. 3.416190
40 + Skewness 0.421513
Kurtosis 9.472586
20 - Jarque-Bera 887.8303
Probability 0.000000
I D 5 He .
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TABLE 12.7

Sample: 1/01/1988 7/18/1997

Loss Differential Included observations: 499
Correlogram Acorr. P. Acorr. Std. Error Ljung-Box p-value
1 0.357 0.357 045 64.113 0.000
2 —0.069 —-0.226 045 66.519 0.000
3 —0.050 0.074 045 67.761 0.000
4 —-0.044 —0.080 045 68.746 0.000
5 -0.078 -=0.043 045 71.840 0.000
6 0.017 0.070 045 71.989 0.000
FIGURE 1213 04y
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Autocorrelations I ]
and Partial g 0.3
Autocorrelations, E
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LS // Dependent variable is DD. TABLE 12 8B
Sample: 1,701 1988 7718/1997 Loss Differential,
Included observations: 499 Regression an
Convergence achieved after 4 iterations Intercept with
Variable Coefficient Std. Error t-Statistic Prob. MA(1)
Disturbances

C —-0.585333 0.204737 —2.858945 0.0044
MA(1) 0.472901 0.039526 11.96433 0.0000
R 0.174750 Mean dependent var. -0.584984
Adjusted R 0.173089 SD dependent var. 3.416190
SE of regression 3. 106500 Akaike info criterion 2.270994
Sum squared resid. 4796,222 Schwarz criterion 2.287878
Log likelihood —1272.663 Fstatistic 105.2414
Duwrbin-Watson stat. 2.023606 Prob(F-siatistic) 0.000000
Inverted MA roots -.47

It's interesting to track the RMSEs as we progress from the original
forecasts to the combined forecast. The RMSE of the quantitative forecast is
1.26 and that of the judgmental forecast is 1.48. The RMSE associated with
using the modified quantitative forecast that we obtain using the weights
LS // Dependent variable is VOL. TABLE 129
Sample: 1/01/1988 7,/18/1997 Shipping Volume
Included observations; 499 Combining
Convergence achieved after 11 iterations Regression

Variable Coefficient Std. Error t-Statistic Prob.
C 2.181977 0.259774 8.399524 0.0000
VOLQ 0.291577 0.038346 7.603919 0.0000
VOl 0.630551 0.039935 15.78944 0.0000
MA(1) 0.951107 0.014174 67.10327 0.0000
R 0.957823 Mean dependent var, 19.80609
Adjusted R 0.957567 SD dependent var. 3.403283
SE of regression 0.701049 Akaike info criterion —0.702371
Sum squared resid. 243.2776 Schwarz criterion —0.668603
Log likelihood —328.8088 F-statistic 3747.077
Durbin-Watson stat, 1.92509] Prob(Fstatistic) 0.000000

Inverted MA roots —-.95
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estimated in the Mincer-Zarnowitz regression is .85, and that of the modi-
fied judgmental forecast is 0.74. Finally, the RMSE of the combined forecast
is 0.70. In this case, we get a big improvement in forecast accuracy from using
the modifications associated with the Mincer-Zarnowitz regressions and a
smaller, but nonnegligible, additional improvement from using the full com-
bining regression.?

Exercises, Problems, and Complements

1. (Forecast evaluation in action) Discuss in detail how vou would use forecast

evaluation techniques to address each of the following questions.

a. Are asset returns (e.g., stocks, bonds, exchange rates) forecastable over long
horizons?

b. Do forward exchange rates provide unbiased forecasts of future spot
exchange rates at all horizons?

c. Are government budgel projections systematically too optimistic, perhaps tor
strategic reasonsz

d. Can interest rates be used to provide good torecasts of future inflation?

2. (Forecast ervor analysis) You are working for a London-based hedge tund,
Thompson Energy Investors, and vour hoss has assigned vou to assess a model
used to forecast U.S. crude oil imports. On the last day of each quarter, the model
is used 1o forecast oil imports at l-quarter-ahead through +-quarterahead
horizons. Thompson has done this for each of the past 80 quarters and has kept
the corresponding four forecast error series, which appear on the book’s web
page.

a. Based on a correlogram analysis, assess whether the l-quarter-ahcad torecast
errors are white noise. (Be sure 1o discuss all parts ot the correlogrami: sample
autocorrelations, sample partial autocorrelations, Bartlet standard ervors,
and Ljung-Box statistics.) Whv care?

b. Regress each of the four forecast error series on constants, in each case
allowing for a MA(5) disturbances. Commenton the significance of the MA
coetficients in each of the four cases, and use the results to assess the
optimality of the forecasts at each of the four horizons. Does vour 1-step-
ahead MA(5)-based assessment match the correlogram-based assessment
obtained in part a? Do the multistep forecasts appear optimal?

c. Overall, what do your resulis suggest about the model’s ability to predict U.S.
crude oil imports?

3. (Combining forecasts) You are a managing director at Paramex, a boutique
investment bank in Paris. Each day during the summer vour two interns, Alex and
Betsy, give you a I-dav-ahead forecast of the euro/dollar exchange rate. At the

4 The RMSEs associated with forecasts from the partial optimality regressions as well as trom the
full combining regression are of course in-sample RMSEs. It remains 10 be seen how thev'll per-
form out of sample, but all indications look good.
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end of the summer, vou calculate each intern’s series of daily forecast errors. You

find that the mean errors are zerg, and the error variances and covariances are

0., =153.76.05, =92.16 and 0,5, = 0.2,

a. If you were forced to chuose between Alex’s forecast and Betsy's forecast,
which would you chooser Why?

b. Ifinstead vou had the opportunity to combine the two forecasts by forming a
weighted average, what would be the optimal weights according to the
variance-covariance method? Why?

c. Isit guaranteed that a combined forecast formed using the “optimal” weights
calculated in part b will have lower mean squared prediction error? Why or
why not?

4. (Quantitative forecasting, judgmental forecasting, forecast combination, and
shrinkage) Interpretation of the modern quantitative approach to forecasting as
eschewing judgment is most definitely misguided. How is judgment used
routinely and informally to modify quantitative forecasts? How can judgment be
formally used to modify quantitative forecasts via forecast combination? How can
judgment be formally used to modify quantitative forecasts via shrinkage? Discuss
the comparative merits of each approach. Klein (1981) provides insightful
discussion of the interaction between judgment and models, as well as the
comparative track record of judgmental versus model-based forecasts.

5. (The algebra of forecast combination) Consider the combined forecast,
b
Yient = OV ep, H (1= @)y/ny -

Verily the following claims made in the text:
a. The combined forecast error will satisfy the same relation as the combined
forecast; that is,

s - “« b
Crang =Wl +(1- “’)'Hh.! .

b. Because the weights sum to unity, if the primary forecasts are unbiased, then
$0, too, is the combined forecast.
¢. The variance of the combined forecast error is

ol = ol + (1 - m)‘“’of,, +20(1 - m)a’fb ,

where 0';" , and 0222 are unconditional forecast error variances and 0,2 » is their
covariance.
d. The combining weight that minimizes the combined forecast error variance
(and hence the combined forecast error MSE, by unbiasedness) is
2 2
Opp = Oup

W= — 5 7 -
Ty + Ona — 20,

e. If neither forecast encompasses the other, then
2 . 2 2
a’ < mm(ca,,, gy ) -
f. If one forecast encompasses the other, then

) . 2 2
g = mm(a',,,,,(r,,,, ;
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(The mechanics of practical forecast evaluation and combination) On the book’s
web page, vou'll find the time series of shipping volume, quantitative forecasts,
and judgmental forecasts used in this chapter.

a.

b.

Replicate the empirical results reported in this chapter. Explore and discuss
any variations or extensions that you find interesting.

Using the first 250 weeks of shipping volume data, specify and estimate a
univariate autoregressive model of shipping volume (with tend and
seasonality if necessary), and provide evidence to support the adequacy of
vour chosen specification,

Use your model each week to forecast 2 weeks ahead, each week estimating the
model using all available data, producing forecasts for observations 252
through 499, made using information available at times 250 through 497.
Calculate the corresponding series of 248 2-step-ahead recursive forecast
errors.

Using the methods of this chapter, evaluate the quality of your forecasts, both
in isolation and relative to the onginal quantitative and judgmental

forecasts. Discuss.

Using the methods of this chapter, assess whether vour forecasting model can
usefullvy be combined with the original quantitative and judgmental models.
Discuss.

(What are we forecasting? Preliminary series, revised series, and the limits to
forecast accuracy) Many economic series are revised as underlying source data
increase in quantity and quality. For example, a typical quarterly series might he
issued as follows. First, shortly after the end of the relevant quarter, a
“preliminary” value for the current quarter is issued. A few months later, a
*revised” value is issued, and a year or so later the “final revised” value is issued.
For extensive discussion, see Croushore and Stark (2001).

a.

If you're evaluating the accuracy of a forecast or forecasting technique, you've
got to decide on what to use for the “actual” values, or realizations, to which
the forecasts will be compared. Should you use the preliminary value? The
final revised valuer Something elser Be sure to weigh as many relevant issues
as possible in defending vour answer.

Morgenstern (1963) assesses the accuracy of economic data and reports that
the great mathematician Norbert Wiener, after reading an early version of
Morgenstern’s book, remarked that “economics is a one- or two-digit science.”
What might Wiener have meant?

Theil (1966) is well aware ot the measurement errvor in economic data; he
speaks of "predicting the future and estimating the past.” Klein (1981) notes
that, in addition to the usual innovation uncertainty, measurement error in
economic data—even “final revised” data—provides additional limits to
measured forecast accuracy. That is, even if a forecast were perfect, so that
forecast errors were consistentdv 0, measured forecast errors would be nonzero
due to measurement error. The larger the measurement error, the more
severe the inflation of measured forecast error. Evaluate.

When assessing improvements (or lack thereof) in forecast accuracy over
time, how might vou guard against the possibility of spurious assessed
improvements due not to true forecast improvement but rather to structural
change toward a more "forcastable” process? (On forecastability, see Diebold
and Kilian, 2001).
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8.

(Ex post versus real-time forecast evaluation) If vou're evaluating a forecasting
model. you've also got 10 take a stand on precisely what information is available to

" the forecaster. and when. Suppose, for example, that you're evaluating the

10.

11.

forecasting accuracy of a particular regression model.

a. Do yvou prefer 1o estimate and forecast recursively or to simply estimate once
using the full sample of data?

b. Do vou preter 1o estimate using final-revised values of the left- and right-hand-
side variables, or do you prefer to use the preliminary, revised, and final-
revised data as it became available in real time?

c. If the model is explanatory rather than causal, do you prefer to substitute
the true realized values of right-hand-side variables or to substitute forecasts
of the right-hand-side variables that could actually be constructed in real
time?

These sorts of timing issues can make large differences in conclusions. For an

application to using the composite index of leading indicators to forecast

industrial production, see Diebold and Rudebusch {(1991).

(What do we know about the accuracy of macroeconomic forecasts?) Zarnowitz

and Braun (1993) provide a fine assessment of the wrack record of economic

forecasts since the late 1960s. Read their article, and 1y to assess just what we

really know about

a. comparative forecast accuracy at business cycle turning points versus other
times;

b. comparative accuracy of judgmental versus model-based forecasts;

c. improvements in forecast accuracy over time:

d. the comparative forecastability of various series;

e. the comparative accuracy of tinear versus nonlinear forecasting models.
Other well-known and useful comparative assessments of U.S. macroeconomic

forecasts have been published over the vears by Stephen K. McNees, a private

consultant formerlv with the Federal Reserve Bank of Boston. McNees (1988) isa

good example. Similarly useful studies for the UK., with particular atention to

decomposing forecast error into its various possible sources, have recently been

produced by Kenneth F. Wallis and his coworkers at the ESRC Macroeconomic

Modelling Bureau at the Universitv of Warwick. Wallis and Whitley (1991) is a

good example. Finally, the Model Comparison Seminar, founded by Lawrence R.

Klein of the University of Pennsvivania and now led by Michael Donihue of Colby

College, is dedicated to the ongoing comparative assessment of macroeconomic

forecasting models. Klein (1991) provides a good survey of some of the group's

recent work, and more recent information can be found at

http://www.calbyv.edu "economics taculty/mrdonihu/mes/.

(Forecast evaluation when realizations are unobserved) Sometimes we never see
the realization of the variable being torecast. Pesaran and Samiei (1995), for
example, develop models for torecasting ultimate resource recovery, such as the
total amount of oil in an underyround reserve. The actual value, however, won't
be known until the reserve is depleted, which may be decades away. Such
situations obvioushh muke tor dithicult accuracy evaluation! How would you
evaluate such forecusting models?

(Forecast error variances in models with estimated parameters) As we've seen,
computing forecast error vanances that acknowledge parameter estimation
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uncertainty is very difficult; that’s one reason why we've ignored it. We've learned

a number of lessons about optimal forecasts while ignoring parameter estimation

uncertainty, such as that

a. forecast error variance grows as the forecast horizon lengthens, and

b. in covariance stationary environments, the forecast error variance approaches
the (finite) unconditional variance as the horizon grows.

Such lessons provide valuable insight and intuition regarding the workings of

forecasting models and provide a useful benchmark for assessing actual forecasts.

They sometimes need modification, however, when parameter estimation

uncertainty is acknowledged. For example, in models with estimated parameters,

keep in mind the following points:

a. Forecast error variance needn’t grow monotonically with horizon. Typically
we expect forecast error variance to increase monotonically with horizon, but it
doesn’t have to.

b. Even in covariance stationary environments, the forecast error variance
needn’t converge to the unconditional variance as the forecast horizon
lengthens; instead, it may grow without bound. Consider, for example,
forecasting a serics that's just a stationary AR(1) process around a linear
trend. With known parameters, the point forecast will converge to the trend
as the horizon grows, and the forecast error variance will converge to the
unconditional variance of the AR(1) process. With estimated parameters,
however, if the estimated trend parameters are even the slightest bit ditferent
from the true values (as they almost surely will be, due to sampling variation),
that error will be magnified as the horizon grows, so the forecast error
variance will grow.

Thus, results derived under the assumption of known paramneters should be

viewed as a benchmark to guide our intuition, rather than as precise rules.

. (The empirical success of forecast combination) In the text we mentioned that we

have nothing 16 lose by forecast combination and potentially much to gain. That's
certainly true in population, with optimal combining weights. However, in finite
samples of the size typically available, sampling error contaminates the combining
weight estimates, and the problem of sampling error may be exacerbated by the
collinearity that typically exists between y7, , , and y!,, . Thus, although we hope
to reduce out-ofssample forecast MSE by combining, there is no guarantee.
Fortunately, however, in practice forecast combination often leads to very good
results. The efticacy of forecast combination is well documented in Clemen’s
{1989) review of the vast literature, and it emerges clearly in the landmark study
by Stock and Watson (1999).

(Forecast combination and the Box-Jenkins paradigm) In an influential book,
Box and Jenkins (latest edition is Box, Jenkins, and Reinsel, 1994) envision an
ongoing, iterative process of model selection and estimation, forecasting. and
forecast evaluation, What is the role of forecast comnbination in that paradigm? In
a world in which information sets can be instantaneously and costlessly combined,
there is no role; it is always optimal to combine information sets rather than
forecasts. That is, if no model forecast-encompasses the others, we might hope 0
eventually figure out what's gone wrong, learn from our mistakes, and come up
with a model based on a combined information set that does forecast-encompass
the others. But in the short run—particularly when deadlines must be met and
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timely forecasts produced—pooling of information sets tvpically is either
impossible or prohibitivelv costly. This simple insight motivates the pragmatic
idea of forecast combination, in which forecasts rather than models are the basic
object of analvsis, due to an assumed inability to combine information sets. Thus,
forecast combination can be viewed as a key link between the short-run, real-time
forecast production process, and the longer-run, ongoing process of model
development.

14. {Consensus forecasts) A number of services, some commercial and some
nonprofit, regularly survey economic and financial forecasters und publish
“consensus” forecasts, typically the mean or median of the forecasters surveyed.
The consensus forecasts often perform very well relative to the individual
forecasts. The Survev of Professional Forecasters is a leading consensus forecast
that has been produced each quarter since the late 1960s; currently it's produced
by the Federal Reserve Bank of Philadelphia. See Zarnowitz and Braun (1993)
and Croushore (1993).

15. (The Delphi method for combining experts’ forecasts) The “Delphi method” is a
structured judgmental forecasting technique that sometimes proves useful in verv
difficult forecasting situations not amenable to quantification, such as new-
technology forecasting. The basic idea is to survey a panel of experts
anonymously, reveal the distribution of opinions to the experts so they can revise
their opinions, repeat the survey, and so on. Typically the diversity of opinion is
reduced as the iterations proceed.

a. Delphi and related techniques are fraught with difficulties and pitfalls.
Discuss them.

b. At the same time, it's not at all clear that we should dispense with such
techniques; they may be of real value. Why?

Biblingraphical and Computational Notes

This chapter draws on Diebold and Lopez (1996) and Diebold (1989).

Mincer-Zarnowitz regressions are due to Mincer and Zarnowitz (1969).

The test for a zero expected loss differential, due to Diebold and Mariano (1995),
builds on earlier work by Granger and Newbold (1986) and has been improved and
extended by Harvey, Levbourne, and Newbold (1997); West (1996); White (2000);
and Hansen (2001).

The idea of forecast encompassing dates at least to Nelson (1972) and was
formalized and extended by Chong and Hendry (1986) and Fair and Shiller (1990).

The variance-covariance method of forecast combination is due to Bates and
Granger (1969), and the regression interpretation is due to Granger and
Ramanathan (1984).

Winkler and Makridakis (1983} document the frequent good performance of
simple averages. In large part motivated by that finding, Clemen and Winkler (1986)
and Diebold and Paulv 1491} develop forecast combination techniques that feature
shrinkage toward the mean. and Stock and Watson (1998) armive at a similar end via a
very different route. See also Elliort and Timmermann (2002).
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Cancepts for Review
Evaluation and comparison of forecast Mean absolute error

accuracy Forecast encompassing
Unforecastability principle Forecast combination
Mean error Vanance-covariance forecast
Bias combination method
Error variance Regression-based forecast combination
Mean squared ervor mcthod

Root mean squared ervor
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Unit Roots, Stochastic
Trends, ARIMA

Forecasting Models,
and Smoothing

Thus far we’ve handled nonstationarities, such as trend, using deterministic
components. Now we consider an alternative, stochastic approach. Stochastic
trend is important insofar as it sometimes provides a good description of cer-
tain business, economic, and financial time series, and it has a number of spe-
cial properties and implications. As we’ll see, for example, if we knew for sure
that a series had a stochastic trend, then we'd want to difference the series and
then fit a stationary model to the difference.! The strategy of differencing to
achieve stationarity contrasts with the approach of earlier chapters, in which
we worked in levels and included deterministic trends. In practice, it’s some-
times very difficult to decide whether trend is best modeled as deterministic
or stochastic, and the decision is an important part of the science—and art—
of building forecasting models.

Lt ;
|. Stochastic Trends and Forecasting

Consider an ARMA(p, g) process,
¢(L))'f = O(L),,

! We speak of modeling in “differences,” as opposed to “levels.” We also use differences and changes
interchangeably.



Unit Roots, Stachastye Trends, ARIMA Forecasting Models, and Smoothing

with all the autoregressive roots on or outside the unit circle, at most one auto-
regressive root on the unit circle, and all moving average roots outside the unit
circle: We sav that \ has a4 unit autoregressive root, or simply a unit roet, if one
of the p roots of its autoregressive lag operator polynomial is 1, in which case
we can factor the autoregressive lag operator polynomial as

(L) =LA - 1),

where ®'(L) is of degree p — 1. Thus, yis really an ARMA(p — 1, ¢) process in
differences, because

®(L) (1 - L)y, = ©(L),
is simply
S (L)Ay, = O(L)g, .

Note that y is not covariance stationary, because one of the roots of its auto-
regressive lag operator polynomial is on the unit circle, whereas covariance
stationarity requires all roots to be outside the unit circle. However, Ay is a
covariance stationary and invertible ARMA(p — 1, q) process.

You may recall from calculus that we can “undo™ an integral by taking a de-
rivative. By analogy, we say that a nonstationary series is integrated if its non-
stationarity is appropriately “undone” by differencing. If only one difference is
required (as with the series y earlier), we say that the series is integrated of
order 1, or /(1) (pronounced “eye-one”) tor short. More generally, if d differ-
ences are required, the series is /(d). The order of integration equals the num-
ber of autoregressive unit roots. In practice, J{0) and /(1) processes are by far
the most important cases, which is why we restricted our discussion to allow for
at most one unit root.” To get a feel for the behavior of /(1) processes, let’s
take a simple and very important example, the random walk, which is nothing
more than an AR(1) process with a unit coefficient,

Y= a+¢g
g~ WN(Q, o) .

The random walk is not covariance stationary, because the AR(1) coefficient
is not less than 1. In particular, it doesn't display mean reversion; in contrast to
a stationary AR(1), it wanders up and down randomly, as its name suggests,
with no tendency to return to any particular point. Although the random walk
is somewhat ill behaved, its first difference is the ultimate well-behaved series:
zero-mean white noise.

As an illustration, we show a random walk realization of length 300, as well
as its first difference, in Figure 13.1.% The difference of the random walk is
white noise, which vibrates randomly. In contrast, the level of the random

2 }(2) series sometimes. but rarely, arise, and orders of integration greater than 2 are almost
unheard of.

3 The random walk was simulated on a computer with y, = 1 and N(0, 1) innovations.
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walk, which is the cumulative sum of the white noise changes, wanders aim-
lesslv and persistently.
Now let’s consider a random walk with drift,

w=>0+y.1+¢g
g ~ WN(Q©, a”).

Note that the random walk with drift is effectively a model of trend, because
on average it grows each period by the drift, 8. Thus, the drift parameter playvs
the same role as the slope parameter in our earlier model of linear deter-
ministic trend. We call the random walk with drift (and of course also the
random walk without drift) a model of stochastic trend, because the trend is
driven by stochastic shocks, in contrast to the deterministic trends considered
in Chapter 5.

Just as the random walk has no particular level to which it returns, so too
the random walk with drift has no particular trend to which it returns. If a
shock lowers the value of a random walk, for example, there is no tendency for
it to necessarily rise again—we expect it to stay permanently lower. Similarly, if
a shock moves the value of a random walk with drift below the currently pro-
jected trend, there’s no tendency for it to return—the trend simply begins
anew from the series' new location. Thus, shocks to random walks have com-
pletely permanent effects; a unit shock forever moves the expected future
path of the series by one unit, regardless of the presence of drift.

For illustration, we show in Figure 13.2 a realization of a random walk with
drift, in levels and differences. As before, the sample size is 300 and y; = 1. The
innovations are N(0, 1) white noise, and the drift is d = 0.3 per period, so the
differences are white noise with a mean of 0.3. It’s hard to notice the nonzero
mean in the difference, because the stochastic trend in the level, which is the
cumulative sum of N((.3, 1) white noise, dominates the scale.
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Let’s study the properties of random walks in greater detail. The random
walk is
Yy=% 1€
g ~ WN(, o?).

Assuming the process started at some time 0 with value y, we can write it as

'
Yy =%+ ZE; .
=1

Immediately,
E(y) =3
and
var(y,) = to?.
In particular, note that

lim var(y,) = o0,
f=—x

so that the variance grows continuously rather than converging to some finite

unconditional variance.
Now consider the random walk with drift. The process is

= B+ Yi-1 + &
£, ~ WN(0, o?).
Assuming the process started at some time 0 with value y, we have

'
)‘1=15 + _')‘0+Z€,'.

i=1



292

Chapter 13

Immediately

E(y)=3y+8
and

var(y,) = to”.

As with the simple random walk, then, the random walk with drift also has the
property that

lim var(y,) =o0.

t— o0

Just as white noise is the simplest J(0) process, the random walk is the sim-

plest I{1) process. And just as [{0) processes with richer dynamics than white
noise can be constructed by transforming white noise, so too can I(1)
processes with richer dynamics than the random walk be obtained by trans-
forming the random walk, We're led immediately to the ARIMA(p, 1, q)
model,

QL)1 - L)y =c+O(L),

or
(1—- L)y, =c® 1)+ (L)O(L)e,,
where
S(L)y=1-L—--.~,L*
oL)y=1-6,L-..--9,L",

and all the roots of both lag operator polynomials are outside the unit circle.
ARIMA stands for autoregressive integrated moving average. The ARIMA(p, 1, ¢)
process is just a stationary and invertible ARMA(p, g) process in first differ-
ences.

More generally, we can work with the ARIMA(p, d, g) model,

d(L)(1 - L)"y: = ¢+ O(L),

or
(1-— L)"y, =cd ')+ (L)O(L), ,
where
D(L)=1 —CD,L—--'—(D,,L”
eLy=1-&L—-.--—-Q,L7,

and all the roots of bath lag operator polynomials are outside the unit circle.
The ARIMA(p, d, ) process is a stationary and invertible ARMA(p, ¢) after dif-
ferencing d times. In practice, d = 0 and d = 1 are by far the most important
cases. When d =0, yis covariance stationary, or /(0), with mean c®'(1). When
d =1, yis I(1) with drift, or stochastic linear trend, of cd~' (1) per period.



Unit Roots. Stochastic Trends, ARIMA Forecasting Models, and Smoothing

It turns out that more complicated ARIMA(p, 1, g) processes behave like
random walks in certain key respects. First, ARIMA(p, 1. ¢) processes are ap-
propriately made stationary by differencing. Second, shocks to ARIMA(p, 1, ¢)
processes have permanent effects.’ Third, the variance of an ARIMA(p, 1, ¢)
process grows without bound as time progresses. The special properties of /(1)
series. associated with the fact that innovations have permanent eftects. have
important implications for forecasting. In regard to point forecasting, the
shock persistence means that optimal forecasts, even at very long horizons,
don’t completelv revert to a mean or atrend. And in regard to interval and den-
sity forecasting, the fact that the variance of an /(1) process approaches infinity
as time progresses means that the uncertainty associated with our forecasts,
which translates into the width of interval forecasts and the spread of density
forecasts, increases without bound as the forecast horizon grows.”

Let’s see how all this works in the context of a simple random walk,
which is an AR(1) process with a unit coefficient. Recall that for the AR(1)
process,

Y =¢¥-iTE

g~ WN(Q©, o¥),
the optimal forecast is
b
YT+0 1 =9 Y7 -

Thus, in the random walk case of ¢ = 1, the optimal forecast is simply the cur-
rent value, regardless of horizon. This makes clear the way that the perma-
nence of shocks to random walk processes affects forecasts: Any shock that
moves the series up or down today also moves the optimal forecast up or down,
at all horizons. In particular, the effects of shocks don’t wash out as the fore-
cast horizon lengthens, because the series does not revert 1o a mean,

In Figure 13.3, we illustrate the important differences in forecasts from de-
terministic trend and stochastic trend models for U.S. GNP per capita.” We
show GNP per capita 1869-1933, followed by the forecasts from the best-fitting
deterministic and stochastic trend models, 1934-1998, made in 1933. The
best-fitting deterministic trrend model is an AR(2) in levels with linear trend,
and the best-fitting stochastic trend model is an AR(1) in differences (i.e., an
ARIMA(1, 1, 0)) with a drift.” Because 1932 and 1933 were years of severe re-
cession, the forecasts are made from a position well below trend. The forecast
from the deterministic trend model reverts to trend quickly, in sharp contrast
to that from the stochastic trend model, which remains permanently lower. As

1 In cuntrast to random walks. howeser, the long-run effect of a unit shock to an ARIMA(p, 1, )
process may be greater or less than unity, depending on the parameters of the process.

* This is true even if we ignore pananeter estimation unceriainty.

" The GNP per capita data are in bogarithms. See Diebold and Senhadji (1996) for derails.

7 Note well that the two dashed hes are tvo different point extrapolation torecasts, not an inter-
val forecast.
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it happens, the forecast from the deterministic trend model turns out to
be distinctly better in this case, as shown in Figure 13.4, which includes the
realization.

Now let’s consider interval and density forecasts from /(1) models. Again,
it's instructive to consider a simple random walk. Recall that the error associ-
ated with the optimal forecast of an AR(1) process is

erenT = (¥Teh — YT40.T) = Eren + @ET4p-1 + - + @* €14y,
with variance

h-1
2_ 2 2t
g, =0 th .

FIGURE {3 4 -3.5
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Thus, in the random walk case, the error is the sum of & white noise innova-
tions.

\ h-1
i ETeaT = E Eren—i

=0

with variance 4. The forecast error variance is proportional to h and there-
fore grows without bound as k grows. An kstep-ahead 95% interval forecast
for any future horizon is then yr £ 1.960vh, and an hstep-ahead density
forecastis N(yr, ha*),

Thus far, we've explicitly illustrated the construction of point, interval,
and density forecasts for a simple random walk. Forecasts from more compli-
cated /(1) models are constructed similarly. Point forecasts of levels of
ARIMA(p, 1, @) processes, for example, are obtained by recognizing that
ARIMA processes are ARMA processes in differences, and we know how to
forecast ARMA processes. Thus, we forecast the changes, cumulate the fore-
casts of changes, and add them to the current level, vielding

Yrent =31+ (AY)reir + -+ (AY)rant

EEREEEEN
2. Unit Roots: Estimation and Testing

LEAST-SQUARES REGRESSION WITH UNIT ROOTS

The properties of least-squares estimators in models with unit roots are of in-
terest to us, because they have implications for forecasting. We’ll use a random
walk for illustration. hut the results carry over to general ARIMA(p, 1, ¢)
processes. Suppose that y is a rancdom walk, so that

Y= Y + £ .

but we don't know that the antoregressive coefficient is 1. so we estimate the
AR(1) model.

=gy tE.

Two key and offsetting properties of the least squares estimator emerge:
superconsistency anc bias.

First we consider superconsistency. In the unit root case of ¢ = 1, the dif-
ference between ¢, and | vanishes quickly as the sample size (T) grows: in fact,
it shrinks like % Thus, 7«2 . — 11 converges to a nondegenerate random
variable. In contrast, in the covariance stationary case of J¢| < 1, the difference
between @, and ¢ shrinks more slowh, like r'=, so that v T($rs — ¢) converges
to a nondegenerate random variable. We call the extrafast convergence in the
unit root case superconsisier . we sav that the least-squares estimator of a unit
root is Superconsistent.

o
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Now we consider bias. It can be shown that the leastsquares estimator, ¢,
is biased downward, so that if the true value of ¢ is ¢*, the expected value of
$is is less than ¢*."” Other things the same, the larger is the true value of ¢, the
larger the bias, so the bias is worst in the unit root case. The bias is also larger
if an intercept is included in the regression and larger still it a wend is in-
cluded. The bias vanishes as the sample size grows, as the estimate converges
to the true population value, but the bias can be sizeable in samples of the size
that concern us.

Superconsistency and bias have offsetting effects as regards forecasting.
Superconsistency is helpful; it means that the sampling uncertainty in our
parameter estimates vanishes unusually quickly as sample size grows. Bias. in
contrast, is harmful, because badly biased parameter estimates can translate
into poor forecasts. The superconsistency associated with unit roots guaran-
tees that bias vanishes quickly as sample size grows, but it may nevertheless be
highly relevant in small samples.

EFrFeECTS OF UNIT ROOTS ON THE SAMPLE
AUTOCORRELATION AND PARTIAL
AUTOCORRELATION FUNCTIONS

If a series has a unit root, its autocorrelation function isn’t well defined in
population, because its variance is infinite. But the sample autocorrelation
function can of course be mechanically computed in the usual way, because
the computer software doesn’t know or care whether the data being fed into
it have a unit root. The sample autocorrelation function will tend to damp ex-
tremely slowly; loosely speaking, we say that it fails to damp. The reason is
that, because a random walk fails to revert to any population mean, any given
sample path will tend to wander above and below its sample mean for long
periods of time, leading to very large positive sample autocorrelations, even
at long displacements. The sample partial autocorrelation function of a unit
root process, in contrast, will damp quickly: It will tend to be very large and
close to one at displacement 1 but will tend to be smaller and decay quickly
thereafter.

If the properties of the sample autocorrelations and partial autocorrela-
tions of unit root processes appear rather exotic, the properties of the sample
autocorrelations and partial autocorrelations of differences of unit root
processes are much more familiar. That's because the first difference of an
I(1) process, by definition, is covariance stationary and invertible.

We illustrate the properties of sample autocorrelations and partial auto-
correlations of levels and differences of unit root pracesses in Figures 13.5
and 13.6. Figure 13.5 shows the correlogram of our simulated random walk.

® The bias in the least-squares estimator in the unit root and near—unit root cases was studied by
Dickey (1976} and Fuller (1976), and it is sometimes called the DickeyFuller bias.




Unit Roots, Stochastic Trends, ARIMA Forecasting Models, and Smoothing

297

1.2~

0.8} I mmr

0.6+

0.4 I

Sample Autocorrelation

R Ik T 1= PO S P S SR S B Fq— g G Sy W i S Y5y

0.0

1 2 3 4 5 6 7 8 9 10 11 12
Displacement

1.2+

0.6+
0.4+

02r

Sample Partal Autocorrelation

0.0 o O / — D

-0.2 T L ] 1

Displacement

The sample autocorrelations fail to damp, and the sample partial autocor-
relation is huge at displacement 1, but tiny thereafter. Figure 13.6 shows
the correlogram of the first difference of the random walk. All the sample
autocorrelations and partial autocorrelations are insignificantly different
from 0, as expected, because the first difference of a random walk is white
noise.

UniT ROOT TESTS

In light of the special properties of series with unit roots, it's sometimes of in-
terest to test for their presence, with an eye toward the desirability of imposing

FIGURE 13.5
Random Walk,
Levels: Sample
Autocorrelation
Function (Top
Panel) and Sample
Partial
Autocorrelation
Function (Bottom
Panel)
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them, by differencing the data, if they seem to be present. Let’s start with the
simple AR(1) process,

Y =®y-11+E

£ < N, o?) .

We can regress y,0on y,—1, and then use the standard #test for testing ¢ = 1,
¢-1

7=

where s is the standard error of the regression. Note that the T-statistic is not
the tstatistic computed automatically by regression packages; the standard
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tstadstic is for the null of a 0 coefficient, whereas 7 is the #statistic for a unit
coefficient. A simple trick, however, coaxes standard software into printing 7
automatically. Simply rewrite the firstorder autoregression as

=y = (¢ — l))‘r—l +E .

Thus, T is the usual #statistic in a regression of the first difference of yon the first
lug of y.

A key result is that, in the unit root case, T does not have the ¢ distribution.
Instead it has a special distribution now called the Dickey-Fuller distribution,
named for two statisticians who studied it extensively in the 1970s and 1980s.
Fuller (1976) presents tables of the percentage points of the distribution of 7,
which we’ll call the Dickey-Fuller statistic, under the null hypothesis of a unit
root. Because we're only allowing for roots on or outside the unit circle, a one-
sided test is appropriate.

Thus far, we’ve shown how to test the null hypothesis of a random walk with
no drift against the alternative of a zero-mean, covariance-stationary AR(1).
Now we allow for a nonzero mean, p, under the alternative hypothesis, which
is of potential importance because business and economic data can rarely be
assumed to have zero mean. Under the alternative hypothesis, the process
becomes a covariance stationarv AR(1) process in deviations from the mean,

—w) =1 — W +¢&,
which we can rewrite as
nw=a+eQy+E&,

where a = p(1 - ¢). If we knew p, we could simply center the data and pro-
ceed as before. In practice, of course, i must be estimated along with the
other parameters. Although a vanishes under the unit root null hypothesis of
¢ = 1, itis nevertheless present under the alternative hypothesis, and so we in-
clude an intercept in the regression. The distribution of the corresponding
Dickey-Fuller statistic. 7., has been tabulated under the null hyvpothesis of
(a, ¢) = (0, 1); tables appear in Fuller (1976).

Finally, let's allow for deterministic linear trend under the alternative
hypothesis, by writing the AR(1) in deviations from a linear trend,

(3 ~a— bTIME) = (3.1 —a—bTIME ) +&,,
or
yr=a+ BTIME, +~o¢y._| +€,
where o = a(l — ¢) + b¢ and B = 4(1 — ¢). Under the unit root hypothesis

that ¢ = 1, we have a random walk with drift,
vw=b+y_1+¢&,

which is a stochastic trend. but under the deterministic trend alternative hy-
pothesis, both the intercept and the trend enter, so they must be included in
the regression. The random walk with drift is a null hypothesis that frequently
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arises in economic applications; stationary deviations from linear trend are a
natural alternative. The distribution of the Dickey-Fuller statistic 7., which
allows for linear trend under the alternative hypothesis, has been tabulated
under the unit root null hypothesis by Fuller (1976).

Now we generalize the test to allow for higher-order autoregressive dy-
namics. Consider the AR(p) process

»+ i Piy-j=E&,
j=1

which we rewrite as
Y =pi¥-1+ ‘: P,‘()z-m — )‘a-,) + &,
=2
where p> 2, p, =—Z¢,, and p, = Zcp,, i=2,...,p If there is a unit
root, thenp; =1 andy is simply an AR(p — 1) in first differences. The Dickey-
Fuller statistic for the null hypothesis of p; =1 has the same asymptotic
distribution as 7. Thus, the results for the AR(1) process generalize (asymp-

totically) in a straightforward manner to higher-order processes.
To allow for a nonzero mean in the AR(p) case, write

(y,-u-)+2,L @, (- — 1) =6,
i=1
or

¢
y=a+py-1+ Z P Fr—js1 — Yo ;) + &,
=2
wherea = p (1 + t ¢,), and the other parameters are as noted earlier. Under
1=
the null hypothesis of a unit root, the intercept vanishes, because in that case

t ¢; = —1. The distribution of the Dickey-Fuller statistic for testing p; = 1 in
=1
this regression is asymptotically identical to that of 7.

Finally, to allow for linear trend under the alternative hypothesis, write

[}
(3o—a—b-TIME)+ Y _ ¢;(y.;—a—b-TIME,_)=g¢,,
=1
which we rewrite as

»
3. =k + ko TIME, +pyy,-1 + Z Pi(V—jr1 — Y-} + &,
=2

k1=a(1+g¢i)—b§icp,
k2=b(1+ﬁ¢,)_

where

and




Unit Roots, Stachastic Trends, ARIMA Forecasting Models, and Smoothing

Under the null hypothesis, &k = —b‘i i@, and k» = 0. The Dickey-Fuller
i=1

statistic for the hypothesis thatp; = 1 has the 7 distribution asymptotically.

Now we consider general ARMA representations. We've seen that the orig-
inal Dickey-Fuller test for a unit root in AR(1) models is easily generalized to
test for a unit root in the AR(p) case, p < 00; we simply augment the test re-
gression with lagged first differences, which is called an augmented Dickey-
Fuller test or angmented Dickey-Fuller regression. Matters are more complex
in the ARMA(p, ¢) case, however, because the corresponding autoregression is
of infinite order. A number of tests have been suggested, and the most popu-
lar is to approximate the infinite autoregression with a finite-order augmented
Dickey-Fuller regression. We let the number of augmentation lags increase
with the sample size, but ar a slower rate. Hall (1394) shows that, under certain
conditions, the asvmptotic null distribution of the Dickey-Fuller statistic with
augmentation lag order selected by SIC is the same as if the true order were
known, so that the SIC provides a useful guide to augmentation lag order se-
lection in Dickev-Fuller regressions. Ng and Perron (1995), however, argue
that standard rtesting provides more reliable inference. Additional research is
needed, but it does appear that, unlike when selecting lag orders for forecast-
ing models, it may be better 1o use less harsh degrees-of-freedom penalties,
such as those associated with ttesting or the AIC, when selecting augmenta-
tion lag orders in Dickey-Fuller regressions.

Depending on whether a zero mean, a nonzero mean, or a linear trend is
allowed under the alternative hypothesis, we write either

h-1
y=p1¥a+ Z P (,V/-,+l - - +&

=2

K1
yY=a+py-+ Z P; (Y—j+1 = y-j) + &
1=2
or
-1
yw=hk+kTIME +py + Z P O—jat — V=) + &,
=2

where k — 1 augmentation lags have been included. The Dickey-Fuller statis-
tics on y,-; continue to have the 7, T, and 7, asymptotic distributions under
the null hypothesis of a unit root. For selecting the number of augmentation
lags, k — 1, we can use the SIC or AIC. as well as the tstatistics on the various
lags of Ay, which have the standard normal distribution in large samples, re-
gardless of whetlier the unit root hypothesis is true or false,

New tests, with better power than the Dickey-Fuller tests in certain situa-
tions, have been proposed recently.” But power and size problems will always

¥ See Elliott. Rothenberg, and Stock (1996): Dickey and Gonzalez-Farias (1992); and the compar-
isons in Pantula, Gonzalez-Farias, and Fuller (1994).
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plague unit root tests—power problems, because the relevant alternative hy-
potheses are typically very close to the null hypothesis: and size problems, be-
cause we should include infinitely many augmentation lags in principle but we
can’t in practice.

Thus, although unit root tests are sometimes useful, don't be fooled into
thinking they're the end of the story regarding the decision of whether to
specify models in levels or differences. For example, the fact that we can’t re-
ject a unit root doesn’t necessarily mean that we should impose it—the power
of unit root tests against alternative hypotheses near the null hypothesis,
which are the relevant alternatives, is likely to be low. At the same time, it may
sometimes be desirable to impose a unit root even when the true root is less
than 1, if the true root is nevertheless very close to 1, because the Dickev-Fuller
bias plagues estimation in levels. We need to use introspection and theory, in
addition to formal tests, to guide the difficult decision of whether to impose
unit roots, and we need to compare the forecasting performance of different
models with and without unit roots imposed.

In certain respects, the most important part of unit root theory for fore-
casting concerns estimation, not testing. It's important for forecasters to un-
derstand the effects of unit roots on consistency and small-sample bias. Such
understanding on the one hand leads to the insight that at least asymptotically
we're probably better off estimating forecasting models in levels with trends
included, because then we’ll get an accurate approximation to the dvnamics
in the data regardless of the true state of the world, unit root or no unit root.
If there’s no unit root, then of course it's desirable to work in levels: if there is
a unit root, then the estimated largest root will converge appropriately to
unity, and at a fast rate. On the other hand, differencing is appropriate only
in the unit root case, and inappropriate differencing can be harmtul, even
asymptotically.

EEREN
3. Application: Modeling and Forecasting the
Yen/Dollar Exchange Rate

Let’s apply and illustrate what we 've learned by modeling and forecasting the
Japanese ven/U.S. dollar (JPY/USD) exchange rate. For convenience, we
call the yen/dollar series y, the log level Iny, and the change in the log level
Alny. We have end-of-month data from 1973.01 through 1996.07; we plotIny
in the top panel of Figure 13.7 and Alnyin the bottom panel.' Note that In y
looks very highly persistent; perhaps it has a unit root. Conversely, Aln y looks

' Throughout, we work with the log of the exchange rate, because the change in the log has the
convenient interpretation of approximate percentage change. Thus. when we refer to the level of
the exchange rate, we mean the log of the level (In 3). and when we refer 1o the change. we mean
the change of the log exchange rate (A In y).
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thoroughly stationary and in fact rather close to white noise. Figure 13.8,
which shows the correlogram for Alny, and Figure 13.9, which shows the cor-
relogram for the Alny, confirm the impression we gleaned from the plots.
The sample autocorrelations of In y are all very large and fail to damp, and
the first sample partial autocorrelation is huge while all the others are in-
significantly different from 0. The correlogram of A In y, however, looks very
different. Both the sample autocorrelation and partial autocorrelation func-
tions damp quickly; in fact, beyond displacement 1, they’re all insignificantly
different from 0. All of this suggests that In yis I(1).

Now we fit forecasting models. We base all analysis and modeling on In y,
1973.01-1994.12, and we reserve 1995.01-1996.07 for out-of-sample forecast-
ing. We begin by fitting deterministic trend models to In y; we regress In yon an

FIGLRE 13 7
Log JPY/USD
Exchange Rate (Top
Panel) and Change
in Log [PY/USD
Exchangr Rate
(Bottom Panel)
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intercept and a time trend, allowing for up to ARMA(3, 3) dynamics in the
disturbances. In Tables 13.1 and 13.2 we show the AIC and SIC values for all
the ARMA(p, ) combinations. The AIC selectsan ARMA(3, 1) model, while the
SIC selects an AR(2). We proceed with the more parsimoniots model selected
by the SIC. The estimation results appear in Table 13.3 and the residual plotin
Figure 13.10; note in particular that the dominant inverse root is very close to 1
(0.96), while the second inverse root is positive but much smaller (0.35).
Out-of-sample forecasts appear in Figures 13.11-13.13. Figure 13.11
shows the history, 1990.01-1994.12, and point and interval forecasts,
1995.01-1996.07. Although the estimated highly persistent dvnamics imply
very slow reversion to trend, it happens that the end-of-sample values of Iny
in 1994 are very close to the estimated trend. Thus, to a good approximation,
the forecast simply extrapolates the fitted trend. In Figure 13.12, we show the
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MA Order TABLE 131
Log JPY/USD Rate,
0 1 2 3 Levels: AIC Values,
0 -5.171 —5.953 —6.428 Various ARMA
AR Order 1 -7.171 ~7.300 -7.293 —7.987 Models
2 —-7.319 -7.314 -7.320 -7.317
3 —-7.322 —-7.323 -7.3816 -7.308




306 Chapter 13
TABLE I3 2 MA Order
Log JPY/USD Rate,
Levels: SIC Values, 0 1 2 3
Various ARMA 0 —5.130 —5.899 -6.360
Mocdels AR Order 1 ~7.181 ~7.211 -7.22 ~7.205
2 —17.265 —7.246 —7.238 -7.221
3 —7.253 -7.241 —7.220 -7.199
history together with a very long-horizon forecast (through 2020.12), in
order to illustrate the fact that the confidence intervals eventually flatten at
plus or minus two standard errors. Finally, Figure 13.13 displays the history
and forecast together with the realization. Most of the realization is inside the
95% confidence intervals.
In light of the suggestive nature of the correlograms, we now perform a for-
mal unit root test, with trend allowed under the alternative hypothesis. Table 13.4
presents the results with three augmentation lags.'! There’s no evidence whatso-
ever against the unit root; thus, we consider modeling A In y. We regress Alny
on an intercept and allow for up to ARMA(3, 3) dynamics in the disturbance.
rAELE 13 3 1S // Dependent variable is LYEN.
Log Exchange Sample (adjusted): 1973:03 1994:12

Rute, Best-Fitting
Deterministic Trend
Model

Included observations: 262 after adjusting endpoints
Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.
C 5.904705 0.136665 43,20570 0.0000
TIME —-0.004732 0.000781 -6.057722 0.0000
AR(1) 1.305829 0.057587 22.67561 0.0000
AR(2) —0.334210 0.057656 —5.796676 0.0000
R? (1.994468 Mean dependent var. 5.253984
Adjusted R* .994404 SD dependent var. 0.341563
SE of regression 0.025551 Akaike info criterion —=7.319015
Sum squared resid. 0.168435 Schwarz criterion —7.264536
Log likelihood 591.0291 F-statistic 15461.07
Durbin-Watson stat. 1.964687 Prob(F-statistic) 0.000000
Inverted AR roots .96 .35

1 We considered a variety of augmentation lag orders, and the results were robust—the unit root
hypothesis can’t be rejected. For the record, the SIC selected one augmentation lag, while the AIC
and #testing selected three augmentation lags.
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The AIC values appear in Table 13.5 and the SIC values in Table 13.6. AIC selects
an ARMA(3, 2), and SIC selects an AR(1). Note that the models for In y and
A Iny selected by the SIC are consistent with each other under the unit root
hypothesis—an AR(2) with a unit root in levels is equivalent to an AR(1) in
differences—in contrast to the models selected by the AIC. For this reason and of
course for the usual parsimony considerations, we proceed with the AR(1) se-
lected by SIC. We show the regression results in Table 13.7 and Figure 13.14: note

the small but nevertheless significant coefficient of 0.32."2

FIGURE '3 1D
Log J[PY/USD
Exchange Rate,
Best-Fitting
Deterministic Trend
Model, Residual
Plot
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2 The ARMA(3, 2) selected by the AIC is in fact very close to an AR(1), because the two estimated

MA roots nearly cancel with two of the estimated AR roots, which would leave an AR(1).

FIGURE I3 1
Log JPY/USD Rate
History and
Forecast, AR(2) in
Levels with Linear
Trend
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FIGURE 1312
Log JPY/USD Rate
History and Long-
Horizon Forecast,
AR(2) in Levels
with Linear Trend
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Out-ofsample forecasting results appear in Figures 13.13-13.17. Fig-
ure 13.15 shows the history and forecast. The forecast looks very similar—in
fact, almost identical—to the forecast from the deterministic trend model ex-
amined earlier. That’s because the stochastic trend and deterministic trend
models are in fact extremely close to one another in this case; even when we
don’t impose a unit root, we get an estimated dominant root that’s very close
to unity. In Figure 13.16 we show the history and a very long-horizon forecast.
The long-horizon forecast reveals one minor and one major difference be-
tween the forecasts from the deterministic trend and stochastic trend models.
The minor difference is that, by the time we're out to 2010, the point forecast
from the deterministic trend model is a little lower, reflecting the fact that the
estimated trend slope is a bit more negative for the deterministic trend model
than for the stochastic trend model. Statistically speaking, however, the
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Augmented Dickev-Fuller test statistic  —2.498863 1% Critical Value —3.9966
5% Crtical Value -3.4284
10% Critical Value —3.1373
Augmented Dickev-Fuller Test Equation
LS 7/ Dependent variable is H(LYEN).
Sample (adjusted): 1973:05 1494:12
Included abservations: 26(0) after adjusting endpoints

Variable Coefficient Std. Error ¢-Statistic Prob.

LYEN(-1) =0.029423 0.011775 —2.498863 0.0131
DILYEN(-1)) 0.362319 0.061785 5.864226 0.0000
D(LYEN(—-2)) =0.114269 0.064897 —1.760781 0.0795
D(LYEN(-3)) 0.118386 0.061020 1.940116 0.0535
C 0.170875 0.068474 2.495486 0.0132
@TREND(1973:01) —0.000139 5.27E-05 —2.689758 0.0088
R 0.142362 Mean dependent var. —0.003749
Adjusted R 0.125479 SD dependent var, 0.027103
SE of regression 0.025345 Akaike info criterion —7.327517
Sum squared resid. 0.163166 Schwarz criterion —7.245348
Log likelihood 589.6532 Fstatistic 8.432417
Durbin-Watson stat. 2.01082Y Prob(/Kstatistic) 0.000000

point forecasts are indistinguishable. The major difference concerns the in-
terval forecasts: The interval forecasts from the stochastic trend model widen
continuously as the horizon lengthens, whereas the interval forecasts from the
deterministic trend model don’t. Finally, in Figure 13.17 we show the history
and forecast together with the realization 1995.01-1996.07.

Comparing the AR(2) with trend in levels (the levels model selected by the
SIC) and the AR(1) in differences (the differences model selected by the SIC),
it appears that the differences model is favored in that it has a lower SIC value,
The AR(1) in differences fits only slightly worse than the AR(2) in levels—
recall that the AR(2) in levels had a near unit root—and saves 1 degree of
freedom.'* Moreover. economic and financial considerations suggest that ex-
change rates shonld be close to random walks, because if the change were pre-
diciable, one could make a lot of money with very little effort, and the very act
of doing so would eliminate the opportunity.*

" A word of caution: In a sense. the ARt 1) modet in ditferences mav not save the degree of free-
dom, insofar as the decivion 1o impose a unit root was itself based on an earlier estimation (the
augmented Dickev-Fuller te<nr, which is not ucknowledged when computing the SIC for the AR(1)
in ditferences.

' As for the trend (dritth. it man help as a local approximation, but be wary of o long an ex-
trapolation. See the Excreises, Problems. and Complements ar the end of this chapter.

TABLE 13 4
Log J[PY/USD
Exchange Rate

Dickey-Fuller Unit
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TABLE 13.5 MA Order
Log JPY/USD Rate,
Changes: AIC 0 1 2 3
Values, Various 0 —7.298 -7.290 —7.283
ARMA Models AR Order 1 ~7.308 -7.307 -7.307 ~7.302
2 —-7.312 —7.314 -7.307 —7.299
] -7.316 —-7.309 —7.540 —7.336
TABLE 13 6 MA Order
Log JPY/USD Rate,
Changes: SIC 0 1 2 3
Values, Various 0 -7.270 —-7.249 —7.228
ARMA Models AR Order 1 ~7.281 ~7.266 ~7.252 ~7.234
2 —-7.271 -7.259 —7.238 —-7.217
3 —7.261 -7.241 —7.258 —7.240
TABLE 13.7 LS // Dependent variable is DLYEN.
Log JPY/USD Sample (adjusted): 1973:03 1994:12
Exchange Rate, Included observations: 262 after adjusting endpoints
Best-Fitting Convergence achieved after 3 iterations
Sochastic nd Variable Coefficient Std. Error ¢+ Statistic Prob.
Cc —-0.003697 0.002350 —1.573440 0.1168
AR(1) 0.321870 0.057767 5.571863 0).0000
R? 0.106669 Mean dependent var. —0.003888
Adjusted R? 0.103233 SD dependent var. 0.027227
SE of regression 0.025784 Akaike info criterion —7.308418
Sum squared resid. 0.172848 Schwarz criterion -7.281179
Log likelihood 587.6409 Fstatistic 31.04566
Durbin-Watson stat. 1.94893% Prob (f=statistic) 0.000000

Inverted AR roots 32
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FIGURE i3 e Log JPY/USD Exchange Rate, Best-Fitting Stochastic Trend Model
Residual Plot
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Ironically enough, in spite of the arguments in favor of the stochastic-
trend model for Iny, the deterministic trend model does slightly better in out-
of-saimple forecasting on this particular dataset. The mean-squared forecast
error from the deterministic trend model is 0.0107, while that from the
stochastic trend model is 0.0109. The difference, however, is likely statistically
insignificant.
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FIGURE 1318
Log JPY/USD Rate
History and
Long-Horizon
Forecast, AR(1) in
Differences with
Intercept
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4. Smaoothing

We bumped into the idea of time series smoothing early on, when we intro-
duced simple moving-average smoothers as ways of estimating trend.'® Now we
introduce additional smoothing techniques and show how they can be used to

produce forecasts.

FIGURE 1317
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13 See the Exercises, Problems, and Complements of Chapter 5.
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Smoothing techniques, as traditionally implemented, have a different fla-
vor than the modern model-based methods that we've used in this book.
Smoothing techniques. for example, don’t require “best-fitting models,” and
they don’t generally produce “optimal forecasts.” Rather, they're simply a way to
tell a computer to draw a smooth line through data, just as we'd do with a pen-
cil, and to extrapolate the smooth line in a reasonable and replicable way.

When using smoothing techniques, we make no attempt to find the model
that best fits the data: rather, we force a prespecified model on the data. Some
academics turn their nose at smoothing techniques for that reason, but such
behavior reflects a shallow understanding of key aspects of applied forecast-
ing. Smoothing techniques have been used productively for many years—and
for good reason. Theyv're most useful in situations when model-based methods
can’t, or shouldn’t, be used. First, available samples of data are sometimes very
small. Suppose, for example. that we must produce a forecast based on a sam-
ple of historical data containing only four observations. This scenario sounds
extreme, and it is, but such scenarios arise occasionally in certain important
applications, as when forecasting the sales of a newly introduced product. In
such cases, available degrees of freedom are so limited as to render any esti-
mated model of dubious value. Smoothing techniques. in contrast, require no
estimation, or minimal estimation.

Second, the forecasting task is sometimes immense. Suppose, for example,
that each week we must forecast the prices of 10,000 inputs to a manufactur-
ing process, Again, such situations are extreme, but they do occur in practice
(e.g., think of how many parts there are in a large airplane). In such situations,
even if historical data are plentiful (and, of course, they might not be), there
is simply no way to provide the tender loving care required for estimation and
maintenance of 10,000 different forecasting models. Smoothing techniques,
in contrast, require little attention. Thev're one example of what are some-
times called “automatic™ forecasting methods and are often useful for fore-
casting voluminous, high-frequency dara.

Finally, smoothing techniques do produce optimal forecasts under certain
conditions, which turn out to be intimately related to the presence of unit
roots in the series being forecast. That's why we waited until now to introduce
them. Moreover, fancier approaches produce optimal forecasts only under
certain conditions as well, such as correct specification of the forecasting
model. As we've stressed throughout, all our models are approximations, and
all are surely false. Anv procedure with a successful track record in practice is
worthy of serious consideration, and smoothing techniques do have successful
track records in the situations sketched here.

MOVING AVERAGE SMOOTHING, REVISITED

As a precursor to the more sophisticated smoothing techniques that we’ll soon
introduce, recall the workings of simple moving average smoothers. Denote
the original data by (1|, and the smoothed data by {3,}. Then the two-sided

313
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»
moving average is ¥, = (2m+1)~! 3~ y,._,, the onesided moving average is
m 1=—m
F=(m+1)'Y y_, and the onesided weighted moving average is
[ =0
¥ = Y_ w;y_;. The standard onesided moving average corresponds to a one-
i=

sided weighted moving average with all weights equal to (m + 1)~'. The user
must choose the smoothing parameter, m: the larger m is, the more smoothing
is done.

One-sided weighted moving averages turn out to be very useful in practice.
The one-sided structure means that at any time £, we need only current and
past data for computation of the time-t smoothed value, which means that it
can be implemented in real time. The weighting, moreover, enables flexibility
in the way that we discount the past. Often, for example, we want to discount
the distant past more heavily than rhe recent past. Exponential smoothing, to
which we now turn, is a particularly useful and convenient way of implement-
ing such a moving average.

EXPONENTIAL SMOOTHING

Exponential smoothing, also called simple exponential smoothing or single
exponential smoothing, is what’s called an exponentially weighted moving
average, for reasons that will be apparent soon. The basic framework is simple.
Imagine that a series ¢y is a random walk,

€y = Cou-1 + Wy
n~ WN(0.07),
in which case the level of ¢g wanders randomly up and down, and the best fore-

cast of any future value is simply the current value. Suppose, however, that we
don't see cg; instead, we see y, which is ¢, plus white noise,'®

Yo = Coyr HE¢

where € is uncorrelated with njat all leads and lags. Then our optimal forecast
of any future y is just our optimal forecast of future ¢, which is current ¢g. plus
our optimal forecast of future €, which is (). The problem, of course, is that we
don’t know current ¢y, the current “local level.” We do know current and past
y, however, which should contain information about current ¢y. When the
data-generating process is as written here. exponential smoothing constructs
the optimal estimate of cp—and hence the optimal forecast of any future value
of y—on the basis of current and past y. When the data-generating process is
not as written here, the exponential smoothing forecast may not be optimal,
but recent work suggests that exponential smoothing remains optimal or
nearly optimal under surprisingly broad circumstances.'?

As is common, we state the exponential smoothing procedure as an algo-
rithm for converting the observed series, {y,},, into a smoothed series,

18 We can think of the added white noise as measurement error.
17 See, in particular, Chatfield et al. (2001).
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{3:)L,, and forecasts. 74,7t

1. Initalizeatt=1: 5 = y).
2. Update: §, =ay+ (1 —a)y-1,2=2,..., T.
8. Forecast: ¥7.41 = ¥71.

Referring to the level of ¢y, we call §, the estimate of the level at time 1. The
smoothing parameter a is in the unit interval, a € [0, 1]. The smaller is a the
smoother the estimated level. As a approaches 0, the smoothed series ap-
proaches constancy, and as a approaches 1, the smoothed series approaches
point-by-point interpolation. Typically, the more observations we have per
unit of calendar time, the more smoothing we need; thus, we'd smooth weekly
data (52 observations per year) more than quarterly data (4 observations per
year). There is no substitute, however, for a trial-and-error approach involving
a variety of values of the smoothing parameter.

It's not obvious at first that the algorithm we just described delivers a one-
sided moving average with exponentially declining weights. To convince your-
self, start with the basic recursion,

= ay, + (1- a)jl—l .
and substitute backward for ¥, which yields

-1
y= Z Wi¥i—jo

=
where

w;, =a(l —a).
Suppose, for example, that a = 0.5. Then
wy = 0.5(1 —0.5)" =0.5
w; = 0.5(1 - 0.5)=0.25
wy = 0.5(1 — 0.5)* = 0.125,

and so forth. Thus, moving average weights decline exponentially, as claimed.

Notice that exponential smoothing has a recursive structure, which can be
very convenient when data are voluminous. At any time ¢ the new time-¢ esti-
mate of the level, j,, is a function only of the previously computed estimate,
¥1-1, and the new observation, y,. Thus, there's no need to resmooth the en-
tire dataset as new data arrive.

HoLT-WINTERS SMOOTHING

Now imagine that we have not anly a slowly evolving local level but alsa a trend
with a slowly evolving local slope,

N = Gy + €1, TIME‘ + &
€= G-t + N

=6, + U,
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where all the disturbances are orthogonal at all leads and lags. Then the
optimal smoothing algorithm, named Holt-Winters smoothing after the re-
searchers who worked it out in the 1950s and 1960s, is

1. Inidalize at ¢t = 2:

5’2 =¥z
Fa=y1—n.
2. Update:
51 =ay + (1 "'0)04-1 +FL), 0<ax<l
F, = B(jl - jl—l) +(1- B)Fl—h 0< B <1
t=3,4,...,T.
3. Forecast:

Yrea7 = ¥r+ hF7.

¥, is the estimated, or smoothed, level at time £, and F, is the estimated slope
at time { The parameter a controls smoothing of the level, and B
controls smoothing of the slope. The hstep-ahead forecast simply takes the
estimated level at time 7 and augments it with A times the estimated slope at
time 7.

Again, note that although we’ve displayed the data-generating process for
which Holt-Winters smoothing produces optimal forecasts, when we apply
Holt-Winters, we don’t assume that the data are actually generated by that
process. We hope, however, that the actual data-generating process is close to
the one for which Holt-Winters is optimal, in which case the Holt-Winters
forecasts may be close to optimal.

HOLT-WINTERS SMOOTHING TO ALLOW FOR
SEASONALITY

We can apply Holt-Winters smoothing with seasonality with period s. The algo-
rithm becomes

1. Initializeatt =s5:
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2. Update:
y=aly -G )+ (N —a) ¥y +F_,) U<a<l
F=B—¥%-1)+(1-pB)F_, 0<p<l
G/='Y(;)'/—51)+(1_'Y)Gl—n D<y <1
t=s+1,....T.
3. Forecast:
.;."“'"-T=j7‘+hF'f+ G7"+Iv—n h= 17 2-----5.
Yrent =1+ hFr+ Gropes,, h=s5+1,5+2,...,2s,

and so forth.

The only thing new is the recursion for the seasonal, with smoothing
parameter .

FORECASTING WITH SMOOTHING TECHNIQUES

Regardiess of which smoothing technique we use. the basic paradigm is the
same, We plug data into an algorithm that smooths the data and lets us gener-
ate point forecasts. The resulting point forecasts are optimal for certain data-
generating processes, as we indicated for simple exponential smoothing and
Holt-Winters smoothing without seasonality. In practice, of course, we don’t
know if the actual data-generating process is close to the one for which the
adopted smoothing technique is optimal; instead, we just swallow hard and
proceed. That's the mmain contrast with the modeli-based approach, in which
we typically spend a lot of time trving to find a “good” specification.

The “one size fits all” flavor of the smoothing approach has its costs, because
surely one size does not fit all, butit also has benefits in that no, or just a few, pa-
rameters need be estimated. Sometimes we simply set the smoothing parameter
values based on our knowledge of the properties of the series being considered,
and sometimes we select parameter values that provide the best hstep-ahead
forecasts under the relevant loss function. For example, under 1-step-ahead
squared-error loss, if the sample size is large enough so that we're willing to en-
tertain estimation of the smoothing parameters, we can estimate them as

7
8 = argmin Z O = Je-r)?
a 1=mw+]
where mis an integer large enough such that the start-up values of the smooth-
ing algorithm have little effect.

In closing this section, we note that smoothing techniques, as typically im-
plemented, produce point forecasts only. Thev may produce optimal point
forecasts for certain special data-generating processes, but typically we don't
assume that those special data-generating processes are the truth. Instead,
the smoothing techniques are used as “black boxes” to produce point fore-
casts, with no attempt to exploit the stochastic structure of the data to find a



318

Chapter 13

best-fitting model, which could be used to produce interval or density fore-
casts in addition to point forecasts.

NEEEN
a. Exchange Rates, Continued

Now we forecast the JPY/USD exchange rate using a smoothing procedure. In
the ARIMA(p, d, ¢) models considered earlier, we always allowed for a wrend
(whether deterministic or stochastic). To maintain comparability, we'll use a
Holt-Winters smoother, which allows for locally linear trend. We present the
estimation results in Table 13.8. The estimate of « is large, so the estimated
local level moves closely with the series. The estimate of B is small, so the local
slope of the trend is much less adaptive.

The Holt-Winters forecast is simply the trend line beginning at the esti-
mated end-of-period level, with the estimated end-of-period slope. Because
the estimated slope of the trend at the end of the sample is larger in absolute
value than the corresponding trend slopes in the deterministic trend and sto-
chastic trend models studied earlier, we expect the Holi-Winters point fore-
casts to decrease a bit more quickly than those from the ARIMA models. In
Figure 13.18, we show the history and out-of-sample forecast. No confidence
intervals appear with the forecast because the smoothing techniques don’t
produce them. The forecast looks similar to those of the ARIMA models, ex-
cept that it drops a bit more quickly, as is made clear by the very long horizon
forecast that we show in Figure 13.19. Finally, in Figure 13.20, we show the re-
alization as well. For out-of-sample forecasting, Holt-Winters fares the worst of
all the forecasting methods tried in this chapter; the mean-squared forecast
error is 0.0135.

TABLE 13.8
Log JPY/USD
Exchange Rate,
Holt-Winters
Smoothing

Sample: 1973:01 1994:12
Included observations: 264
Method: Holt-Winters, no seasonal
Original series: LYEN

Forecast series: LYENSM

Parameters: Alpha 1.000000

Beta 0.090000
Sum of squared residuals 0.202421
Root mean-squared error 0.027690
End-of-period levels: Mean 4.606969

Trend ~0.005193
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Exercises, Problems, and Complements

1. {(Modeling and forecasting the deutschemark/dollar (DEM/USD) exchange
rate) On the book’s web page, vou'll find monthly data on the DEM/USD
exchange rate for the same sample period as the JPY/USD data studied in the
text
a. Model and forecast the DEM/USD rate, in parallel with the analysis in the

text, and discuss your results in detail.

b. Redo your analysis using forecasting approaches without trends—a levels
model without trend, a first-differenced model without drift, and simple
exponential smoothing.

c. Compare the forecasting ability of the approaches with and without trend.

d. Do you feel comfortable with the inclusion of trend in an exchange rate
forecasting modelz Why or why not?

2. (Housing starts and completions, continued) As always, our Chapter 11 VAR
analysis of housing starts and completions involved many judgment calls. Using
the starts and completions data, assess the adequacy of our models and forecasts.
Among other things, vou may want to consider the following questions:

a. How would you choose the number of augmentation lags? How sensitive are
the results of the augmented Dickey-Fuller tests to the number of
augmentation lags?

b. When performing augmented Dickey-Fuller tests, is it adequate to allow only
for an intercept under the alternative hypothesis, or should we allow for both
intercept and trend?

Should we allow for a trend in the forecasting model?

d. Does it make sense to allow a large number of lags in the augmented Dickey-
Fuller tests, but not in the actual forecasting model?

c. How do the results change if, in light of the results of the causality tests, we
exclude lags of completions from the starts equation, reestimate by seemingly
unrelated regression, and forecast?

f. Are the VAR forecasts of starts and completions more accurate than univariate
forecasts?

[g]

3. (ARIMA models, smoothers, and shrinkage) From the vantage point of the
shrinkage principle, discuss the trade-offs associated with “optimal” forecasts from
fitted ARIMA models versus “ad hoc” forecasts from smoothers.

4. (Using stochastic trend unobserved-components models to implement smoothing
techniques in a probabilistic framework) We noted that smoothing techniques, as
typically implemented, are used as “black boxes” to produce point forecasts.
There is no attempt to exploit stochastic structure to produce interval or density
forecasts in addition to point forecasts. Recall, however, that the various
smoothers produce optimal forecasts for specific data-generating processes
specified as unobserved-components models.

a. For what data-generating process is exponential smoothing optimal?

b. For what data-generating process is Holt-Winters smoothing optimal?

¢. Under the assumption that the dara-generating process for which exponential
smoothing produces optimal forecasts is in fact the true datagenerating
process, how might vou estimate the unobserved-components model and use
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5.

7.

it to produce optimal interval and density forecasts? (Hint: Browse through
Harvey, 1989.)

How would you interpret the interval and density forecasts produced by the
method of part r, if we no longer assume a particular model for the true data-
generating process?

{Automatic ARIMA modeling) “Automatic™ forecasting software exists for
implementing the ARIMA and exponential smoothing techniques of this and
previous chapters without any human intervention.

angs

What are do vou think are the benefits of such software?

What do you think are the costs?

When do you think it would be most useful?

Read Ord and Lowe (1996), who review most of the automatic forecasting
software, and report what vou learned. After reading Ord and Lowe, how, if at
all, would you revise vour answers to parts &, b, and ¢?

(The multiplicative seasonal ARIMA(p, d, ¢) x (P, D, Q) model) Consider the
forecasting model,

O (LHYD(LY(1 — 1) (1 - 15)Py = 0,(L")O(L)g,

¢5(L‘)=1-gp;L‘_..,__‘plle‘x
¢(L)=l—‘p,L-—..,_q;p1_P
O,(LY=1-8fL'— .. — 0, L&
O(Ly=1-0L—-. -0,

The standard ARIMA(p, d, q) model is a special case of this more general
model. In what situation does it emerge? What is the meaning of the ARIMA
(p. d, q) x (P, D, (J) notation?

The operator (1 — I*) is called the seasonal difference operator. What does it do
when it operates on y,? Why might it routinely appear in models for seasonal
dara?

The appearance of (1 — L*) in the autoregressive lag operator polynomial
moves us into the realm of stochastic seasonality, in contrast to the
deterministic seasonality of Chapter 6, just as the appearance of (1 — L)
produces stochastic as opposed to deterministic trend. Comment.

Can you provide some intuitive motivation for the model? Hint: Consider a
purely seasonal ARIMA(P, D, Q) model, shocked by serially correlated
disturbances. Why might the disturbances be serially correlated? What, in
particular, happens if an ARIMA(P, D, Q) madel has ARIMA(p, 4, ¢)
disturbances?

The multiplicative structure implies restrictions. What, for example, do you
get when you multiply @, (L) and $(L)?

What do vou think are the costs and benefits of forecasting with the
multplicative ARIMA model versus the “standard” ARIMA model?

Recall that in Chapter 10 we analyzed and forecasted liquor sales using an
ARMA model with deterministic trend. Instead, analyze and forecast liquor
sales using an ARIMA (p, 4, q) x (P, D, Q) model, and compare the results.

(The Dickey-Fuller regression in the AR(2) case) Consider the AR(2) process,

Nt @y-1+@ey—2 =€
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a. Show that it can be written as
Y =pP1y-1 +p2(y-1 — Yi-2) + &,
where
PL=—(p +¢g)
P2 =@ .

b. Show that it can also be written as a regression of Ay, on y,_; and Ay,_;.
c. Show thatif p) = 1, the AR(2) process is really an AR(1) process in first
differences; that is, the AR(2) process has a unit root.

8. (Holt-Winters smoothing with multiplicative seasonality) Consider a seasonal
Holt-Winters smoother, written as

1. Initialize at ¢ = 5:

Fj=—3 _ j=12..s
1 »
T2
s
2. Update:

v;—a(F )+(1—a)(\', 1+ 7)), O<axl
ms

T=B(—y-1)+(1-8)T_,, 0<B <1
Fr='v(‘;l)+(l-—'v)ﬂ-,, D<y <l
W
=s+1,...,T.

3. Forecast:
jT+"'T=(_;T+h7‘T)FT+"—h h=1| 2,--.,5,
i'r+h,T=()-'T+hTT)FT+h—-2n h=5+1,5+2,...,23,

and so forth.

a. The Holt-Winters seasonal smoothing algorithm given in the text is more
precisely called Holt-Winters seasonal smoothing with additive seasonality. The
algorithm given here, in contrast, is called Holt-Winters seasonal smoothing with
multiplicative seasonality. How does this algorithm differ from the one given in
the text, and what, if anything, is the significance of the difference?

b. Assess the claim that Holt-Winters with multiplicative seasonality is
appropriate when the seasonal pattern exhibits increasing variation,

¢. How does Holt-Winters with multiplicative seasonality compare with the use
of Holt-Winters with additive seasonality applied to logarithms of the
original data?
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9.

10.

(Cointegration) Consider two series, xand y, both of which are I(1). In general,
there is no wav to form a weighted average of xand y to praduce an [(0) series,
but in the verv special case where such a weighting does exist, we say that xand y
are cointegrated. Cointegration corresponds to situations in which variables tend
to cling to one another. in the sense that the cointegrating combination is
stationary. even though each variable is nonstationary. Such situations arise
frequently in business, economics, and finance. To take a business example, it's
often the case that both inventories and sales of a product appear /(1), yet their
ratio {(or, when working in logs, their difference) appears /(0), a natural by-
product of various schemes that adjust inventories to sales. Engle and Granger
(1987) is the key early research paper on cointegration; Johansen (1995) surveys
most of the more recent developments, with an emphasis on maximum likelihood
estimation.

a. Consider the bivariate system

x = x_1 4, vy~ WNO,o?)
Y =x+E, g ~ WNQ, a?)

Both xand y are I(1). Why? Show, in addition, that x and y are cointegrated.
What is the cointegrating combination?

b. Engle and Yoo (1987) show that optimal long-run forecasts of cointegrated
variables obey the cointegrating relationship exactly. Verify their result for the
system at hand.

(Error correction) In an error correction model, we take a long-run model
relating /(1) variables, and we augment it with short-run dynamics. Suppose, for
example, that in long-run equilibrium, y and x are related by y = bx. Then the
deviation from equilibrium is z = y — bx, and the deviation from equilibrium at
any time may influence the future evolution of the variables, which we
acknowledge by modeling Ax as a function of lagged values of itself, lagged values
of Ay, and the lagged value of 2, the error correction term. For example, allowing for
one lag of Ax and one lag of Ay on the right side, we write equation for xas

Axy = o, A% ) + BrAyi—1 + Vi2i-1 + &4 -
Similarly, the y equation is
Ay =oBxi +ByAy—1 +Yy2-1 +Ey .

So long as one or both of v, and v, are nonzero, the system is very different from
a VAR in first differences; the key feature that distinguishes the error correction
system from a simple VAR in first differences is the inclusion of the error
correction term. so that the deviation from equilibrium atfects the evolution of
the system.

a. Engle and Granger (1987) establish the key result that existence of
cointegration in a VAR and existence of error correction are equivaleni—a
VAR is cointegrated if and only if it has an error correction representation,
Try to sketch some intuition as to why the two should be linked. Why, in
particular, might cointegration implv error correction?

b. Why are cointegration and error correction of interest to forecasters in
business, finance, economics, and government?

¢. Evaluation of forecasts of cointegrated series poses special challenges, insofar
as traditional accuracy measures don't value the preservation of cointegrating
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relationships, whereas presumably they should. For details and constructive
suggestions, see Christoffersen and Diebold (1998).

(Forecast encompassing tests for /(1) series) An alternative approach to testing
for forecast encompassing, which complements the one presented in Chapter 12,
is particularly useful in /(1) environments. It's based on forecasted hstep changes.
We run the regression

()'IA—h - ,Vl) = Bn (y;:.h_, - )‘l) + Bb ()"I;’“ - )‘I) +Erent -

As before, forecast encompassing corresponds to coefficient values of (1, 0) or
(0, 1). Under the null hypothesis of forecast encompassing, the regression based
on levels and the regression based on changes are identical.

{Evaluating forecasts of integrated serics) The unforecastability principle remains
intact regardless of whether the series being forecast is stationary or integraicd.
The errors from optimal forecasts are not predictable on the basis of information
available at the time the forecast was made. However, some additionyal
implications of the unforecastability principle emerge in the case of forecasting
1(1) series, including these:

a. If the series being forecast is /(1), then so, oo, is the optimal forecast.

b. An /(1) series is alwavs cointegrated with its optimal forecast, which means
that there exists an /(0) linear combination of the series and its optimal
forecast, in spite of the fact that both the series and the forecast are /(1).

c. The cointegrating combination is simply the difference of the actual and
forecasted values—the forecast error. Thus, the error corresponding to an
optimal torecast of an /(1) series is /(0), in spite of the fact that the series
is not.

Cheung and Chinn (1999) make good use of these results in a study of the

information content of U.S. macroeconomic forecasts; try to sketch their

intiition. (fHint: Suppose the error in forecasting an /(1) series were nof 1(0).

What would that imply?)

(Theil's Ustaustic) Sometimes it's informative to compare the accuracy of a
forecast to that of a “naive”™ competitor. A simple and popular such comparison is
achieved by the Ustatistic, which is the ratio ot the 1-step-ahead MSE for a given
forecast relative to that of a randomn walk forecast y41. = ¥ that is,

T
Z(_\':-rl - ,)'ld./)Z

=1

U=

=—F.
2
Z(_\'H—l —n)

=1

One must remember, of course, that the random walk is not necessarily a naive
competitor, particularly for many economic and financial variables, so that values
of U'near 1 are not necessarily “bad.”

The {Lstatistic is due to Theil (1966, p. 28) and is often called Theil's U-statistic.
Several authors, including Armstrong and Fildes (1995), have advocated using
the [Lstatistic and close relatives for comparing the accuracy of various forecasting
methods across series.
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Biblingraphical and Computational Notes

We expect random walks, or near-random walks, to be good models for financial asset
prices, and they are. See Malkiel (1999). More general ARIMA(p, 1, g) models have
found wide application in business, finance, economics, and government. Beveridge
and Nelson (1981) show that /(1) processes can always be decomposed into the st of
arandom walk component and a covariance stationary component. Tsay (1984) shows
that information criteria such as the SIC remain valid for selecting ARMA model
orders, regardless of whetber a unit autoregressive root is present.

In parallel to the Nerlove, Grether, and Carvalho (1979) treatment of unobserved-
components models with deterministic trend. Harvey (1989) weats specification,
estimation, and forecasting with unobserved-components models with stachastic
rend, estimated by using state-space representations in conjunction with the Kalman
filter,

The forecasts of U.S. GNP per capita that we examine in the text, and the related
discussion, draw heavily on Diebold and Senhadji (1996).

Development of methods for removing the Dickey-Fuller bias from the parameters
of estimated forecasting models, which might lead to improved forecasts, is currenty
an active research area. See, among others, Andrews (1993), Rudebusch (1993), and
Fair (1996).

In an intluential book, Box and Jenkins propose an iterative modeling process that
consists of repeated cvcles of model specification, estimation, diagnostic checking, and
forecasting. (The latest edition is Box, Jenkins, and Reinsel, 1994.) One key element of
the Box-Jenkins modeling strategy is the assumption that the data follow an ARTMA
model (sometimes called a Box-Jenkins model),

QL)L ~ L)'y, =O(Lk, .

Thus, although ¥, is nonstationary, ir is assumed that its dth difference follows a
stationary and invertible ARMA process. The appropriateness of the Box-Jenkins tactic
of ditferencing 1o achieve stationarity depends on the existence of one or more unit
roots in the autoregressive lag operator polynomial, which is partly responsible for the
large amount of subsequent research on unit root tests.

Dickev-Fuller tests trace to Dickey (1976) and Fuller (1976). Using simulation
techniques, MacKinnon (1991) obuains highly accurate estimates of the percentage
points of the various Dickev-Fuller distributions.

Alternatives to Dickey-Fuller unit root tests, called Phillips-Perron tests, are proposed
in Phillips and Perron (1988). The basic idea of Phillips-Perron tests is to estimate a
Dickey-Fuller regression without augmentation,

x=@x +e,

and then to correct the Dickey-Fuller statistic for general forms of serial correlation
and/or heteroskedasticity that might be present in e,. See Hamilton (1994) for
detailed discussion of the Phillips-Perron tests and comparison with augmented
Dickey-Fuller tests.

A key question for forecasters is determination of the comparative costs of
misspecifving forecasting models in levels versus differences, as a function of sample
size, forecast horizon, true value of the dominant root, and so on. Related, we need w0
learn more about the efficacy for forecasting of rules such as “lmpose a unit root unless
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a Dickey-Fuller test rejects at the 5% level,"® Campbell and Perron (1991) make some
initial progress in that direction: Diebold and Kilian (2000) explore the issue in detail
and argue that such strategies are likelv to be successful; and in an extensive
forecasting competition, Stock and Watson (1999) show that such strategies are in fact
successful,

Smoothing techniques were originally proposed as reasonable, if ad hoc, forecasting
strategies; only later were they formalized in terms of optimal forecasts for underlving
stochastic trend unobserved-components models. This idea—implementing smoothing
techniques in stochastic environments via stochastic trend unobserved-components
models—is a key theme of Harvey (1989), which also contains references to important
earlier contributions to the smoothing literawure, including Holt (1957) and Winters
(1960). The impressive Stamp software of Koopman, Harvey, Doornik, and Shephard
(1995) can be used to estimate and diagnose stochastic rend unobserved-components
models and to produce forecasts.!¥ Stamp stands for “structural time series analvzer,
modeler, and predictor”; unobserved~<omponents models are sometimes called
structural time series models.

Concepts for Review

Unit autoregressive root Unit root test with deterministic linear
Unit root trend allowed under the alternative
Random watk hypothesis
Random walk with drift Augmented Dickev-Fuller test
Random walk without drift Exponential smoothing
Mean reversion Simple exponential smoothing
ARIMA(p. 1, ¢) mode] Single exponential smoothing
ARIMA(p, d. ¢) model Exponentially weighted moving average
Shock persisience Halt-Winters smoothing
Superconsistency Holi-Winters smoothing with seasonality
Dickey-Fuller distribution Cointegration
Unit root test with nonzero mean Error correction

allowed under the alternative

hypothesis
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Volatility Measurement,
Modeling, and
Forecasting

The celebrated Wold decomposition makes clear that every covariance sta-
tionary series may be viewed as ultimately driven by underlying weak white
noise innovations. Hence, it is no surprise that every forecasting model
discussed in this book is driven by underlying white noise. To take a simple
example, if the series y, follows an AR(1) process, then

Y=¢yat+E,

where €, is white noise. In some situations, it is inconsequential whether g, is
weak or strong white noise—that is, whether €, is independent, as opposed to
merely serially uncorrelated. Hence, to simplify matters, we sometimes assume
strong white noise,
iid ,
€ ~ (0, 0'2) .

Throughout this book, we have thus far taken that approach, sometimes ex-
plicitly and sometimes implicitly.

When &, is independent, there is no distinction between the unconditional
distribution of €, and the distribution of €, conditional on its past, by defini-
tion of independence. Hence, o? is both the unconditional and conditional
variance of &,. The Wold decomposition, however, does not require that g, be
serially independent: rather, it requires only that €, be serially uncorrelated.
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If g, is dependent, then its unconditional and conditional distributions will
differ. We denote the unconditional innovation distribution by

g ~ (0,0%).

We are particularly interested in conditional dynamics characterized by
heteroskedasticity, or time-varying volatility. We denote the conditional distri-
bution by

El | Ql—l -~ (09012) ’

where ,_1 = {&,_1, €/_3, . ..}. The conditional variance 0';" will in general evolve
as Q,_, evolves, which focuses attention on the possibility of time-varying inno-
vation volatility.!

Allowing for time-varying volatility is crucially important in certain eco-
nomic and financial contexts. The volatility of financial asset returns, for
example, is often time varying. That is, markets are sometimes tranquil and
sometimes turbulent, as can readily be seen by examining the time series of
stock market returns in Figure 14.1, ro which we shall return in detail. Time-
varying volatility has important implications for financial risk management,
asset allocation, and asset pricing, and it has therefore become a central part
of the emerging field of financial econometrics. Quite apart from financial ap-
plications, however, time-varving volatility also has direct implications for
interval and density forecasting in a wide variety of applications: correct con-
fidence intervals and density forecasts in the presence of volatility fluctuations
require time-varying confidence interval widths and time-varying density
forecast spreads. The forecasting models that we have considered thus far,
however, do not allow for that possibility. In this chapter we do so.

Eb

|. The Basic ARCH Pracess

Consider the general linear process.

y' = B(L)E[

B(L)=ib,—L‘ ib]" <00 by=1

i=0 e={}

g, ~ WN(Q, c?).

We will work with various cases of this process.
Suppose first that g, is strong white noise. €, ~ (0, o). Let us review some
results already discussed for the general linear process, which will prove

! In principle, aspects of the conditional distribution other than the variance, such as conditional
skewness, could also fluctuate. Conditiunal variance fluctuations are bv far the most important in
practice, however, so we assume that fluctuations in the conditional distribudon of € are due
exclusively to fluctuations in a, .
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useful in what follows. The unconditional mean and variance of yare E(y,) =0

o2 dem g2 — .
and E(y;) = 0” }_ b;, which are both time-invariant, as must be the case under
=0

covariance stationarity. However, the conditiona! mean of y is time varying:
2
E(y | 1) =) bie,~;, where the information set is -y = {€1, €3, ...}.

The ability of tlﬂé general linear process to capture covariance stationary con-
ditional mean dynamics is the source of its power.

Because the volatility of many economic time series varies, one would hope
that the general linear process could capture conditional variance dynamics as
well, but such is not the case for the model as presently specified: The condi-
tional variance of y is constant at E((y, — E(y, | ,-1))* | Q,-1) = 6% This
potentially unfortunate restriction manifests itself in the properties of the
hstep-ahead conditional prediction error variance. The minimum mean
squared error forecast is the conditional mean,

EGeat Q) =) buikis

i=0
and so the associated prediction error is
-1
Yieh — E(¥eea | Q)= Z bi€an_i
=0
which has a conditional prediction error variance of
h=1
2 2 2
E(ien — E(ien | 2021 Q) =02 8]
1=}
The conditional prediction error variance is different from the unconditional
variance, but it is not time varying. It depends only on 4. not on the condi-
tioning information ,. In the process as presently specified, the conditional
variance is not allowed to adapt to readily available and potentially useful con-
ditioning information.
So much for the general linear process with iid innovations. Now we ex-
tend it by allowing €, to be weak rather than strong white noise, with a particu-
lar nonlinear dependence structure. In particular, suppose that, as before,

»= B(L)g,
oc . x
B(Ly=) bL Y b<oo by=1,
=0 i=0
but now suppose as well that
& | 2y ~ N0, o)

o) = o+ y(LE

i
w>0 y(L)= Z‘y,-L‘ vi = 0 forall § Z‘y, <1.
=1
Note that we parameterize the innovation process in terms of its conditional
density, €, | £,_;, which we assume to be normal with a zero conditional mean
and a conditional variance that depends linearly on p past squared innovations.
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g, is serially uncorrelated but not serially independent, because the current
conditional variance o; depends on the history of €.2 The stated regularity
conditions are sufficient to ensure that the conditional and unconditional vari-
ances are positive and finite and that y, is covariance stationary.

The unconditional moments of €, are constant and are given by E(g,) =0

, ®
and E((& - E(€))") = —=—
1— Z Y
formulas for the unconditional mean and variance but the fact that they are
fixed, as required for covariance stationarity. As for the conditional moments

of g, its conditional variance is time varying,
E((e, — E(& | Qt—l))2 Q) =w +Y(L)£;z .

and of course its conditional mean is zero by construction.

Assembling the results to move to the unconditional and conditional mo-
ments of yas opposed to g, it is easy to see that both the unconditional mean
and variance of y are constant (again, as required by covariance stationarity)
but that both the conditional mean and variance are time varying:

0
EG | Q) =) bie
i=1

E((y— E(y 1 Q)P | Q1) = w + y(L)E .

Thus, we now treat conditional mean and variance dynamics in a symmetric
fashion by allowing for movement in each, as determined by the evolving in-
formation set ,_,.

In the development just described, €, is called an ARCH(p) process, and
the full model sketched is an infinite-ordered moving average with ARCH(p)
innovations, where ARCH stands for autoregressive conditional heteroskedas-
ticity. Clearly &, is conditionally heteroskedastic, because its conditional vari-
ance fluctuates. There are many models of conditional heteroskedasticity, but
most are designed for cross-sectional contexts, such as when the variance of a
cross-sectional regression disturbance depends on one or more of the regres-
sors.> However, heteroskedasticity is often present as well in the time series
contexts relevant for forecasting, particularly in financial markets. The partic-
ular conditional variance function associated with the ARCH pracess,

ol =w+vy(L)E,

. The important result is not the particular

is tailor-made for time series environments, in which one often sees volatility
clustering, such that large changes tend to be followed by large changes and
small by small, of either sign. That is, one may see persistence, or serial correla-
tion, in volatility dynamics (conditional variance dynamics), quite apart from
persistence (or lack thereof) in conditional mean dynamics. The ARCH
process approximates volatility dynamics in an autoregressive fashion—hence
the name autoregressiveconditional heteroskedasticity. To understand why, note

1 in particular, cr,2 depends on the previous p values of g, via the distributed lag v (L)E;').

¥ The variance of the disturbance in a model of household expenditure, for example, may depend
on income.
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that the ARCH conditional variance function lmks today's conditional variance
positivelv to earlier lagged €/'s, so that large €2's in the recent past produce a
large conditional variance today, thereby increasing the likelihood of a large €
today. Hence. ARCH processes are to conditional variance dynamics precisely
as standard autoregressive processes are to conditional mean dynamics.

The ARCH process mav be viewed as a model for the disturbance in a
broader model. as was the case when we introduced it earlier as a model for
the innovation in a general linear process. Alternatively, if there are no condi-
tional mean dvnamics of interest, the ARCH process may be used for an
observed series. It turns out that financial asset returns often have negligible
conditional mean dvnamics but strong conditional variance dynamics; hence,
in much of what follows. we will view the ARCH process as a model for an ob-
served series, which for convenience we will sometimes call a “return.”

L T T O O -

2. The GARCH Process

Thus far, we have used an ARCH(p) process to model conditional variance dy-
namics. We now introduce the GARCH(p, ¢) process (GARCH stands for gen-
eralized ARCH), which we shall subsequently use almost exclusively. As we
shall see, GARCH is to ARCH (for conditional variance dynamics) as ARMA is
to AR (for conditional mean dynamics).

The pure GARCH(p, g) process is given by*

Y =&,
&R, ~ N0, )
0,2 =w+a(l)E + B(L)cr,2

13
a(l)=) oL, BLl)= ZB,L'
i=1
w>0, @>0, B 20 Y a+) B<l.

The stated conditions ensure that the conditional variance is positive and that
Y is covariance stanonarv

Back substitution on a; reveals that the GARCH( b, q) process can be rep-
resented as a restricted infinite-ordered ARCH process

a ) all)  »
g, = + €, 88 ,
=Y e 1-BW) 1—23, Zl: o
which precisely parallels writing an ARMA process as a restricted infinite-
ordered AR. Thus. the GARCH(p, g) process is a parsimonious approximation
to what may truly be infinite-ordered ARCH volatility dynamics.

* By “pure” we mean that we have allowed onlv for conditional variance dynamics, by setting
¥r = €. We could of course also introduce conditional mean dynamics, but doing so would only
clutter the discussion while adding nothing new.
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Itis important to note a number of special cases of the GARCH( . ¢) process.
First, of course, the ARCH(p) process emerges when B(L) = (. Second, if both
o(L) and B (L) are 0, then the process is simply iid Gaussian noise with variance
. Hence, although ARCH and GARCH processes may at first appear unfamiliar
and potentially ad hoc, they are in fact much more general than standard iid
white noise, which emerges as a potentially highly restrictive special case.

Here we highlight some important properties of GARCH processes. All of
the discussion of course applies as well to ARCH processes, which are special
cases of GARCH processes. First, consider the second-order moment structure
of GARCH processes. The first two unconditional moments of the pure
GARCH process are constant and given by E(g,) = 0 and

w
=
while the conditional moments are E(€, | 2,.1) = 0 and of course

E((&, — E€ | -1 | Q1) = w + (L) + B(L)o; .

E(€ - EE€))=

In particular, the unconditional variance is fixed, as must be the case under co-
variance stationarity, while the conditional variance is time varving. It is no
surprise that the conditional variance is time varying—the GARCH process was
of course designed to allow for a time-varying conditional variance—but it is
certainly worth emphasizing: The conditional variance is itself a serially corre-
lated time series process.

Second, consider the unconditional higherorder (third and fourth)
moment structure of GARCH processes. Real-world financial asset returns,
which are often modeled as GARCH processes, are tvpically unconditionally
symmetric but leptokurtic (i.e., more peaked in the center and with fatter tails
than a normal distribution). It turns out that the implied unconditional
distribution of the conditionally Gaussian GARCH process introduced earlier
is also symmetric and leptokurtic. The unconditional leptokurtosis of GARCH
processes follows from the persistence in conditional variance, which pro-
duces clusters of “low-volatility” and “high-volatility” episodes associated with
observations in the center and in the tails of the unconditional distribution,
respectively. Both the unconditional ssmmetry and unconditional leptokurto-
sis agree nicely with a variety of financial market data.

Third, consider the conditional prediction error variance of a GARCH
process and its dependence on the conditioning information set. Because the
conditional variance of a GARCH process is a seriallv correlated random
variable, it is of interest to examine the optimal Astep-ahead prediction,
prediction error, and conditional prediction error variance. Immediately. the
kstep-ahead prediction is E(€,,4 | ) = 0, and the corresponding prediction
error is

Eron— E(€a | Q) =Ers.
This implies that the conditional variance of the prediction error,

E((€s — E@un 1 Q)2 1Q) = EE€,, 1),
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depends on both h and §2,, because of the dynamics in the conditional vari-
ance. Simple calculations reveal that the expression for the GARCH(p, ¢)
process is given by

h=2
E(€l Q) =0 (Dam + B(l))’) + @) + B ey, .

=0
In the limit, this conditional variance reduces to the unconditional variance of
the process,

w
fim B{Eien | 9) = T pn

For finite A, the dependence of the prediction error variance on the current

information set £2, can be exploited to improve interval and density forecasts.
Fourth, consider the relatlonshlp between E, and a;. The relatlonshlp is

|mp0| tant: GARCH dynamics in g, turn out to introduce ARMA dynamics in
® More precisely, if € is a GARCH(p, q) process, then €/ has the ARMA

reprcsentauon

€ =0+ (@) +BLE — B(Lv +v,,

where v, = e;" 0,2 is the difference between the squared innovation and the
condmon'll variance at time . To see this, note that if €, is GARCH(p. ¢). then
(r, =w+ a(L)E, + B(L)U’, Adding and subtracting B (L )E, from the right side
gives

o =w+a(L)E +B(LE — B(LE + (Lo}
= o+ (@(L) + B(L)E - B(L)E - 0/) .
Adding £/ to each side then gives
o) +€ =w+ (L) +B(L)E — BLI(E] — o))+ .
so that
& = o+ (a(L) + B(LYE — B(L)E — o)) + (6] - a7),
= w+ (a(L) + B(L)E — B(L)v, + v, .

Thus, a;" is an ARMA(max(p, ¢), p) process with innovation v,, where
v, € [—cr;", ). Ef is covariance stationary if the roots of a(L) + B(L) =1 are
outside the unit circle.

Fifth, consider in greater depth the similarities and differences between
0, and €, Ttis \\()rth studying closely the key cxpnessnon 1 E, - 0', , which
makes clear that € is effectively a “proxy” for o;, behaving snmlar]v but not
identicallv. with v, being the difference, or error. In particular, € isa noisy
Proxy: g/ is an unbiased estimator of o, but it is more volatile. It seems rea-
sonable. then. that reconciling the noisy proxy €/ and the true underlying
a * should involve some sort of smoothing of 8, Indeed, in the GARCH(1, I)

% Put dirterenth. the GARCH process approximates conditional variance dvnamics in the same
way that an ARMA process approximates conditional mean dynamics.
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case a; is precisely obtained by exponentially smoothing €. To see why, con-
sider the exponential smoothing recursion, which gives the current smoothed
value as a convex combination of the current unsmoothed value and the
lagged smoothed value,

E=ye+1-vE .

Back substitution yields an expression for the current smoothed value as an
exponentially weighted moving average of past actual values:

& = Z uv,e;"_i .
where
w,=y(1-v).
Now compare this result to the GARCH(1, 1) model, which gives the current

volatility as a linear combination of lagged volatility and the lagged squared
return,

v 2
i=w+ of,_, + Bo,_, .

Back substitution yields
2 _ w ~1a2
o =g ta B

so that the GARCH(1, 1) process gives current volatility as an exponentially
weighted moving average of past squared returns.

Sixth, consider the temporal aggregation of GARCH processes. By tempo-
ral aggregation, we mean aggregation over time, as, for example, when we
convert a series of daily returns to weekly returns, and then to monthly
returns, then quarterly, and so on. It turns out that convergence toward nor-
mality under temporal aggregation is a feature of real-world financial asset
returns. That is, although high-frequency (e.g., daily) returns tend to be fat
tailed relative to the normal, the fat tails tend to get thinner under temporal
aggregation, and normality is approached. Convergence to normality under
temporal aggregation is also a property of covariance stationary GARCH
processes. The key insight is that a low-frequency change is simply the sum of
the corresponding high-frequency changes. For example, an annual change is
the sum of the internal quarterly changes, each of which is the sum of its in-
ternal monthly changes, and so on. Thus, if a Gaussian central limit theorem
can be invoked for sums of GARCH processes, convergence to normality
under temporal aggregation is assured. Such theorems can be invoked if the
process is covariance stationary.

In closing this section, it is worth noting that the symmetry and leptokur-
tosis of the unconditional distribution of the GARCH process, as well as the
disappearance of the leptokurtosis under temporal aggregation, provide nice
independent confirmation of the accuracy of GARCH approximations to asset
return volatility dynamics, insofar as GARCH was certainly not invented with
the intent of explaining those features of financial asset return data. On the
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contrary, the unconditional distributional results emerged as unanticipated
byproducts of allowing for conditional variance dynamics, thereby providing a
unified explanation of phenomena that were previously believed unrelated.

I T T I I
3. Extensions of ARCH and GARCH Maodels

There are numerous extensions of the basic GARCH model. In this section, we
highlight several of the most important. One important class of extensions al-
lows for asymmetric response; that is, it allows for last period’s squared return
to have different effects on today’s volatility, depending on its sign.® Asymmet-
ric response is often present, for example, in stock returns.

ASYMMETRIC RESPONSE

The simplest GARCH model allowing for asymmetric response is the thresh-
old GARCH, or TGARCH, model.” We replace the standard GARCH condi-
tional variance function,

2 2 2
o, =w+tag,_, +po,,
with
2 2 2 2
g =W +a€,_l +'YEI_|DI—1 + Bol—l s

where

D = 1, ifg <0
"7 10 otherwise.

The dummy variable D keeps track of whether the lagged return is positive or
negative. When the lagged return is positive (good news yesterday), D =0, so
the effect of the lagged squared return on the current conditional variance is
simply a. In contrast, when the lagged return is negative (bad news yesterday),
D =1, so the effect of the lagged squared return on the current conditional
variance is a +v. If y = 0, the response is symmetric, and we have a standard
GARCH model; but if y # 0, we have asymmetric response of volatility to
news. Allowance for asymmetric response has proved useful for modeling
“leverage effects” in stock returns, which occur when y < 0.8

% In the GARCH model studied thus far, only the square of last period's return affects the current
conditional variance; hence, its sign is irrelevant.

7 For expositonal convenience, we will introduce all GARCH extensions in the context of
GARCH(1, 1), which is by far the most important case for practical applications. Extensions to
the GARCH( . ¢) case are immediate but notationally cumbersome.

# Negative shocks appear to contribute more to stock market volatility than do positive shocks.
This is called the lrverage effect, because a negative shock to the market value of equity increases the
aggregate debt equity ratio (other things the same), thereby increasing leverage.
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Asvmmetric response may also be introduced via the exponential GARCH
(EGARCH) model,

+ye, ll +BIn(o] ) -
l

ln((r,2 =w+a
o,

Note that volatility is driven by both size and sign of shocks; hence, the model
allows for an asymmetric response depending on the sign of news.® The log
specnﬁc(mon also ensures that the conditional variance is automatically positive,
because u, is obtained by exponentiating ln(o, )y—hence the name “exponential
GARCH.”

EXOGENOUS VARIABLES IN THE VOLATILITY
FUNCTION

Just as ARMA models of conditional mean dynamics can be augmented to in-
clude the effects of exogenous variables, so too can GARCH models of condi-
tional variance dynamics. We simply modify the standard GARCH volatility
function in the obvious way, writing

2 2 2
O, =0 +a€l—] + Bo.l—l +'Yx: '

where v is a parameter and x is a positive exogenous variable.!® Allowance for
exogenous variables in the conditional variance function is sometimes useful.
Financial market volume, for example, often helps to explain market volatility.

REGRESSION WITH GARCH DISTURBANCES
AND GARCH-M

Just as ARMA models may be viewed as models for disturbances in regressions,
so too may GARCH models. We write

=B+ Bix t+e

2

E, | Q‘_[ -~ N(O, 0")
042 = (x)+(!€:.l_| + B(le_l .

Consider now a regression model with GARCH disturbances of the usual sort,
with one additional twist: The conditional variance enters as a regressor,
thereby affecting the conditional mean. We write

¥ =Bo+ Brix +'Y°'/2 +€
& | Q1 ~ N0, 07)
012 =+ ﬂg?_l “+ 30',2_1 .

¥ The absolute “size” of news is captured by |r,_)/g;_;|, and the sign is captured by ry_1/0,_1.
10 Extension to allow multiple exogenous variables is straightforward.
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This model. which is a special case of the general regression model with
GARCH disturbances, is called GARCH-in-mean (GARCH-M). It is sometimes
useful in modeling the relationship between risks and returns on financial
assets when risk, as measured by the conditional variance, varies.!!

CoMPONENT GARCH

Note that the standard GARCH(1, 1) process may be written as

(07 - @) = a(e;l—l - @)+ B(U:z-l - @),
where @ = ;=2 is the unconditional variance.'” This is precisely the
GARCH(1, 1) model introduced earlier, rewritten it in a slightly different but
equivalent form. In this model, short-run volatility dvnamics are governed by
the parameters a and B, and there are no longrun volatility dynamics,
because w is constant.

Sometimes we might want to allow for both long-run and short-run, or per-
sistent and rransient, volatility dynamics in addition to the short-run volatility
dynamics already incorporated. To do this, we replace © with a time-varying
process, yielding

(0; —q) =ale_, — g-1) +Blo, — 1)
where the time-varying long-run volatility, 4,. is given by
g =0+plg-—w)+ ‘P(E‘,-,_x - U;z_x) .

This “component GARCH” model effectively lets us decompose volatility
dvnamics into long-run (persistent) and short-run (transitory) components,
which sometimes vields useful insights. The persistent dvnamics are governed
by p, and the transitory dynamics are governed by a and B.!3

MIXING AND MATCHING

In closing this section, we note that the different variations and extensions of
the GARCH process may of course be mixed. Consider the following condi-
tional variance function as an example:

(0'/2 -q)= a(e;-,—l - q/—l) + 'Y(E‘;,-l - qr—l)Dt—l + 5(6’2 - q"') +0x.

" One may also allow the conditional standard deviation, rather than the conditional variance, to
enter the regression.

12

@ js sometimes called the “long-run” variance, referring ta the fact that the unconditional vari-
ance is the long-run average of the conditional variance.

3 1t turns out. moreover, that under suitable conditions, the component GARCH madel intro-
duced here is covariance stationary and equivalent to a GARCH(2, 2) process subject to certain
nonlinear restrictions on its parameters,
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This is a component GARCH specification, generalized to allow for asymmet-
ric response of volatility to news via the sign dummy D, as well as effects from
the exogenous variable x.

NEEEN
4. Estimating, Forecasting, and Diagnosing
GARCH Models

Recall that the likelihood function is the joint density function of the data,
viewed as a function of the model parameters, and that maximum likelihood
estimation finds the parameter values that maximize the likelihood function.
This makes good sense: We choose those parameter values that maximize the
likelihood of obtaining the data that were actually obtained. It turns out that
construction and evaluation of the likelihood function is easily done for
GARCH models, and maximum likelihood has emerged as the estimation
method of choice.* No closed-form expression exists for the GARCH maxi-
mum likelihood estimator, so we must maximize the likelihood numerically.lf'

Construction of optimal forecasts of GARCH processes is simple. In fact,
we derived the key formula earlier but did not comment extensively on it

Recall, in particular, that
2 2 — i h-1_2
O =E(EL, | 2) =0 D (@D +BM1) ) + @D +BMW) ', .
i=1

In words, the optimal /step-ahead forecast is proportional to the optimal
1-step-ahead forecast. The optimal l-slep-ahead forecast, moreover, is easily cal-
culated: All of the determinants ofo'+, are lagged by at least one period. so that
there is no problem of forecasting the right-hand side variables. In practice, of
course, the underlying GARCH parameters a and B are unknown and so must
be estimated, resulting in the feasible forecast o‘, +u.. formed in the obvious way.

In financial applications, volatility forecasts are often of direct interest,
and the GARCH model delivers the optitnal /rstep-ahead point forecast, n',”, .-
Alternatively, and more generally, we might not be intrinsically interested in
volatility; rather, we may simply want to use GARCH volatility forecasts to
improve hstep-ahead interval or density forecasts of €,. which are crucially
dependent on the Astep-ahead prediction error variance, a,_, ,. Consider, for
example, the case of interval forecasting. In the case of constant volatility, we
earlier worked with Gaussian 95% interval forecasts of the form

Neeh + 1.96 Ty »

1 The precise form of the likelihood is complicated, and we will not give an explicit expression
here, but it may be found in various of the survevs mentioned in the Bibliographical and Compu-
tational Notes at the end of the chapter.

" Routines for maximizing the GARCH likelihood are available in a number of modern software
packages such as EViews. As with any numerical optimization, care must be taken with startup val-
ues and convergence criteria to help ensure convergence 1o a global, as opposed to merelv local,
maximum.
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where o, denotes the unconditional Astep-ahead standard deviation (which
also equals the conditional /-step-ahead standard deviation in the absence of
volatility dvnamics). Now, however, in the presence of volatility dynamics we use

Vit £ 1.96 a;.,., .

The ability of the conditional prediction interval to adapt to changes in volatil-
ity is natural and desirable: when volatility is low, the intervals are nawrally
tighter, and conversely. In the presence of volatility dynamics, the uncondi-
tional interval forecast is correct on average but likely incorrect at any given
time, whereas the conditional interval forecast is correct at all times.

The issue arises as to how to detect GARCH effects in observed returns
and, related. how to assess the adequacy of a fitted GARCH model. A key and

. S 2 . '

simple device is the correlogram of squared returns, €;. As discussed earlier, g
is a proxy for the latent conditional variance; if the conditional variance dis-
plays persistence. so, too. will €;.'" One can of course also fita GARCH model
and assess significance of the GARCH coefficients in the usual way.

Note that we can write the GARCH process for returns as

el =aqu,

where
it
v, ~NOT)
2 2 2
o, =w+aE,_, +Bo,_, .
Equivalently, the standardized return. v, is iid,
£ nd
= =, ~ ;\(0. l).
-
This observation suggests a wav to evaluate the adequacy of a fitted GARCH
model: Standardize returns by the conditional standard deviation from the
fitted GARCH model. . and then check for volatility dvnamics missed by the
fitted model by exaimming the correlogram of the squared standardized return,

.

(€,/a,)". This is routinely done in practice.
I
0. Application: Stock Market Volatility

We model and forecast the volatiliv of dailv returns on the New York Stock
Exchange (NYSE! from January 1, 1988, through December 31, 2001, exclud-
ing holidavs. for a totl nt 3531 observations. We estimate using observations
1-3461, and then we forecast observations 3462-3531.

"Note well, huwever o -l=  snerse 16 not true. That is, if €7 displavs persistence, it does not nec-
essarily follow thatthe © saiz. o 3w inance displavs persistence. In particular, neglected serial cor-
relation associaredwithy . oz mean dvnamics mav canse serial correlation in €, and hence also
in €. Thus, betore pieeee it eaane and imgerpret the correlogram of £7as a check for volatik

ity dynamics, it s i Do s onditional mean effects be appropriatelv modeled, in which
case & should be inter 72101 ac = detirbance inan appropriate conditional mean model.
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FIGURE 14.1
Time Series Plot,
NYSE Returns
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In Figure 14.1 we plot the daily returns, r,. There is no visual evidence of
serial correlation in the returns, but there is evidence of serial correlation in
the amplitude of the returns. That is, volatilitv appears to cluster: Large changes
tend to be followed by large changes and small by small, of either sign.

Figure 14.2 presents the histogram and related statistics for »,. The mean
daily return is slightly positive. Moreover, the returns are approximately sviu-
metric (only slightly left skewed) but bighly leptokurtic. The Jarque-Bera sta-
tistic indicates decisive rejection of normality.

FIGURE 14.2 Histogram and Related Diagnostic Statistics, NYSE Returns
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The correlogram for » appears in Figure 14.3. The sample autocorrelations
are tiny and wsuallv insignificant relative to the Bartlett standard errors, yet the
antocorrelation funcion <hows some evidence of a systematic cyclical pattern,
and the Q-statistics (nat<hown . which cumulate the information across all dis-
placements._ rejecr the itull oof weak white noise. Despite the weak serial correla-
tion evidenth presentin the rerurns. we will proceed for now as if returns were
weak white noise. which < approximately. if not exactly, the case.!”

In Figure 14.4 we vt -7 The volatility clustering is even more evident
than it was in the thne swerics plot of returns. Perhaps the strongest evidence of

FIGURE 14.3
Correlogram, NYSE
Returns
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Vnthe Exo o~ @ -« . iComplements at the end of this chapter. we model the condi-
tionul nie.r - o -ooonal vanance, of returns.

FIGURE 14 .4
Time Series Plot,
Squared NYSE
Returns
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SIZURE 4.5
Carrelogram,
Squared NYSE
Returns
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all comes from the correlogram of ri, which we show in Figure 14.5: All sam-
ple autocorrelations of r; are positive, overwhelmingly larger than those of
the returns themselves, and statistically significant.

As a crude first pass at modeling the stock market volatility, we fit an AR(5)

. 2 : - .
model directly to r;; the results appear in Table 14.1. It is interesting to note

oL LE G

AR 3 Model,

Souared NYSE
Fererns

Dependent Variable: R2
Method: Least squares

Sample (adjusted): 6 3461
Included observations: 3456 after adjusting endpoints

Variable Coefficient Std. Exror t-Statistic Prob.
C 4.40E05 3.78E-06 11.62473 0.0000
R2(-1) 0.107900 0.016137 6.686547 0.0000
R2(-2) 0.091840 0.016186 5.674167 0.0000
R2(-3) 0.028981 0.016250 1.783389 0.0746
R2(—-4) 0.039312 0.016481 2.385241 0.0171
R2(-5) 0.116436 0.016338 7.126828 0.0000
R 0.052268 Mean dependent var. 7.19E05
Adjusted R¢ 0.050894 SD dependentvar.  0.000189
SE of regression 0.000184 Akaike info criterion  —14.36434
Sum squared resid. 0.000116 Schwarz criterion  —14.35366
Log likelihood 24827 .58 F-statistic 38.05372

Durbin-Watson stat. 1.975672 Prob( Fstatistic) 0.000000
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Dependent variable: R
Method: MI-ARCH (Marquardt)

Sample: 1 3461

Included observatons: 3461
Convergence achieved after 13 jterations
Variance backcast: ON

Coefficient Std. Error 2-Statistic Prob.

c 0.000689 0.000127 5.437007 0.0000
Variance Equation

C 3. 16E-05 1.08E-6 29.28536 0.0000
ARCH(1) 0.128948 0.013847 9.312344 0.0000
AR(CH(2) 0.166852 0.015055 11.08281 0.0000
ARCH(3) 0.072551 0.014345 5.057526 0.0000
ARCH (4) 0.143778 1015363 9.3538870 0.0000
ARCH(5) 0.089254 0.018480 4.820789 0.0000
R —0.000381 Mean dependent var.  0.000522
Adjusted R —0.002118 SD dependentvar.  0.008541
SE of regression 0.008550 Akaike info critcrion  —6.821461
Sum squared resid. 0.252519 Schwarz criterion  —6.809024
Log likelihood 11811.534 Durbin-Watson stat. 1.861036

that the tstatistics on the lagged squared returns are often significant, even at
long lags. vet the R* of the regression is low, reflecting the fact that riisa very
noisy volatility proxy.

As a more sophisticated second pass at modeling NYSE volatility, we fit an
ARCH(5) model to r;: the results appear in Table 14.2. The lagged squared
returns appear significant even at long lags. The correlogram of squared stan-
dardized residuals shown in Figure 14.6, however, displavs some remaining sys-
tematic behavior, indicating that the ARCH (5) model fails to capture all of the
volatility dvnamics, potentially because even longer lags are needed.'®

Table 14.3 shows the results of fitting a GARCH(1. 1) model. All of the
parameter estimates are highly statistically significant, and the "ARCH coeff-
cient” (a) and “GARCH coefficient” () sum to a value near unity (0.987), with
B substantially larger than a, as is commonly found for financial asset returns.
We show the correlogram of squared standardized GARCH(1, 1) residuals in

" In the Exerrises. Problems, and Compiements at the end of this chapter, we also examine
ARCH g modebl with p > 3.

TASLE 14 2
ARCH(5) Model,
NYSE Returns
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FIGURE 148
Correlogram,
Squared
Standardized
ARCH(5)
Residuals, NYSE
Returns
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Figure 14.7. All sample autocorrelations are tiny and inside the Bartlett bands,
and they display noticeably less evidence of any systematic pattern than for the
squared standardized ARCH (5) residuals.

In Figure 14.8 we show the time series of estimated conditional standard
deviations implied by the estimated GARCH(I, 1) model. Clearly, volatility

TABLE 14 3
GARCH(1, 1)
Model, NYSE

Returns

Dependent variable: R
Method: ML-ARCH (Marquardt)

Sample: 1 3461

Included observations: 3461
Convergence achieved after 19 iterations
Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.

c 0.000640 0.000127 5.036942 0.0000
Variance Equation

C 1.06E-06 1.49E07 7.136840 0.0000
ARCH(1) 0.067410 (1.004935 13.60315 (.0000
GARCH(1) 0.919714 0.006122 150.2195 0.0000
R -0.000191 Mean dependent var. 0.000522
Adjusted R —-0.001059 SD dependent var. 0.008541
SE of regression 0.008546 Akaike info criterion —6.868008
Sum squared resid. 0.252471 Schwarz criterion —6.860901

Log likelihood 11889.09 Durbin-Watson stat. 1.861389
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FIGLIRE 14.7
Correlogram,
Squared
Standardized
GARCH(1, 1)
Residuals, NYSE
Returns

Autocorrelation

Displacement

fluctuates a great deal and is highly persistent. For comparison we show in
Figure 14.9 the series of exponentially smoothed r, computed using a stan-
dard smoothing parameter of 0.05.' Clearly the GARCH and exponential
smoothing volatility estimates behave similarly, although not at all identically.
The difference reflects the fact that the GARCH smoothing parameter is

FIGURE 14 8
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" For comparability with the earlier-computed GARCH estimaged conditional standard deviation,
we actually show the square root of exponentially smoothed r; .
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FIGURE 14.8
Estimated
Conditional
Standard
Deviation,
Exponential
Smoothing, NYSE
Returns
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effectively estimated by the method of maximum likelihood, whereas the ex-
ponential smoothing parameter is set rather arbitrarily.

Now, using the model estimated using observations 1-3461, we generate a
forecast of the conditional standard deviation for the out-of-sample observa-
tions 3462-3531. We show the results in Figure 14.10. The forecast period
begins just following a volatility burst, so it is not surprising that the forecast
calls for gradual volatility reduction. For greater understanding, Figure 14.11
presents both a longer history and a longer forecast. Clearly the forecast con-
ditional standard deviation is reverting exponentially to the unconditional
standard deviation (0.009), per the formula discussed earlier.

SIGLRE 14.10
Conditional
Standard
Deviation, History
and Forecast,
GARCH(1, 1)
Model
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Exercises, Problems, and Complements

L

(Removing conditional mean dynamics before modeling volatility dynamics) In
the application in the text, we noted that NYSE stock returns appeared to have
some weak conditional mean dynamics, vet we ignored them and proceeded

directly to model volatility,

a.

(Vanations on the basic ARCH and GARCH models). Using the stock return data,
consider richer models than the pure ARCH and GARCH models discussed in the

Instead, first fit autoregressive models using the SIC to guide order selection,
and then fit GARCH models to the residuals. Redo the entire empirical
analysis reported in the text in this way, and discuss any important differences

in the results.

Consider instead the simultaneous estimation of all parameters of AR(p)-
GARCH models. That is, estimate regression models where the regressors are
lagged dependent variables and the disturbances display GARCH. Redo the
entire empirical analysis reported in the text in this way, and discuss any
important differences in the results relative to those in the text and those

obuined in part a.

text.

a. Estimate. diagnose. and discuss a threshold GARCH(1, 1) model.
b. Estimate. diagnose, and discuss an EGARCH(1, 1) model.

c. Estimate, diagnose. and discuss a component GARCH({1, 1) model.
d. Estimate. diagnose. and discuss a GARCH-M model.

(Empirical pertormance of pure ARCH models as approximations to volatility
dynamics) Here we will tit pure ARCH(p) models to the stock return data,
including values of plarger than p = 5 as done in the text, and contrast the

results with those trom fitting GARCH(p, ¢) models.

a.

When firting pure ARCH(p) models, what value of p seems adequate?

FITURE 14 N
Conditional
Standard
Deviation,
Extended History
and Extended
Forecast,
GARCH(L, 1)
Model
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b. When fitting GARCH(p, q) models, what values of p and ¢ seem adequate?
c.  Which approach appears more parsimonious?

(Direct modeling of volatility proxies) In the text, we fitan AR(5) directly 1o a
subset of the squared NYSE stock returns. In this exercise, use the entire NYSE
dataset.

a. Construct, display, and discuss the fitted volatility series from the AR(5)
model.

b. Construct, display, and discuss an alternative fitted volatility series obtained by
exponential smoothing, using a smoothing parameter of .10, corresponding
to a large amount of smoothing, but less than that done in the text.

c. Construct, display, and discuss the volatility series obtained by fitting an
appropriate GARCH model.

d. Contrast the results of parts «, b, and .

e.  Why is fiting of a GARCH model preferable in principle to the AR(5) or
exponential smoothing approaches?

(GARCH volatility forecasting) You work for Xanadu, a luxury resort in the
tropics. The daily temperaturc in the region is beautiful yearvound, with a mean
around 76 (Fahrenheit!) and no conditional mean dvnamics. Occasional pressure
systems, however, can cause bursts of temperature volatility. Such volatility bursts
generally don’t last long enough to drive away guests, but the resort still loses
revenue from fees on activities that are less popular when the weather isn’t
perfect. In the middle of such a period of high temperature volatility, vour boss
gets worried and asks you make a forecast of volatility over the next 10 days. After
some experimentation, you find that daily temperature y, follows

g 2
Vi | Qi-y ~ N(P-.O',) '
where 0,2 follows a GARCH(1, 1) process,
o, =w+oe_, +Bo,_ .

a. Estimation of your model using historical daily temperature data vields
k=76 0=3 a=0.06 and B = 0. If yesterday's temperature was 92 degrees,
generate point forecasts for each of the next 10 days’ conditional variance.

b. According to vour volatility forecasts, how many days will it 1ake until volatility
drops enough such that there is at least a 90% probability that the
temperature will be within 4 degrees of 76:

¢.  Your boss is impressed by vour knowledge of forecasting and asks you whether
your model can predict the next spell of bad weather. How would you answer
him?

(Assessing volatility dynamics in observed returns and in standardized returns) In

the text, we sketched the use of correlograms of squared observed returns for the

detection of GARCH and squared standardized returns for diagnosing the
adequacy of a fitted GARCH model. Examination of Ljung-Box statistics is an
important part of a correlogram analysis. McLeod and Li (1983) show that the

Ljung-Box statistics may be legitimately used on squared observed returns, in

which case it will have the usual x,, distribution under the null hypothesis of

independence. Bollerslev and Mikkelson (1996) argue that one may also use the

Ljung-Box statistic on the squared standardized returns but that a better

distributional approximation is obtained in that case by using a x,,_, distribution,
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where kis the number of estimated GARCH parameters, to account for degrees of
freedom used in model fitting.

(Allowing for leptokurtic conditional densities) Thus far, we have worked
exclusively with conditionally Gaussian GARCH models, which correspond to

& = oy
died
v~ NO, 1)

or, equivalenty. to normality of the standardized return, &,/0,.

a. The conditional normality assumption may sometimes be violated. However,
Bollersiev and Wooldridge (1992) show that GARCH parameters are
consistentlv estimated by Gaussian maximum likelihood even when the
normality assumption is incorrect. Sketch some intuition for this result.

b. Fitan appropriate conditionally Gaussian GARCH mode] to the stock return
data. How might vou use the histogram of the standardized returns to assess
the validity of the conditional normality assumption? Do so and discuss your
results,

¢. Sometimes the conditionally Gaussian GARCH model does indeed fail 1o
explain all of the leptokurtosis in returns; that is, especially with very high-
frequency data, we sometimes find that the conditional density is leptokurtic,
Fortunatelv. leptokurtic conditional densities are easily incorporated into
the GARCH model. For example, in Bollerslev's (1987) conditionally
Student’s t GARCH model, the conditional density is assumed to be
Student’s 1, with the degrees-of-freedom d treated as another parameter to
be estimated. More precisely, we write

& = oyt
iid &
vy~ -

std{ty)

What is the rcason for dividing the Student’s ¢ variable, ¢, by its standard
deviation, std(Z;)? How might such a model be estimated?

(Optimal prediction under asymmetric loss) In the text, we stressed GARCH
modeling for improved interval and density forecasting, implicily working under
a symmetric Joss function. Less obvious but equally true is the fact that, under
asymmetric loss, volatility dynamics can be exploited to produce improved point
forecasts, as shown by Christoffersen and Diebold (1996, 1997). The optimal
predictor under asymmetric loss is not the conditional mean but rather the
conditional mean shifted by a4 time-varving adjustment that depends on

the condirional variance. The intuition for the bias in the optimal predictor is
simple: When errors of one sign are more costly than errors of the other sign, it
is desirable to bias the forecasts in such a way as to reduce the chance of making
an error of the more damaging type. The optimal amount of bias depends on the
conditional prediction error variance of the process because, as the conditional
variance grows, so, too, does the optimal amount of bias needed to avoid large
prediction errors of the more damaging type.

(Multivariate GARCH maodels) In the multivariaie case, such as when modeling a
set of returns rather than a single return, we need to model not only conditional
variances but also conditional covariances.

351
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a. Is the GARCH conditional variance specification introduced earlier, say for
the ith return,

2 2 ¢
o, =w+tag, ,+Bo,_,.
still appealing in the multivariate case? Why or why not?

b. Consider the tollowing specification for the conditional covariance between
th and jth returns:

Oijc = © + 08; (18jy—1 + BOij -1 .

Is it appealing? Why or why not?

c. Consider a fully general muldvariate volatility model, in which every conditional
variance and covariance may depend on lags of every conditional variance and
covariance, as well as lags of every squared return and cross product of returns.
What are the strengths and weaknesses of such a modelr Would it be useful for
modeling, say, a set of 500 returns? If not, how might vou proceed?

Bibliographical and Computational Notes

This chapter draws on the survey by Diebold and Lopez (1995), which may be
consulted for additional details. Other broad surveys include Bollerslev, Chou, and
Kroner (1992); Bollerslev, Engle, and Nelson (1994); Taylor (2005); and Andersen
et al. (2007).

Engte (1982) is the original development of the ARCH model. Bollerslev (1986)
provides the important GARCH extension, and Engle (1995) contains many others.
Diebold (1988) shows convergence to normality under temporal aggregation.

TGARCH traces to Glosten, Jagannathan, and Runkle (1993) and EGARCH to
Nelson (1991). Engle, Lilien, and Robins (1987) inuoduce the GARCH-M model,
and Engle and Lee (1999) introduce component GARCH.

Recently, methods of volatility measurement, modeling, and forecasting have
been developed that exploit the increasing availability of high-frequency financial
asset return data. For a fine overview, see Dacorogna et al. (2001); for more recent
developments, see Andersen, Bollerslev, Diebold, and Labys (2003) and Andersen,
Bollerslev, and Diebold (2006). For insights into the emerging field of financial
econometrics, see Diebold (2001) and many of the other essavs in the same
collection.

Concepts for Review

Heteroskedasticity Asymmetric response
Time-varying volatility Threshold GARCH
Financial econometrics Exponential GARCH
ARCH(p) process GARCH-in-mean
Volatility clustering Component GARCH
Volatility dynamics Student’s t GARCH

GARCH(p, q) process Multivariate GARCH
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