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T o L a w r e n c e Kle in , M a r c N e r l o v e , a n d P e t e r Pauly, 
w h o t a u g h t m e fo recas t ing . 



Most good texts arise from the desire to leave one ' s stamp on a discipline by 
training future generat ions of students, coupled with the recognition that ex­
isting texts are inadequate in various respects. My motivation is n o different. 

There is a real need for a concise and mo d e rn introductory forecasting text. 
A n u m b e r of features distinguish this book. First, a l though it uses only ele­
mentary mathematics, it conveys a strong feel for the important advances 
made since the work of Box and Jenkins more than 30 years ago. In addit ion 
to standard models of t rend, seasonality, and cycles, it touches—sometimes 
extensively—upon topics such as 

• data mining and in-sample overfitting 
• statistical graphics and exploratory data analysis 
• model selection criteria 
• recursive techniques for diagnosing structural change 
• nonl inear models, including neural networks 
• regime-switching models 
• unit roots and stochastic t rends 
• smoothing techniques in their relation to stochastic-trend unobserved-

components models 
• vector autoregressions 
• cointegration and e r ro r correction 
• predictive causality 
• forecast evaluation and combinat ion 
• simulation and simulation-based methods 
• volatility measurement , model ing, and forecasting 



Preface v 

Much of that material appears in the "Exercises, Problems, and Comple­
men t s" following each chapter , which form an integral pa r t of the book. 
T h e Exercises, Problems, and C o m p l e m e n t s are organized so that instruc­
tors and s tudents can pick a n d choose accord ing to their backgrounds and 
interests. 

Second, the book does not a t tempt to be exhaustive in coverage. In fact, 
the coverage is intentionally selective, focusing on the core techniques 
with the widest applicability'. The book is designed so that it can be covered re­
alistically in a one-semester course. Core material appears in the main text, 
and additional material that expands on the dep th and breadth of coverage is 
provided in the Exercises, Problems, and Complements , as well as the Biblio­
graphical and Computat ional Notes, at the end of each chapter. 

Third, the book is applications-oriented. It illustrates all methods with de­
tailed real-world applications designed to mimic typical forecasting situations. 
In many chapters, the application is the centerpiece of the presentation. In 
various places, the book uses applications not simply to illustrate the methods 
but also to drive h o m e an impor tant lesson, the limitations of forecasting, by 
presenting truly realistic examples in which not everything works perfectly! 

Fourth, the book is in touch with mod e rn model ing and forecasting 
software. It uses Eviews, which is a good mode rn comput ing environment for 
forecasting, throughout . At the same time, I am not a software salesman, so 
the discussion is not wed to any particular software. Students and instructors 
can use whatever comput ing envi ronment they like best. 

The book has found wide use among students in a variety of fields, includ­
ing business, finance, economics, public policy, statistics, and even engineer­
ing. T h e book is directly accessible at the undergradua te and master's levels; 
the only prerequisite is an introductory statistics course that includes linear re­
gression. To help refresh smdents ' memories, Chapter 2 reviews linear regres­
sion from a forecasting perspective. T h e book is also of interest to those with 
more advanced preparat ion, because of the hard-to-find direct focus on fore­
casting (as opposed, for example, to general statistics, econometrics , or time 
series analysis). I have used it successfully for many years as the pr imary text in 
my undergradua te forecasting course, as a background text for various o ther 
undergradua te and graduate courses, and as the primary text for master V 
level Executive Education courses given to professionals in business, finance, 
economics, and government . 

SUPPLEMENTS 

Data Sets and Eviews Programs 
Selected data and Eviews programs, as used both in the text chapters and in 
the Exercises, Problems, and Complements at the end of each chapter, are 
available on the text Web site at www.thomsonedu.com/economics /d iebold . 

http://www.thomsonedu.com/economics/diebold
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Text Web Site 
T h e text Web site at www.thomsonedu.com/economics diebold provides 
teaching resources, including the solutions manual for instructors; learning 
resources, including data sets and Eviews programs; and many more features. 

Solutions Manual 
Prepared by Francis Diebold, University of Pennsylvania, the solutions manual 
contains remarks, suggestions, hints, and solutions for many of the end-of-
chapter exercises, problems, and complements . It is available on the text 
Web site and may be downloaded for use by adopt ing instructors. 

Eviews Software 
U p o n the instructor 's request, Eviews Student Version can be bundled with 
the text. With Eviews, students can d o homework anywhere they have access 
to a PC. For more information on this special Eviews offer, contact your 
Thomson South-Western representative or call the Academic Resource Center 
at 1-800-423-0563. 

Economic Applications 
Economic Applications includes South-Western's dynamic Web features: 
EronNews, EconDebate, and EconData Onl ine . Organized by per t inent eco­
nomic topics and searchable by topic or feature, these features are easy to 
integrate into the classroom. EconNews, EconDebate, and EconData all 
deepen students ' unders tanding of theoretical concepts through hands-on ex­
ploration and analvsis for the latest economic news stories, policy debates, and 
data. These features are updated on a regular basis. For more information, 
visit wwwthomsonedu.com. 

InfoTrac 
With InfoTrac College Edition, students can receive anytime, anywhere onl ine 
access to a database of full-text articles from thousands of popular and schol­
arly periodicals, such as Xeivsnwk, Fortune, and Nation's Business, among others. 
InfoTrac is a great wax to expose students to online research techniques, with 
the securitv that the content is academically based and reliable. For more in­
formation, xisit www.ihomsonedu.com. 

You can start using manv of these resources right away by following the di­
rections on the access card that came with the purchase of a new book. Get 
started today at www.thomsonedu.com! 

http://www.thomsonedu.com/economics
http://wwwthomsonedu.com
http://www.ihomsonedu.com
http://www.thomsonedu.com
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The fourth edition maintains the emphasis of earlier editions on providing an 
intuitive building-block approach to the development of m o d e r n and practi­
cal methods for producing, evaluating, and combining forecasts. Within that 
framework, several improvements have been implemented , including 

1. Enhanced and extended discussion of the elements of probability and sta­
tistics of maximal relevance to forecasting, now included as a separate 
Chapter 2, 

2. Many new exercises, problems, and complements , which emphasize practi­
cal implementat ion of the methods developed in the text, including sim­
ple drills to check unders tanding, 

3. Selectively reworked a n d / o r rear ranged material, to maximize clarity and 
pedagogical effectiveness. 

Throughout , my intent has been to insert and delete where needed, sparingly, 
avoiding the temptat ion to fix parts "that ain' t broke." Hopefully I have moved 
forward. 

F.X.D 
August 2006 
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Introduction to 
Forecasting: 
Applications, Methods, 
Books, Journals, 
and Software 

Forecasting is important . Forecasts are constantly made in business, finance, 
economics, government , and many other fields, and much depends on them. 
As with anything else, there are good and bad ways to forecast. This book is 
about the good ways—modern, quantitative, stat ist ical/econometric methods 
of producing and evaluating forecasts. 

1. Forecasting in Action 
Forecasts are made to guide decisions in a variety of fields. To develop a feel 
for the t r emendous diversity of forecasting applications, let's sketch some of 
the areas where forecasts are used and the corresponding diversity of deci­
sions aided by forecasts. 

a. Operations planning and control. Firms routinely forecast sales to help guide 
decisions in inventory management , sales force management , and pro­
duction planning, as well as strategic planning regarding product lines, 
new market entry, and so on. Firms use forecasts to decide what to pro­
duce (What product or mix of products should be produced?) , when to 
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produce (Should we build u p inventories now in anticipation of high fu­
ture demand? How many shifts should be run?) , how much to p roduce 
and how much capacity to build (What are the trends in market size and 
market share? Are there cyclical or seasonal effects? How quickly and with 
what pat tern will a newiy built plant or a newly installed technology depre­
ciate?), and where to p roduce (Should we have one plant or many? If 
many, where should we locale them?). Firms also use forecasts of fuUire 
prices and availability of inputs to guide product ion decisions. 

b. Marketing. Forecasting plays a key role in many market ing decisions. Pric­
ing decisions, distribution path decisions, and advertising expendi ture de­
cisions all rely heavily on forecasts of responses of sales to different mar­
keting schemes. 

c. Economics. Governments, policy organizations, and private forecasting firms 
a round the world routinely forecast the major economic variables, such as 
gross domestic product (GDP), unemployment , consumption, investment, 
the price level, and interest rates. Governments use such forecasts to guide 
monetary and fiscal policy, and private firms use them for strategic plan­
ning, because economy-wide economic fluctuations typically have industry-
level and firm-level effects. In addition to forecasting "standard" variables 
such as GDP, economists sometimes make more exotic forecasts, such as 
the stage of the business cycle that we'll be in 6 months from now (expan­
sion or contract ion), the state of future stock market activity (bull or bear) , 
or the state of future foreign exchange market activity (appreciation or de­
preciation). Again, such forecasts are of obvious use to both governments 
and firms—if they're accurate! 

d. Financial asset management. Portfolio managers have an interest in forecast­
ing asset re turns (stock re turns , interest rates, exchange rates, and com­
modity prices), and such forecasts are made routinely. There is endless de­
bate about the success of forecasts of asset re turns. On the one hand , asset 
re turns should be very hard to forecast; if they were easy to forecast, you 
could make a fortune easily, and any such "get rich quick" opportuni t ies 
would already have been exploited. On the other hand , those who ex­
ploited them along the way may well have gotten rich! Thus, we expect that 
simple, widely available methods for forecasting should have little success 
in financial markets, but there may well be profits to be made from using 
new and sophisticated techniques to uncover and exploit previously unno­
ticed pat terns in financial data (at least for a short time, until o ther market 
participants catch on or your own trading moves the market) . 

e. Financial risk management. T h e forecasting of asset re turn volatility is 
related to the forecasting of asset returns. In the last 10 years, practical 
methods for volatility forecasting have been developed and widely applied. 
Volatility forecasts are crucial for evaluating and insuring risks associated 
with asset portfolios. Volatility forecasts are also crucial for firms and in­
vestors who need to price assets such as options and other derivatives. 

f. Business and government budgeting. Businesses and governments of all sorts 
must constantly plan and justify their expendi tures . A major componen t of 
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the budget ing process is the revenue forecast. Large parts of firms' rev­
enues typically come from sales, and large parts of governments ' revenues 
typically come from tax receipts, both of which exhibit cyclical and long-
term variation. 

g. Demography. Demographers routinely forecast the populat ions of countries 
and regions all over the world, often in disaggregated form, such as by age, 
sex, and race. Population forecasts are crucial for p lanning government 
expendi ture on health care, infrastructure, social insurance, antipoverty 
programs, and so forth. Many private sector decisions, such as strategic 
produc t line decisions by businesses, are guided by demographic forecasts 
of particular targeted population subgroups. Population in turn depends 
on births, deaths, immigration, and emigration, which are also forecasted 
routinely. 

h. Crisis management. A variety of events corresponding to crises of various 
sorts are frequently forecast. Such forecasts are routinely issued as proba­
bilities. For example, in both consumer and commercial lending, banks 
generate default probability forecasts and refuse loans if the probability is 
deemed too high. Similarly, international investors of various sorts are 
concerned with probabilities of default, currency' devaluations, military 
coups, and so forth, and use forecasts of such events to inform their port­
folio allocation decisions. 

The variety of forecasting tasks that we've jus t sketched was selected to 
he lp you begin to get a feel for the dep th and breadth of the field. Surely you 
can think of many more situations in which forecasts are made and used to 
guide decisions. 

With so many different forecasting applications, you might think that a 
huge variety of forecasting techniques exists a n d that you'll have to master all 
of them. Fortunately, that 's not the case. Instead, a relatively small n u m b e r of 
tools form die common core of almost all forecasting methods . Needless to 
say, the details differ if one is forecasting Intel 's stock price one day and the 
populat ion of Scotland the next, but the principles underlying the forecasts 
are identical. Thus , we'll focus on the underlying core principles that drive all 
applications. 

I I I I I M I 

2. Forecasting Methods: An Overview of the Book 
To give you a broad overview of the forecasting landscape, let's sketch what's 
to follow in the chapters ahead. If some of the terms and concepts seem unfa­
miliar, rest assured that we'll be studying them in depth in later chapters. 

Forecasting is inextricably linked to the building of statistical models. 
Before we can forecast a variable of interest, we must build a model for it and 
estimate the model ' s parameters using observed historical data. Typically, the 
estimated model summarizes dynamic pat terns in the data; that is, the esti­
mated model provides a statistical characterization of the links between the 
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present and the past. More formally, an estimated forecasting model provides 
a characterization of what we expect in the present, conditional on the past, 
from which we infer what to expect in the future, conditional on the present 
and past. Quite simply, we use the estimated forecasting model to extrapolate 
the observed historical data. 

In this book, we Focus on core model ing and forecasting me thods that a re 
very widely applicable; variations on d iem can be applied in almost any fore­
casting situation. The book is divided into two parts. The first provides back­
g round and introduces various fundamental issues relevant to anv forecasting 
exercise. The second treats the construction, use, and evaluation of modern 
forecasting models. We give special attention to basic methods of forecasting 
trend, seasonality, and cycles, in both univariate and multivariate contexts. 1 

We also discuss special topics in forecasting with regression models, as well as 
forecast evaluation and combinat ion. Along the way, we introduce a n u m b e r 
of mode rn developments, sometimes in the text and sometimes in the Exer­
cises, Problems, and Complements that follow each chapter. These include 
model selection criteria, recursive estimation and analysis, ARMA and ARIMA 
models, unit roots and cointegration. volatility models, simulation, vector auto-
regressions, and nonl inear forecasting models. Every chapter contains a de­
tailed application; examples include forecasting retail sales, housing starts, 
employment , l iquor sales, exchange rates, and shipping volume. 

In this chapter, we provide a broad overview of the forecasting landscape. 
In Chapter 2 we review probability, statistics, and regression from a forecasting 
perspective. In Chapter 3, we highlight six considerations relevant to all fore­
casting tasks: the decision-making environment , the nantre of the object to be 
forecast, the way the forecast will be stated, the forecast horizon, the informa­
tion on which the forecast will be based, and the choice of forecasting method . 

In Chapter 4, we introduce certain aspects of statistical graphics relevant for 
forecasting. Graphing data is a useful first step in any forecasting project, as it 
can often reveal features of the data relevant for modeling and forecasting. We 
discuss a variety of graphical techniques of use in modeling and forecasting, 
and we conclude with a discussion of the elements of graphical style—what 
makes good graphics good and bad graphics bad. 

After Chapter 4, the chapters proceed differently—each treats a specific 
set of tools applicable in a specific and important forecasting situation. We ex­
ploit the fact that a useful approach to forecasting consists of separately mod­
eling the unobserved components underlying an observed time series;—trend 
components , seasonal components , and cyclical componen t s . 2 Trend is dial 
part of a series' movement that corresponds to long-term, slow evolution. 

1 See the Exercises, Problems, and Complements at the end of rhis chapter for a discussion of the 
meanings of" univariate and multivariate. 
2 We'll define the idea of a time series more precisely in subsequent chapters, but for now just 
think of a time series as a variable of interest that has been recorded over time. For example, the an­
nual rainfall in Brazil from 1950 to 2006, a string of 57 numbers, is a time series. On the basis of 
thai historical data, one might want to forecast Brazilian rainfall for the years 2007-2010. 
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Seasonality is that part of a series' movement that repeats each year. Cycle is a 
catchall term for various forms of dynamic behavior that link the present to 
the past and hence the future to the present. 

In Chapter 5, we discuss trend—what it is. where it comes from, why it's im­
portant , how to model it, and how to forecast it. We do the same for seasonality 
in Chapter 6. Next we provide an extensive discussion of cycles: indeed, cycles 
are so important that we split the discussion into three parts. In Chapter 7, we 
introduce the idea of a cycle in the context of analysis of covariance stationary 
time series, and we discuss methods for the quantitative characterization of 
cyclical dynamics. In Chapter 8. we describe explicit models for cyclical series, 
focusing on autoregressive (AR), moving average (MA), and mixed (ARMA) 
processes. Relying heavily on the foundation built in Chapters 7 and 8, we ex­
plicitly treat the model-based forecasting of cyclical series in Chapter 9. Finally, 
in Chapter 10, we assemble what we learned in earlier chapters, modeling and 
forecasting series with trend, seasonality, and cycles simultaneously present. 

In Chapter 11, we consider multiple regression models in greater detail, 
focusing on nuances of particular relevance for forecasting. In particular, we 
make the distinction between "conditional" forecasting models, useful for an­
swering "what if" questions (e.g., What will happen to my sales if I lower my 
price by 10%?) but not directly useful for forecasting, and "uncondit ional" 
forecasting models, which are directly useful for forecasting. We also treat is­
sues concern ing the p roper dynamic specification of such models, including 
distributed lags, lagged d e p e n d e n t variables, and serially correlated errors, 
and we study and apply vector autoregressive models in detail. 

In Chapter 12, in contrast to our earlier development of methods for con­
structing and using various forecasting models, we consider the evaluation of 
forecasting performance once a track record of forecasts and realizations has 
been established. That is, we show how to assess the accuracy of forecasts and 
how to de te rmine whether a forecast can be improved. We also show how to 
combine a set of forecasts to produce a potentially superior composite forecast. 

Chapters 1-12 form a coheren t whole, and some courses may end with 
Chapter 12. depend ing on time constraints and course emphasis. For those so 
inclined to proceed to more advanced material, we include two such chapters. 

First, in Chapter 13, we in t roduce the idea of stochastic t rend, meaning 
that the t rend can be affected by random disturbances. * We show how to fore­
cast in models with stochastic t rends and highlight the differences between 
forecasts from stochastic trend and deterministic t rend models. Finally, we dis­
cuss "smoothing" methods for producing forecasts, which turn out to be opti­
mal for forecasting series with certain types of stochastic t rend. 

Second, in Chapter 14, we introduce models of time-varying volatility, 
which have found wide application, especially in financial asset management 
and risk management . We focus on the so-called ARCH family of volatility 
models, including several important variations and extensions. 

n The word stochastic simplv mean* "invohing randomness." A process is called deterministic \( it is 
not stochastic. 
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3. Useful Books, Journals, Software, 
and Online Information 
As you begin your study of forecasting, it's impor tant diat you begin to develop 
an awareness of a variety of useful and well-known forecasting textbooks, pro­
fessional forecasting journa ls where original forecasting research is published, 
and forecasting software. 

BOOKS 

A n u m b e r of good books exist that complement this one : some are broader, 
some are more advanced, and some are more specialized. Here we'll discuss a 
few that are more b road or more advanced, in order to give yovi a feel for the 
relevant l i terature. More specialized books will be discussed in subsequent 
chapters when appropr ia te . 

Wonnacott and Wonnacott (1990) is a well-wTitten and popular statistics 
book, which you may wish to consult to refresh your memory on statistical dis­
tributions, estimation, and hypothesis testing. It also contains a thorough and 
very accessible discussion of linear regression, which we use extensively 
th roughout this book. 4 Another good source is Anderson, Sweeney, and 
Williams (2006). 

Pindyck and Rubinfeld (1997) is a well-written general statistics and econo­
metrics text, and you'll find it a very useful refresher for basic statistical topics, 
as well as a good introduction to more advanced econometric models. Simi­
larly useful books include Maddala (2001) and Kennedy (1998). 

As a student of forecasting, you'll want to familiarize yourself with the 
b roader time series analysis l i terature. 3 Chatfield (1996) is a good introduc­
tory book, which you'll find useful as a background reference. More advanced 
books, which you may want to consult later, include Granger and Newbold 
(1986) and Harvey (1993). Granger and Newbold, in particular, is packed with 
fine insights and explicitly or iented toward those areas of time series analysis 
that are relevant for forecasting. Hamilton (1994) is a more advanced book 
suitable for Ph.D.-level study. 

You'll also want to explore Chapter 2, which provides a concise review of the regression model 
as relevant for forecasting. 

Most forecasting methods are concerned with forecasting time series. T h e model ing and fore­
casting of time series are so important that an entire field called time series analysis has arisen. Al­
though the origins of the field go back hundreds of years, major advances have occurred in the 
last 50 years. Time series analysis is intimately related to forecasting, because quantitative time se­
ries forecasting techniques require that quantitative time series models first be fit to the series of 
interest. Thus, forecasting requires knowledge of time series model ing techniques. A substantial 
portion of this book is therefore devoted to time series modeling. 
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A n u m b e r of specialized books are also of interest. Makridakis and 
Wheelwright (1997) and Bails and Peppers (1997) display good business 
sense, with interesting discussions, for example, of the different forecasting 
needs of the subunits of a tvpical business firm, and of communicat ing fore­
casts to higher management . Taylor (1996) provides a nice introduction to 
model ing and forecasting techniques of particular relevance in finance. 

Finally, Makridakis and Wheelwright (1987), Armstrong (2001), Clements 
and Hendry (2002), and Elliott, Granger, and T immermann (2005) are infor­
mative and well-written collections of articles by experts in various subfields of 
forecasting, dealing with both forecasting applications and methods. They pro­
vide a nice complement to this book, with detailed descriptions of forecasting 
in action in various business, economic, financial, and governmental settings. 

JOURNALS 

A n u m b e r of journa ls cater to the forecasting community. T h e leading acade­
mic forecasting journals , which contain a mixture of newly proposed methods , 
evaluation of existing methods, practical applications, and book and software 
reviews, are Journal'of Forecasting and International Journal of Forecasting. In ad­
dition, Journal of Business Forecasting is a good source for case studies of fore­
casting in various corporate and government environments . 

Although a n u m b e r of journa ls are devoted to forecasting, its interdisci­
plinary nature results in a ra ther ironic outcome: A substantia] fraction of the 
best forecasting research is published no t in the forecasting journa ls but 
radier in the broader applied econometrics and statistics journals , such as 
Journal of Business and Economic Statistics, Revieiu of Economics and Statistics, and 
Journal of Allied Econometrics, among many others. Several recent journa l sym­
posia have focused on forecasting—see, for example, Diebold and Watson 
(1996); Diebold and West (1998); Diebold, Stock, and West (1999); Diebold 
and West (2001); and Diebold, Engle, Favero, Gallo, and Schorfheide (2005). 

SOFTWARE 

Just as some journa ls specialize exclusively in forecasting, so too do some soft­
ware packages. But just as impor tant forecasting articles appear regularly in 
journa ls much broader than the specialized forecasting journals , so, too, are 
forecasting tools scattered th roughout econometric/statist ical software pack­
ages with capabilities much broader than forecasting a lone . 6 

O n e of the best such packages is Eviews, a modern Windows envi ronment 
with extensive time series, modeling, and forecasting capabilities. 7 Eviews can 
implement almost all of the methods described in this book (and many more ) . 
Most of the examples in this book are d o n e in Eviews, which reflects a balance 
of generality and specialization that makes it ideal for the sorts of tasks that 

'' Rycroft (1993) provides a thorough comparison of several forecasting software environments. 

' The Eviews web page is at www.eviews.com. 

http://www.eviews.com
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will concern us . 8 If you feel more comfortable with ano ther package, however, 
that 's fine—none of our discussion is wed to Eviews in anv wav. and most of 
our techniques can be implemented in a variety of packages, including 
Minitab, SAS, and many o thers . 9 

If you go on to more advanced model ing and forecasting, you'll probably 
want to have available an open-ended high-level comput ing environment in 
which you can quickly program, evaluate, and apply new tools and techniques. 
Matlab is one very good such env i ronment . 1 0 Madab is particularly well suited 
for time series model ing and forecasting. 1 1 

Although most forecasting is done in time series environments , some is 
d o n e in "cross sections," which refers to examination of a population at one 
point in time. Stata is an outstanding package for cross-section modeling, with 
strengths in areas such as qualitative response modeling, Poisson regression, 
quanti le regression, and survival analysis. 1 2 

Before proceeding, and at the risk of belaboring the obvious, it is impor­
tant to note that no software is perfect. In fact, all software is highly imperfect! 
The results obtained when model ing or forecasting in different software envi­
ronments may differ—sometimes a litde and sometimes a lot—for a variety of 
reasons. The details of implementat ion may differ across packages, for exam­
ple, and small differences in details can sometimes produce large differences 
in results. Hence , it is important that you unders tand precisely what vour soft­
ware is doing (insofar as possible, as some software documenta t ion is more 
complete than others) . And, of course, quite apart from correctly imple­
mented differences in details, always r emember that deficient implementa­
tions occur: The re is n o such di ing as bug-free software. 

ONLINE INFORMATION 

A variety of information of interest to forecasters is available on the web. The 
best way to learn about what's out there in cyberspace is to spend a few hours 
searching the web for whatever interests you. However, any list of good web 
sites for forecasters is likely to be outdated shortly after its compilation. 
Hence, we ment ion just one, which is regularly updated and tremendously au-
tiioritauve: Resources for Economists, at www.rfe.org. It contains hundreds of 
links to data sources, journals , professional organizations, and so on. Frankly, 
the Resources for Economists page is all you need to start on your way. 

s A number of other good software packages are reviewed bv Kim and Trivedi (1995). 
y S+ also deserves mention as a fine computing environment with special strengths in graphical 
data analysis and modern statistical methods. See Hallman (1993) for a review. 

Matlab maintains a web page that contains material on product availability, user-written add­
ons, and more, at www.mathworks.com. 
1 1 Rust (1993) provides a comparative review of Matlab and one of its competitors, Gauss. 
V l For a review of Stata. see Ferrall (1994). The Stata web page is at wvviv.stata.com. The page has 
product information, user-supplied routines, course information, and so forth, as well as links to 
other statistical software products, many of which are useful for foretasting. 

http://www.rfe.org
http://www.mathworks.com
http://wvviv.stata.com


Introduction to Forecasting: Applications, Methods, Books, Journals, and Software 9 

I I I I I 1 I I 

4. Looking Ahead 
A forecast is little more than a guess about the future. Because forecasts guide 
decisions, good forecasts help to p roduce good decisions. In the remainder of 
this book, we'll motivate, describe, and compare modern forecasting meth­
ods. You'll learn how- to build and evaluate forecasts and forecasting models, 
and you'll be able to use them to improve your decisions. Enjoy! 

Exercises, Problems, and Complements 
1 . (Forecasting in daily life: We are all forecasting, all the time) 

a. Sketch in detail three forecasts that you make routinely, and probably 
informally, in your dailv life. What makes vou believe that the forecast object 
is predictable? What factors might introduce error into your forecasts? 

b. What decisions are aided by your three forecasts? How might the degree of 
predictability of the forecast object affect your decisions? 

c. How might you measure die "goodness" of your three forecasts? 
d. For each of your forecasts, what is the value to you of a "good" as opposed to a 

"bad" forecast? 

2. (Forecasting in business, finance, economics, and government) What sorts of 
forecasts would be useful in the following decision-making situations? Whv? What 
sorts of data might vou need to produce such forecasts? 
a. Shop-All-The-Time Network (SATTN) needs to schedule operators to receive 

incoming calls. The volume of calls varies depending on the time of day, the 
quality of the TV advertisement, and the price of the good being sold. SATTN 
must schedule staff to minimize the loss of sales (too few operators leads to 
long hold times, and people hang up if put on hold) while also considering 
the loss associated with hiring excess employees. 

b. You're a U.S. investor holding a portfolio of Japanese, British, French, and 
German stocks and government bonds. You're considering broadening your 
portfolio to include corporate stocks of Tambia. a developing economy with 
a risky emerging stock market. You're only willing to do so if the Tambian 
stocks produce higher portfolio returns sufficient to compensate you for the 
higher risk. There are rumors of an impending military coup, in which case 
your Tambian stocks would likelv become wordiless. There is also a chance of 
a major Tambian currency depreciation, in which case the dollar value of 
your Tambian stock returns would be greatly reduced. 

c. You are an executive with Grainworld, a huge corporate farming 
conglomerate with grain sales both domestically and abroad. You have no 
control over the price of your grain, which is determined in the competitive 
market, but you must decide what to plant and how much, over the next 
2 years. You are paid in foreign currency for all grain sold abroad, which you 
subsequently convert to dollars. Until now, the government has bought all 
unsold grain to keep the price vou receive stable, but the agricultural lobby 
is weakening, and vou are concerned that the government subsidy may be 
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reduced or eliminated in the next decade. Meanwhile, the price of fertilizer 
has risen because the government has restricted production of ammonium 
nitrate, a key ingredient in both fertilizer and terrorist bombs, 

d. You run BUCO, a British utility supplying electricity to the London 
metropolitan area. You need to decide how much capacity to have on line, 
and two conflicting goals must be resolved in order to make an appropriate 
decision. On the one hand, vou obviously want to have enough capacity to 
meet average demand, but that's not enough, because demand is uneven 
throughout the year. In particular, demand skyrockets during summer heat 
waves—which occur randomly—as more and more people run their air 
conditioners constantly. If you don't have sufficient capacity to meet peak 
demand, you get bad press. On the other hand, if you have a large amount of 
excess capacity over most of the year, you also get bad press. 

3. (The basic forecasting framework) True or false (explain your answers): 
a. The underlying principles of time series forecasting differ radically 

depending on the time series being forecast. 
b. Ongoing improvements in forecasting methods will eventually enable perfect 

prediction. 
c. There is no way to learn from a forecast's historical performance whether and 

how it could be improved. 

4. (Degrees of forecastability) Which of the following can be forecast perfectly? 
Which cannot be forecast at all? Which are somewhere in between? Explain your 
answers, and be careful! 
a. The direction of change tomorrow in a country's stock market 
b. The eventual lifetime sales of a newly introduced automobile model 
c. The outcome of a coin flip 
d. The date of the next full moon 
e. The outcome of a (fair) lottery 

5. (Data on the web) A huge amount of data of all sorts is available on the web. 
Frumkin (2004) and Baumohl (2005) provide useful and concise introductions 
to the construction, accuracy, and interpretation of a variety of economic and 
financial indicators, many of which are available on the web. Search the web for 
information on U.S. retail sales, U.K. stock prices, German GDP, and Japanese 
federal government expenditures. (The Resources for Economists page is a fine 
place to start: www.rfe.org.) Using graphical methods, compare and contrast the 
movements of each series and speculate about die relationships that may be 
present. 

6. (Univariate and multivariate forecasting models) In this book, we consider both 
univariate and multivariate forecasting models. In a un ivar iate m o d e l , a single 
variable is modeled and forecast solely on the basis of its own past. Univariate 
approaches to forecasting may seem simplistic, and in some situations they are, 
but they are tremendously important and worth studying for at least two reasons. 
First, although they are simple, they are not necessarily simplistic, and a large 
amount of accumulated experience suggests that they often perform admirably. 
Second, it's necessary to understand univariate forecasting models before tackling 
more complicated multivariate models. 

In a mul t ivar iate m o d e l , a variable (or each member of a set of variables) is 
modeled on the basis of its own past, as well as the past of other variables, thereby 

http://www.rfe.org
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accounting for and exploiting cross-variable interactions. Multivariate models 
have the potential to produce forecast improvements relative to univariate models, 
because they exploit more information to produce forecasts. 
a. Determine which of the following are examples of univariate or multivariate 

forecasting: 
• Using a stock's price history to forecast its price over the next week 
• Using a stock's price history and volatility history to forecast its price over 

the next week 
• Using a stock's price history and volatility history to forecast its price and 

volatility over the next wreek 
b. Keeping in mind die distinction between univariate and multivariate models, 

consider a wine merchant seeking to forecast the price per case at which 1990 
Chateau Latour, one of the greatest Bordeaux wines ever produced, will sell in 
2015, at which time it will be fully mature. 
• What sorts of univariate forecasting approaches can you imagine that 

might be relevant? 
• What sorts of multivariate forecasting approaches can you imagine that 

might be relevant? What other variables might be used to predict the 
Latour price? 

• What are the comparative costs and benefits of the univariate and 
multivariate approaches to forecasting the Latour price? 

• Would you adopt a univariate or multivariate approach to forecasting the 
Latour price? Why? 

Concepts for Review 
Forecasting Deterministic 
Statistical model Econometric model 
Forecasting model Time series analysis 
Time series Univariate model 
Stochastic Multivariate model 
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A Brief Review of 
Probability, Statistics, 
and Regression 
for Forecasting 

I. Why This Chapter? 
T h e role of this chapter is threefold. First, it reviews some familiar material. 
You've already studied some probability and statistics, bu t chances are that you 
could use a bit of review, so this chapter supplies it. 1 

Second, a l though this chapter largely reviews familiar material , it does so 
from a new perspective. Tha t is, it begins developing the material from the 
explicit perspective of forecasting, which involves special considerat ions and 
nuances . For example , we motivate the regression model as a model of a 
condit ional expectat ion, which turns ou t to be an intuitive and appeal ing 
forecast. 

Third , the chapter foreshadows new material subsequendy developed in 
greater detail. It begins to int roduce tools that are new but that are related to 
things you learned earlier and very impor tant for building forecasting models, 
such as information criteria for model selection. Hence , you should not worry 
if some of the material looks unfamiliar! 

1 Be warned, however: This chapter is no substitute for a full-course introduction to probability' 
and statistics. If the bulk of it looks unfamiliar to you, you're in trouble and should speak with your 
instructor immediately. 

13 
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2. Random Variables, Distributions, and Moments 
Consider an exper iment with a set Oof possible outcomes. A r andom variable 
Y is simply a mapping from O to the real numbers . For example, the experi­
m e n t might be flipping a coin twice, in which case O = | (Heads, Heads) , 
(Tails, Tails), (Heads, Tails), (Tails, Heads) | . We might define a r andom vari­
able Y to be the n u m b e r of heads observed in the two flips, in which case Y 
could assume three values, y = 0, y = 1, and \ = 2 . 1 

Discrete random variables—that is, r a n d o m variables with discrete proba­
bility distributions—can assume only a countable n u m b e r of values y„ > = 1, 
2, . . . , each with positive probability p , such that YL. pt — 1- T h e probability 
distribution/(>) assigns a probability p , to each such value Vj. In the example at 
hand, Y is a discrete random variable, and f{y) = 0.25 for y = 0,J{y) — 0.50 for 
y=\,fly) = 0.25 for v = 2, and fly) = 0 otherwise. 

In contrast, continuous random variables can assume a cont inuum of val­
ues, and the probability density function fly) is a nonnegative cont inuous 
function such that the area under fly) between any points a and b is the prob­
ability that Yassumes a value between a and b . 3 

In what follows we will simply speak of a "distribution" fly). It will be clear 
from context whether we are in fact speaking of a discrete random vaiiable 
with probability distribution fly) or a cont inuous r andom variable with proba­
bility density fly). 

Moments provide important summaries of various aspects of distributions. 
Roughly speaking, moments are simply expectations of powers of r andom vari­
ables, and expectations of different powers convey different sorts of informa­
tion. You are already familiar with two crucially important moments , the mean 
and variance. In what follows we shall consider the first four moments : mean, 
variance, skewness, and kurtosis. 4 

The mean, or expected value, of a discrete random variable is a probability-
weighted average of the values it can assume, 3 

i 

Often we use the Greek letter p. to denote the mean. The mean measures the 
location, or central tendency, of y. 

T h e variance of y is its expected squared deviation from its mean, 

r j - = var(y) = £ (y - u,)". 

It measures the dispersion, or scale, of y a round its mean . 

s Note that we use capitals for random variables (Y) and lowercase letters for their realizations (y). 
We will often neglect this formalism, however, as the meaning will be clear from context. 
* In addition, the total area under /(y) must be 1. 
1 In principle, we could of course consider moments beyond the fourth, but in practice, only the 
first four are typically examined. 
5 A similar formula holds in the continuous case. 



A Brief Review of Probability. Statistics, and Regression for Forecasting 15 

Often we assess dispersion using the square root of the variance, which is 
called the standard deviation, 

a = s t d ( > ) = v / £ 0 ' - u , ) 3 . 

The standard deviation is more easily in terpreted tiian the variance, because it 
has the same units of measurement as y. That is, if y is measured in dollars 
(say), then var(y) is in dollars squared, but std(y) is again in dollars. 

T h e skewness of v is its expected cubed deviation from its mean (scaled by 
cr s for technical reasons), 

Skewness measures the amoun t of asymmetry in a distribution. The larger the 
absolute size of the skewness, the more asymmetrical is the distribution. A 
large positive value indicates a long right tail, and a large negative value indi­
cates a long left tail. A zero value indicates symmetry a round the mean. 

T h e kurtosis of y is the expected fourth power of the deviation of y from its 
mean (scaled by n 4 ) , 

K £ ( y - u - ) 4 

a 4 

Kurtosis measures the thickness of the tails of a distribution. A kurtosis above 
3 indicates "fat tails," or leptokurtosis, relative to the normal, or Gaussian, 
distribution that you studied in earlier course work. Hence , a kurtosis above 
3 indicates that ext reme events are more likely to occur than would be the case 
unde r normality. 

I I I I I I I I 

3. Multivariate Random Variables 
Suppose now that instead of a single r andom variable Y, we have two random 
variables Vand X.b We can examine the distributions of T o r X in isolation, 
which are called marginal distributions. This is effectively what we've already 
studied. But now there 's more: / ' and Xmay be related and therefore move to­
gether in various ways, characterization of which requires a joint distribution. 
In the discrete case, the joint distribution J[y, x) gives the probability associ­
ated with each possible pair of y and x values; in the cont inuous case, the jo in t 
density J{y, x) is such that the area unde r it in any region is the probability of a 
(y. x) realization in that region. 

We can examine the moments o f y o r ,vin isolation, such as mean, variance, 
skewness, and kurtosis. But, again, there 's more : To help assess the dependence 
between y and x, we often examine a key m o m e n t of relevance in multivariate 
environments, the covariance. The covariance between y and x is simply the 
expected product of the deviations of y and x from their respective means, 

cov(y, x) = E((y, - f i v ) U - p, x)) , 

ft We could of course consider more than two variables, but for pedagogical reasons, we presently 
limit ourselves to two. 
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A positive covariance means that y and x are positively related. Tha t is, when y 
is above its mean, x tends to be above its mean: and when y is below its mean, 
x tends to be below its mean. Conversely, a negative covariance means that y 
and x are inversely related: When y is below its mean x tends to be above its 
mean, and vice versa. The covariance can take any value in the real numbers . 

Frequently, we convert the covariance to a correlation by standardizing by 
the product of o\ and crx, 

cov(y, x) 
corr(y, x) — . 

rj vo\ 

T h e correlation takes values in [ — 1,1]. Note that covariance depends on units 
of measurement (such as dollars, cents, and billions of dollars), but correla­
tion does not. Hence , correlation is more immediately interpretable, which is 
the reason for its popularity. 

Note also that covariance and correlation measure only linear depen­
dence : in particular, a zero covariance or correlation between y and .vdoes not 
necessarily imply that y and x are independen t . That is, they may be nonYm-
early related. If, however, two random variables are jo indy normally distributed 
with zero covariance, then they are independen t . 

O u r multivariate discussion has focused on the jo in t distribution J[y, x). In 
later chapters we will also make heavy use of the conditional distribution 
J{y \x)—that is, the distribution of the random variable Y conditional on X= x. 
Conditional distributions are tremendously impor tant for forecasting, in 
which a central concern is the distribution of future values of a series condi­
tional on past values. Conditional moments are similarly important. In particular, 
the conditional mean and conditional variance play key roles in forecasting, in 
which attention often centers on the mean or variance of a series conditional 
on its past values. 

4. Statistics 
Thus far, we've reviewed aspects of known population distributions of r andom 
variables. Often, however, we have a sample of data drawn from an unknown 
populat ion d i s t r i bu t ion / 

b'<},T=. - fiy). 
and we want to learn from the sample about various aspects off, such as its mo­
ments . To do so, we use various est imators. 7 We can obtain estimators by re­
placing populat ion expectations with sample averages, because the ari thmetic 
average is the sample analog of the populat ion expectation. Such "analog 
estimators" m r n out to have good propert ies quite generally. 

' An estimator is an example of a statistic, or sample statistic, which is simply a function of the 
sample observations. 
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T h e sample mean is simply the arithmetic average, 

It provides an empirical measure of the location of y . 
T h e sample variance is the average squared deviation from the sample 

mean, 
T 

v 2 

cr = 

It provides an empirical measure of the dispersion of y a round its mean . 
We commonly use a slightly different version of d 2 , which corrects for the 

1 degree of freedom used in the estimation of y , thereby producing an 
unbiased estimator of rr2, 

r 
r.\2 

7*— 1 

Similarly, the sample standard deviation is defined as ei ther 

cj = = 
N 

or 

1=1 
T- 1 

It provides an empirical measure of dispersion in the same units as y . 
The sample skewness is 

S = 

It provides an empirical measure of the amoun t of asymmetry in the distribu­
tion of y . 

T h e sample kurtosis is 

K = t=\ 

It provides an empirical measure of the fatness of the tails of the distribution 
of y relative to a normal distribution. 
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Many of the most famous and impor tant statistical sampling distributions 
arise in the context of sample moments , and the normal distribution is the fa­
ther of them all. In particular, the celebrated central limit theorem establishes 
that unde r quite general condit ions, the sample mean y will have a normal dis­
tribution as the sample size gets large. The x 2 distribution arises from squared 
normal r andom variables, the t distribution arises from ratios of normal and 
X2 variables, and the F distribution arises from ratios of x~ variables. 

Because of the fundamental nature of the normal distribution as estab­
lished by the central limit theorem, it has been studied intensively, a great deal 
is known about it, and a variety of powerful tools have been developed for use 
in conjunction with it. Hence , it is often of interest to assess whether the nor­
mal distribution governs a given sample of data. A simple strategy is to check 
various implications of normality, such as 5 = 0 and K = 3, via informal exam­
ination of S and K. Alternatively and more formally, the Jarque-Bera test (JB) 
effectively aggregates the information in the data about both skewness and 
kurtosis to p roduce an overall test of the hypothesis that 5 = 0 a n d K = 3, 
based on .S and K.g T h e test statistic is 

JB = { ( s 2 + 5 < * - s > * ) . 

where T is the n u m b e r of observations. 9 Under the null hypothesis of inde­
p e n d e n t normally distributed observations, the Jarque-Bera statistic is distrib­
uted in large samples as a x 2 r andom variable with 2 degrees of freedom. We 
will use the Jarque-Bera test in various places th roughout this book. 

5. Regression Analysis 
Ideas that fall unde r the general heading of "regression analysis" are crucial 
for building forecasting models, using them to produce forecasts, and evalu­
ating those forecasts. Here we provide a brief review of linear regression to re­
fresh your memory and provide motivation from a forecasting perspective. 

Suppose that we have data on two variables, y and x, as in Figure 2.1, and 
suppose that we want to find the linear function of x that gives the best fore­
cast of v, where "best forecast" means that the sum of squared forecast errors, 
for the sample of data at hand , is as small as possible. This amounts to finding 
the line that best fits the data points, in the sense that die sum of squared ver­
tical distances of the data points from the fitted line is minimized. When we 
"run a regression" or "fit a regression line," that 's what we do. T h e estimation 

8 Other tests ofconformitv to the normal distribution exist and may of course be used, such as the 
Kolmogorov-Smirnov test. We use the Jarque-Bera test in this book because of its simplicity and be­
cause of its convenient and intuitive decomposition into skewness and leptokurtosis components . 
9 The formula given is for an observed time series. If the series being tested for normality is the 
residual from a model, then Tshould be replaced with T— k, where k is the number of parame­
ters estimated. 
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strategy is called least squares. T h e least squares estimator has a well-known 
mathematical formula. We won't reproduce it here; suffice it to say that we 
simply use the computer to evaluate the formula. 

In Figure 2,2, we illustrate graphically the results of regressing y on x The 
best-fitting line slopes upward, reflecting the positive correlation between y 
and x. Note that the data points don ' t satisfy' the fitted linear relationship ex­
actly; rather, they satisfy it on average. To forecast y for any given value of x, we 
use the fitted line to find the value of y that corresponds to the given value of x. 

Thus far, we haven' t postulated a probabilistic model that relates y and x\ 
instead, we simply ran a mechanical regression of > on x to find the best 
forecast of y formed as a l inear function of x. It's easy, however, to construct a 
probabilistic framework that lets us make statistical assessments about the 
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proper t ies of the fitted line and the cor responding forecasts. We assume that 
y is linearly related to an exogenously de t e rmined variable x. and we add an in­
d e p e n d e n t and identically distributed (iid) disturbance with zero mean and 
constant variance: 

y, = B» + Bi x, + e, 

E, ~~ ( 0 , a 2 ) , 

/ = 1 T. T h e intercept of the line is Bo, the slope is Pi, and the variance 
of the disturbance is a 2 . 1 0 Collectively, Bo, Pi, and cr2 are called the model 's 
parameters. T h e index / keeps track of time; the data sample begins at some 
time we've called " 1 " and ends at some time we've called "7 . " 

If the regression model postulated here holds t rue, then the expected 
value of y conditional on x taking a particular value, say x \ is 

E ( j | j f ) = + 

That is, the regression function is the conditional expectation of y. As we'll see 
in detail later in the book, the expectation of future y conditional on available 
information is a particularly good forecast. In fact, unde r fairly general condi­
tions, it is the best possible forecast. The intimate connection between regres­
sion and optimal forecasts makes regression an important tool for forecasting. 

We assume that the model sketched he re is t rue in popula t ion . If we 
knew Bo and B | , we could make a forecast of y for any given value of x,*, and 
the variance of the co r respond ing forecast e r ro r would be rx 2. T h e prob­
lem, of course, is that we d o n ' t know the values of the model ' s parameters . 
When we r u n the regression, o r "estimate the regression mode l , " we use 
a c o m p u t e r to estimate the unknown pa rame te r s by solving the p rob l em 

m i n £ ( y , — Bo — pjx , ) 2 (or, equivalendy. m i n ^ e j , because y, — B o - pix, = £,), 
P i=\ P i=\ 

where B is shor thand notation for the set of two parameters, Bo and Pi -" We 
denote the set of estimated parameters by B and its e lements by (So and P|. 
Each estimated coefficient gives the weight put on the corresponding variable 
in forming the best linear forecast of y. We can think of Bo as the coefficient on 
a "constant" variable that 's always equal to 1. T h e estimated coefficient on the 
constant variable is the best forecast in the event that xis 0. In that sense, it's a 
baseline forecast. We use the set of estimated parameters , p 0 and Pi, to make 
forecasts that improve on the baseline. The fitted values, o r in-sample 
forecasts, are 

y, = jio + piXi , 

i = l , . . . , T. 
Forecasts are rarely perfect; instead, we make errors . The residuals, or 

in-sample forecast errors, are 

e> = y> - y> > 
1 0 We speak of the regression intercept and the regression slope. 
1 1 Shortly we'll show how to estimate <T" as well. 
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t = 1, . . . , T. Forecasters are keenly interested in studying the propert ies of 
their forecast errors . Systematic pat terns in forecast er rors indicate that the 
forecasting model is inadequate; forecast errors from a good forecasting 
model must be unforecastable! 

Now suppose we have a second exogenous variable, z, which we could also 
use to forecast v. In Figure 2.3, we show a scatterplot ofy against z, with the re­
gression line superimposed. This time the slope of the fitted line is negative. 
The regressions of y on x and v on z are called simple linear regressions; they 
are potentially useful, but ultimately we'd like to regress y on both x and z. For-
tunately, the idea of linear regression readily generalizes to accommodate 
more than one right-hand-side variable. We W T i t e 

y, = P», + Bi*, + B2Z, + £, , 

t = 1, . . . , 7 1 This is called a multiple linear regression model. Again, we use 
the computer to find 

i'il „ 
e, - (0, < r J ) , 

the values of Bo, Pi, and B? that p roduce the best forecast ofy; that is, we find 
T 

the B values that solve the problem m i n £ ( y , — B,, — Bjx, — B*z,)2, where B 

denotes the set of three model parameters . We deno te the set of estimated para­
meters by p , with elements (3 0, Pi , and P-j. T h e fitted values are 

y, = Po + M , + p ,z , , 

and the residuals are 

e, = y, - y,, 

t = 1, . . . , T. Extension to the general multiple linear regression model , with 
an arbitrary number of right-hand-side variables (k, including the constant) , is 
immediate . 
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T A B L E 2 1 LS / / Dependent variable is >. 
Regression of y on 
xandz Sample: 1960 2007 

Included observations: 48 
Variable C o e f f i c i e n t S t d . Error t-Statistic P r o b . 

C 9.884732 0.190297 51.94359 .()()()() 
X 1.073140 0.150341 7.138031 .0000 
Z -0.638011 0.172499 -3.698642 .0006 

/^squared 0.552928 Mean dependent var. 10.08241 
Adjusted /^-squared 0.533059 SD dependent var. 1.908842 
SE of regression 1.304371 Akaike info criterion 3.429780 
Sum squared rcsid. 76.56223 Schwarz criterion 3.546730 
Log likelihood -79.31472 /^statistic 27.82752 
Durbin-Watson stat. 1.506278 Prob (/^statistic) .000000 

This time, let's do more than a simple graphical analysis of the regression fit. 
Instead, let's look in detail at die computer output , which we show in Table 2.1. 
We d o so dozens of times in this book, and the output format and interpreta­
tion are always the same, so it's impor tant to get comfortable with it quickly. 
The output is in Eviews format. O the r software will p roduce more or less the 
same information, which is fundamental and standard. 

The printout begins by reminding us that we're runn ing a least-squares 
(LS) regression and that the left-hand-side variable (the "dependent variable"— 
see the Exercises, Problems, and Complements at the end of this chapter) is v. 
It then shows us the sample range of the historical data, which happens to be 
I960 to 2007, for a total of 48 observations. 

Next comes a table listing each right-hand-side variable together with four 
statistics. T h e right-hand-side variables x and need no explanation, but the 
variable C does. C is notation for the earlier-mentioned constant variable. The 
C variable always equals 1, so the estimated coefficient on C is the estimated 
intercept of the regression l ine. 1 , 2 

The four statistics associated widi each right-hand-side variable are (he esti­
mated coefficient ("Coefficient"'), its s tandard er ror ("Std. Error"), a t-statistic, 
and a corresponding probabitity value ("Prob."). T h e standard errors of the es­
timated coefficients indicate their likely sampling variabilitv and hence their 
reliability. The estimated coefficient plus or minus 1 standard e r ror is approxi­
mately a 68% confidence interval for the true but unknown population 
parameter, and the estimated coefficient plus or minus 2 standard errors is ap­
proximately a 9 5 % confidence interval, assuming that the estimated coefficient 

1 2 Sometimes the population coefficient on C is called the constant term, and the regression esti­
mate, the estimated constant term. 
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is approximately normalh distr ibuted. 1 3 Thus, large, coefficient standard errors 
translate into wide confidence intervals. 

Each /-statistic provides a test of the hypothesis of variable irrelevance: that 
the t rue but unknown population parameter is 0, so that the corresponding 
variable contributes nothing to the forecasting regression and can therefore 
be d ropped . O n e wav to test variable irrelevance, with, say, a 5% probability of 
incorrect rejection, is to check whether 0 is outside the 9 5 % confidence inter­
val for the parameter. If so, we reject irrelevance. The /-statistic is just the ratio 
of the estimated coefficient to its s tandard error, so if 0 is outside the 9 5 % con­
fidence interval, then the /-statistic must be bigger than 2 in absolute value. 
Thus , we can quickly test irrelevance at the 5% level by checking whether the 
/-statistic is greater than 2 in absolute va lue . 1 4 

Finally, associated with each /-statistic is a probability value, which is the 
probability of getting a value of the /-statistic at least as large in absolute value 
as the one actually obtained, assuming that the irrelevance hypothesis is t rue. 
Hence , if a /-statistic were 2, the corresponding probability value would be ap-
proximatelv .05. The smaller the probability value, the stronger the evidence 
against irrelevance. There ' s n o magic cutoff, but typically probability values 
less than .1 are viewed as strong evidence against irrelevance, and probability 
values below .05 a te viewed as very strong evidence against irrelevance. Proba­
bility values are useful because thev eliminate the need for consulting tables of 
the / distribution. Effectively the computer does it for us and tells us the sig­
nificance level at which the irrelevance hypothesis is just rejected. 

Now let's interpret the actual estimated coefficients, s tandard errors, 
/-statistics, and probability values. The estimated intercept is approximately 10, 
so that conditional on x and i both being 0, our best forecast ofy would be 10. 
Moreover, the intercept is verv precisely estimated, as evidenced by the small 
s tandard er ror of 0.19 relative to the estimated coefficient. An approximate 
95% confidence interval for the true but unknown populat ion intercept is 
10 ± 2(0.19), or [9.62, 10.38]. Zero is far outside that interval, so the corre­
sponding /-statistic is huge, with a probability value that 's zero to four decimal 
places. 

T h e estimated coefficient on x is 1.07, and the s tandard e r ro r is again 
small in relation to the size of the estimated coefficient, so the /-statistic is 
large, and its probability value small. The coefficient is positive, so that y tends 
to rise when x rises. In fact, the interpretation of the estimated coefficient of 
1.07 is that, holding everything else constant, we forecast that a one-unit 
increase in .vwill p roduce a 1.07-unit increase in y. 

The estimated coefficient on zis —0.64. Its s tandard er ror is larger relative 
to the estimated parameter, and its /-statistic smaller, than those of the o ther 

n The coefficient will be normally distributed if the regression disturbance is normally distrib­
uted, or if the sample sue i.s large. 
H If the sample size is .small, or if we want a significance level other titan 5%. we must refer to a 
table of critical values of the / distribution. It should also be pointed out that use of the /distribu­
tion in small samples also requires an assumption of normally distributed disturbances. 
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coefficients. T h e s tandard e r ro r is nevertheless small, and the absolute value 
of the f-statistic is still well above 2, with a small probability value of .06%. 
Hence , at conventional levels we reject the hypothesis that - contributes noti i-
ing to the forecasting regression. T h e estimated coefficient is negative, so y 
tends to fall when z rises. We forecast that a one-unit increase in z will p roduce 
a 0.64-unit decrease in y. 

A variety of diagnostic statistics follow: they help us to evaluate the ade­
quacy of the regression. We provide detailed discussions of many of them else­
where. He re we introduce them very briefly. 

MEAN DEPENDENT VAR. 1 0 . 0 8 

The sample mean of the dependent variable is 

It measures the central tendency, or location, of y . 

S D DEPENDENT VAR. 1 . 9 1 

The sample standard deviation of the dependent variable is 

S D = , . 

It measures the dispersion, or scale, of y . 

SUM SQUARED RESID. 7 6 . 5 6 

Minimizing the sum of squared residuals is the objective of least-squares esti­
mation. It's naftiral, then, to record the minimized value of the sum of 
squared residuals. In isolation it's not of much value, but it serves as an input 
to o ther diagnostics that we'll discuss shortly. Moreover, it's useful for com­
paring models and testing hypotheses. T h e formula is 

S S R = £ > ? . 

LOG LIKELIHOOD - 7 9 . 3 1 

T h e likelihood function is the jo in t density function of the data, viewed as a 
function of the model parameters . Hence , a natural estimation strategy, 
called maximum likelihood estimation, is to find (and use as estimates) the 
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parameter values that maximize the l ikelihood function. After all, by con­
struction, those parameter values maximize the likelihood of obtaining the 
data that were actually obtained. In the leading case of normally distributed 
regression disturbances, maximizing the likelihood function turns out to be 
equivalent to minimizing the sum of squared residuals, hence the maximum 
likelihood parameter estimates are identical to the least-squares parameter 
estimates. The n u m b e r repor ted is the maximized value of the log of die like­
l ihood function. 1" 5 Like the sum of squared residuals, it's not of direct use, but 
it's useful for compar ing models and testing hypotheses. We will rarely use 
the likelihood function directly; instead, we'll focus for the most par t on the 
sum of squared residuals. 

F-STATISTIC 2 7 . 8 3 

We use the S ta t i s t i c to test the hypothesis that the coefficients of all variables 
in the regression except the intercept are jointly 0 . l f i Tha t is, we test whether, 
taken jointly as a set, the variables included in the forecasting model have any 
predictive value. This contrasts with the /-statistics, which we use to examine 
the predictive worth of the variables one at a t i m e . 1 7 If n o variable has predic­
tive value, the /^statistic follows an Fdistribution with k — 1 and T — k degrees 
of freedom. The formula is 

( S S R ^ - S S R V Q t - l ) 
S S R / ( T - A ) 

where S S R ^ is the sum of squared residuals from a restricted regression that 
contains only an intercept. Thus , the test proceeds by examining how much 
the SSR increases when all the variables except the constant are d ropped . If it 
increases by a great deal, there 's evidence that at least one of the variables has 
predictive content . 

PROB(F-STATISTIC) . 0 0 0 0 0 0 

T h e probability value for the F-statistic, or Prob(F-statistic), gives the signifi­
cance level at which we can just reject the hypothesis that the set of right-hand-
side variables has n o predictive value. Here , the value is indistinguishable from 
0, so we reject the hypothesis overwhelmingly. 

1 5 Throughout this book, p r e f e r s to a natural (base e) logarithm. 
1 6 We don't want to restrict the intercept to be 0, because under the hypothesis that all the other 
coefficients are 0, the intercept would equal the mean ofy. which in general is not 0. 
1 7 In the degenerate case of onlv one right-hand-side variable, the /-and F-statistics contain exacdy 
the same information, and h = r1. When there are two or more right-hand-side variables, however, 
the hypotheses tested differ, and F * r\ 
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S E OF REGRESSION 1 . 3 0 

If we knew the elements of B, then our forecast errors would be the e/s, with 
variance r j 2 . We'd like an estimate of rr 2, because it tells us whether our fore­
cast errors are likely to be large or small. T h e observed residuals, the e,'s, are 
effectively estimates of the unobserved populat ion disturbances, the e,'s. Thus 
the sample variance of the es, which we deno te r (read "s-squared"), is a nat­
ural estimator of r j 2 : 

T 

T-k 

r is an estimate of the dispersion of the regression disturbance and hence is 
used to assess goodness of fit of the model , as well as the magni tude of forecast 
er rors that we're likely to make. The larger r is , the worse the model 's fit, and 
the larger the forecast errors we're likely to make, r involves a degrees-of-
freedom correction (division by T— k ra ther than by T o r T — 1), which is an 
at tempt to get a good estimate of the out-of-sample forecast e r ror variance on 
the basis of the in-sample residuals. 

T h e standard e r ror of the regression (SER) conveys the same information; 
it's an estimator of a ra ther than CT2, SO we simply use 5 ra ther than J 2 . The 
formula is 

r 

T h e standard er ror of the regression is easier to interpret than r , because its 
units are the same as those of the ^'s, whereas the units of r are not. If the es 
are in dollars, then the squared es are in dollars squared, so r is in dollars 
squared. By taking the square root at the end of it all, SER converts the units 
back to dollars. 

It's often informative to compare the standard er ror of the regression with 
the mean of the d e p e n d e n t variable. As a rough rule of thumb, the SER of a 
good forecasting model shouldn ' t be more than 10% or 15% of the mean of 
the d e p e n d e n t variable. For the present model , the SER is about 13% of the 
mean of the dependen t variable, so it just squeaks by. 

Sometimes it's informative to compare the standard e r ror of the regres­
sion (or a close relative) with the standard deviation of the d e p e n d e n t variable 
(or a close relative). The standard error of the regression is an estimate of the stan­
dard deviation of forecast errors from the regression model , and the standard 
deviation of the d e p e n d e n t variable is an estimate of the standard deviation of 
the forecast errors from a simpler forecasting model , in which the forecast 
of each period is simply y. If the ratio is small, the variables in the model 
appear very helpful in forecasting y. i?-squared measures, to which we now 
turn , are based on precisely that idea. 
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/{-SQUARED 0 . 5 5 

If an intercept is included in the regression, as is almost always the case, 
/^-squared must be between 0 and 1, In that case, /^-squared, usually written R2, 
is the percent of the variance of y explained by the variables included in the 
regression. R2 measures the in-sample success of the regression equat ion in 
forecasting y, hence , it is widely used as a quick check of goodness of fit, or 
forecastability of y based on the variables included in the regression. Here the 
R2 is about 55%—good but not great. T h e formula is 

T 

Sy>-yf 

We can write R2 in a more roundabou t way as 
T 1 ^—\ >) 

1 ' 

which makes clear that the numera tor in the large fraction is very close to s2, 
and the denomina to r is very close to the sample variance of y . 

ADJUSTED 7?-SQUARED 0 . 5 3 

T h e interpreta t ion is the same as that of R2, but the formula is a bit different. 
Adjusted R2 incorporates adjustments for degrees of freedom used in fitting 
the model , in an a t tempt to offset the inflated appearance of good fit, or 
h igh forecastability of y, if a variety of right-hand-side variables are tried and 
the "best mode l " selected. Hence , adjusted R2 is a m o r e trusnvorthv 
goodness-of-fit measure than R2. As long as there is more than one right-
hand-side variable in the model fitted, adjusted R2 is smaller than R2; here , 
however, the two are qui te close (53% versus 5 5 % ) . Adjusted R2 is often de­
no ted R2: the formula is 

where k is the n u m b e r of right-hand-side variables, including the constant 
term. Here the numera tor in the large fraction is precisely s 2 , and the denom­
inator is precisely the sample xariance of y . 
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AKAIKE INFO CRITERION 3 . 4 3 

T h e Akaike information criterion, or AIC, is effectively an estimate of the out-of-
sample forecast e r ror variance, as is s2, but it penalizes degrees of freedom more 
harshly. It is used to select a m o n g compet ing forecasting models. The formula is 

7 

A I C = , ( ? ) ^ _ . 
T 

SCHWARZ CRITERION 3 . 5 5 

The Schwarz information criterion, or SIC, is an alternative to the AIC with 
the same interpretat ion but a still harsher degrees-of-freedom penalty. T h e 
formula is 

T 
2 

SIC = T v t ) 

As diey arise in the course of our discussion, we will discuss in detail the 
sum of squared residuals, the s tandard e r ro r of the regression, R2, adjusted R2, 
the AIC, and the SIC, the relationships among them, and their role in select­
ing forecasting models. Thus, we'll say no more here . It is worth noting, how­
ever, that o ther formulas, slightly different from the ones given here , are 
sometimes used for AIC and SIC, as discussed in greater detail in Chapter 5. 

DURBIN-WATSON STAT. 1 . 5 1 

We ment ioned earlier that we're interested in examining whether there are 
pat terns in our forecast errors , because errors from a good forecasting model 
should be unforecastable. T h e Durbin-Watson statistic tests for correlat ion 
over time, called serial correlation, in regression disturbances. If the errors 
made by a forecasting model are serially correlated, then they are forecastable, 
and we could improve the forecasts by forecasting the forecast errors . T h e 
Durbin-Watson test works within the context of the model 

>/ = 0o + Bi*i + fe*, + e, 
e, = <pe,_i + vt, 

v, ~ N(Q, a 2 ) . 

T h e regression disturbance is serially correlated when <p ̂  0. T h e hypothesis 
of interest is that tp = 0. Wlien <p = 0, the ideal condit ions hold, bu t when 
<p # 0, the disturbance is serially correlated. More specifically, when <p ^ 0, we 
say that E, follows an autoregressive process of order 1, or AR( 1) for sho r t . 1 8 If 

1 8 The Durbin-Watson test is designed to be very good at detecting serial correlation of the AR(1) 
type. Manv other tvpes of serial correlation are possible: we'll discuss them extensively in Chapter 8. 
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q> > 0, the disturbance is positively serially correlated, and if tp < 0, the distur­
bance is negatively serially correlated. Positive serial correlation is typically the 
relevant alternative in the applications that will concern us. T h e formula for 
the Durbin-Watson (DW) statistic is 

T 

D W = • ^ — f . . 

/=i 

DW takes values in the interval [0, 4 ] , and if all is well, DW should be a round 2. 
If DW7 is substantially less than 2, there is evidence of positive serial correla­
tion. As a rough rule of thumb, if DW is less than 1.5, there may be cause for 
alarm, and we should consult the tables of the DW statistic, available in many 
statistics and econometrics texts. Here the DW statistic is very close to 1.5. A 
look at the tables of the DW statistic reveals, however, that we would not reject 
the null hypothesis at the 5% level. 

After runn ing a regression, it's usually a good idea to assess the adequacy 
of the model by plott ing and examining the actual data (v/s), the fitted values 
(y, 's), and the residuals (efs). Often we'll refer to such plots, shown together 
in a single graph, as a residual p lot . 1 9 In Figure 2.4, we show the residual plot 
for the regression o fy on .v and z. The actual (short-dashed line) and fitted 
(long-dashed line) values appear at the top of the graph; their scale is on the 
right. T h e fitted values track the actual values fairly well. The residuals appear 
at the bot tom of the graph (solid l ine): dieir scale is on the left. It's impor tant 
to note that the scales differ; the eis are in fact substantially smaller and less 
variable than ei ther the y,'s or the y, 's. We draw the zero line th rough the resid­
uals for visual comparison. The re are no obvious pat terns in the residuals. 

, y Sometimes, however, we'll use residual plot to refer to a plot of the residuals alone. The intended 
meaning will be clear from context. 



Chapter 2 

Exercises, Problems, and Complements 
1. (Interpreting distributions and densities) The Sharpe Pencil Company has a strict 

quality control monitoring program. As part of that program, it has determined 
that the distribution of the amount of graphite in each batch of 100 pencil leads 
produced is continuous and uniform between 1 and 2 grams. That is, /(v) = 1 
for y in [1,2], and 0 otherwise, where y is the graphite content per batch of 
100 leads. 
a. Is y a discrete or continuous random variable? 
b. Is Jly) a probability distribution or a density? 
c. What is the probability that y is between 1 and 2? Between 1 and 1.3? Exactly 

equal to 1.67? 
d. For high-quality pencils, the desired graphite content per batch is 1.8 grams, 

with low variation across batches. With that in mind, discuss the nature of the 
density f{y). 

2. (Covariance and correlation) Suppose that the annual revenues of the world's 
two top oil producers have a covariance of 1,735,492. 
a. Based on the covariance, the claim is made that the revenues are "very 

stronglv positivelv related." Evaluate the claim. 
b. Suppose instead that, again based on the covariance, the claim is made that 

the revenues are "positively related." Evaluate the claim. 
c. Suppose you learn that the revenues have a correlation of 0.93. In light of that 

new information, reevaluate the claims in parts a and b. 

3. (Conditional expectations versus linear projections) It is important to note the 
distinction between a conditional mean and a l inear p r o j e c t i o n . 
a. The conditional mean is not necessarily a linear function of the conditioning 

variable(s). In the Gaussian case, the conditional mean is a linear function of 
die conditioning variables, so it coincides with the linear projection. In non-
Gaussian cases, however, linear projections are best viewed as approximations 
to generally nonlinear conditional mean functions. 

b. The U.S. Congressional Budget Office (CBO) is helping the president to set 
tax policy. In particular, the president has asked for advice on where to set the 
average tax rate to maximize the tax revenue collected per taxpaver. For each 
of 23 countries, the CBO has obtained data on the tax revenue collected per 
taxpayer and the average tax rate. Is tax revenue likelv related to the tax rale? 
Is the relationship likely linear? (Hint: How much revenue would be collected 
at tax rates of 0% or 100%?) If not, is a linear regression nevertheless likely to 
produce a good approximation to the true relationship? 

4. (Conditional mean and variance) Given the regression model, 

y, = Bo 4- pix, 4- fox? + B31, 4- £, 
•id 

E, - (O.ff'), 
find the mean and variance ofy,conditional on v, = x' and z, = z*. Does the 
conditional mean adapt to the conditioning information? Does the conditional 
variance adapt to the conditioning information? 

5. (ScatterploLs and regression lines) Draw qualitative scatterplots and regression 
lines for each of the following two-variable datasets, and state the /r2 in each case: 
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a. Dataset 1: yand x have correlation 1. 
b. Dataset 2: y and \ have correlation —1. 
c. Dataset 3: v and x have correlation 0. 

6. (Desired values of regression diagnostic statistics) For each of the diagnostic 
statistics listed here, indicate whether, other things the same, "bigger is better," 
"smaller is better," or neither. Explain your reasoning. (Hint: Be careful, think 
before yon answer, and be sure to qualify your answers as appropriate.) 
a. Coefficient 
b. Standard error 
c. /-statistic 
d. Probability value of the /-statistic 
e. /r' 
f. Adjusted R2 

g. Standard error of the regression 
h. Sum of squared residuals 
i. Log likelihood 

j . Durbin-Watson statistic 
k. Mean of the dependent variable 
1. Standard deviation of the dependent variable 
m. Akaike information criterion 
n. Schwarz information criterion 
o. /^statistic 
p. Probability value < >f the /^statistic 

7. (Mechanics of fitting a linear regression) On the book's web page, you will find a 
second set of data on y, x, and z similar to, hut different from, the data that 
underlie the analysis performed in this chapter. Using the new data, repeat the 
analysis and discuss your results. 

8. (Regression with and without a constant term) Consider Figure 2.2, in which we 
showed a scatterplot of yversus vwith a fitted regression line superimposed. 
a. In fitting that regression line, we included a constant term. How can you tell? 
b. Suppose that we had not included a constant term. How would the figure look? 
c. We almost always include a constant term when estimating regressions. WTty? 
d. When, if ever, might vou explicitly want to exclude the constant term? 

9. (Interpreting coefficients and variables) Let y, = Bo + Pi x, 4- B-.jr, 4- E,, where y, is 
the number of hot dogs sold at an amusement park on a given day, x, is the 
number of admission tickets sold that dav, z, is the daily maximum temperature, 
and E, is a random error. 
a. Stale whether each ofy,, xh z,, B,., Pi, and Ba is a coefficient or a variable. 
b. Determine the units of Bo, Pi, and p 2 , and describe the physical meaning of 

each. 
c. What does the sign of a coefficient tell vou about how its corresponding 

variable affects the number of hot dogs sold? What are your expectations for 
the signs of the various coefficients—negative, zero, positive, or unsure? 

d. Is it sensible to entertain the possibility of a nonzero intercept—that is, 
Bo # 0? Bo > 0? p 0 < OI-

lO. (Nonlinear least squares) The least-squares estimator discussed in this chapter is 
often called "ordinary" least squares. The adjective ordinary distinguishes the 
ordinary least-squares estimator from fancier estimators, such as the nonlinear 
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least-squares estimator. When we estimate by nonlinear least squares, we use a 
computer to find the minimum of die sum of squared residual function directly, 
using numerical methods. For the simple regression model discussed in this 
chapter, ordinary and nonlinear least squares produce the same result, and 
ordinary least squares is simpler to implement, so we prefer ordinary least 
squares. As we will see, however, some intrinsically nonlinear forecasting models 
can't be estimated using ordinary least squares but can be estimated using 
nonlinear least squares. We use nonlinear least squares in such cases. 

For each of the following models, determine whether ordinary least squares 
may be used for estimation (perhaps after transforming the data). 
a. y, = So + Bi x, + e, 
b. y, = Bo* P l X ,e/ 
c y, = Bo + * p l * ' + £ , 

11. (Regression semantics) Regression analysis is so important, and used so often by 
so many people, that a variety of associated terms have evolved over the years, all 
of which are the same for our purposes. You may encounter them in your 
reading, so it's important to be aware of them. Some examples: 
a. Ordinary least squares, least squares, OLS, LS 
b. y, left-hand-side variable, regressand, dependent variable, endogenous variable 
c. x's, right-hand-side variables, regressors, independent variables, exogenous 

variables, predictors 
d. Probability value, prob-value, Rvalue, marginal significance level 
e. Schwarz criterion, Schwarz information criterion, SIC, Bayes information 

criterion, BIC 

See any good introductory statistics or econometrics book for much more thorough 
discussions of probability, statistics, and regression and for tables of significance 
points of die normal, t, F, and Durbin-Watson distributions. Possibilities include 
Anderson, Sweeney, and Williams (2006), Maddala (2001), Pindyck and Rubinfeld 
(1997), and Wonnacott and Wonnacott (1990). 

The Jarque-Bera test is developed in Jarque and Bera (1987). 

Dozens of software packages—including spreadsheets—implement various statistical 
and linear regression analyses. Most automatically include an intercept in linear 
regressions unless explicidy instructed otherwise. That is, they automatically create 
and include a C variable. 

Bibliographical and Computational Notes 

Concepts for Review 
Discrete random variable 
Discrete probability distribution 
Continuous random variable 
Probability density function 
Moment 
Mean 

Expected value 
Location 
Central tendency 
Variance 
Dispersion 
Scale 
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Standard deviation Conditional expectation 
Skewness Fitted value 
Asymmetry In-sample forecast 
Kurtosis Residual 
Leptokurtosis In-sample forecast error 
Normal distribution Regression intercept 
Gaussian distribution Regression slope 
Marginal distribution Simple linear regression 
joint distribution Multiple linear regression model 
Covariance Standard error 
Correlation /-statistic 
Conditional distribution Probability value 
Conditional moment Constant term 
Conditional mean Sample mean of the dependent variable 
Conditional variance Sample standard deviation of the 
Population distribution dependent variable 
Sample Sum of squared residuals 
Estimator Likelihood function 
Statistic Maximum likelihood estimation 
Sample statistic F-statistic 
Sample mean Prob(F-statistic) 
Sample variance Standard error of the regression 
Sample standard deviation R2 

Sample skewness Goodness of fit 
Sample kurtosis Adjusted R2 

X2 distribution Akaike information criterion 
t distribution Schwarz information criterion 
/*" distribution Durbin-Watson statistic 
Jarque-Bera test Serial correlation 
Regression analysis Positive serial correlation 
Least squares Residual plot 
Disturbance Linear projection 
Parameter Nonlinear least squares 
Regression function 

Nonlinear least squares 
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Six Considerations 
Basic to Successful 
Forecasting 

In Chapter 1, we sketched a variety of areas where forecasts are used routinely, 
and we took a brief tour of the basic forecasting tools that you'll master as you 
progress through this book. Now let's back u p and consider six types of ques­
tions that are relevant for any forecasting task. 1 

• Decision environment and loss function. What decision will the forecast 
guide, and what are the implications for the design, use, and evaluation of 
the forecasting model? Related, how do we quantify' what we mean by a 
"good" forecast and, in particular, the cost or loss associated with forecast 
errors of various signs and sizes? How should we define optimality of a 
forecast in a particular situation? How do we compute optimal forecasts? 

• Forecast object. What is the object that we need to forecast? Is it a time se­
ries, such as sales of a firm recorded over time, or an event, such as deval­
uation of a currency? And what is the quantity and quality of the data? How 
long is the sample of available data? Are we forecasting one object or many 
(such as sales of each of 350 products)? Are there missing observations? 
Unusual observations? 

• Forecast statement. How do we wish to state our forecasts? If, for example, 
the object to be forecast is a t ime series, are we interested in a single "best 

1 There are of course many possible variations, combinations, and extensions of the questions; you 
should try to think of some as you read through them. 
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guess" forecast, a "reasonable range" of possible future values that reflects 
the underlying uncertainty associated with the forecasting problem, or a 
probability distribution of possible future values? What are the associated 
costs and benefits? 

• Forecast horizon. What is the forecast horizon of interest, and what deter­
mines it? Are we interested, for example, in forecasting 1 m o n t h ahead, 
1 year ahead, o r 10 years ahead? The best model ing and forecasting strat­
egy will likely vary with the horizon. 

• Information set. O n what information will the forecast be based? Are the 
available data simply the past history of the series to be forecast, or are 
o the r series available that may be related to the series of interest? 

• Methods and complexity, the parsimony principle, and the shrinkage prin­
ciple. What forecasting method is best suited to the needs of a particular 
forecasting problem? How complex should the forecasting model be? 
More generally, what sorts of models, in terms of complexity, tend to do 
best for forecasting in business, finance, economics, and government? T h e 
p h e n o m e n a that we model and forecast are often tremendously complex, 
bu t does it necessarily follow that our forecasting models should be 
complex? 

I. The Decision Environment and Loss Function 
Forecasts are not made in a vacuum. The key to generat ing good and useful 
forecasts, which we will stress now and throughout , is recognizing that forecasts 
are made to guide decisions. The link between forecasts and decisions sounds 
obvious—and it is—but it's worth thinking about in some depth . Forecasts are 
made in a wide variety of situations, but in every case forecasts are of value be­
cause they aid in decision making. Quite simply, good forecasts help to p roduce 
good decisions. Recognition and awareness of the decision-making environ­
ment is the key to effective design, use, and evaluation of forecasting models. 

Consider dte following stylized problem: You have started a firm and must 
decide how much inventory to hold going into the next sales period. If you 
knew that d e m a n d would be high next period, then you 'd like to have a lot of 
inventory on hand . If you knew that d e m a n d would be slack, then you would 
like to deplete your inventories because it costs money to store unnecessary in­
ventories. Of course, the problem is that you don ' t know next per iod 's de­
mand, and you've got to make your inventory stocking decision nmu\ 

There are four possible combinations of inventory decisions and d e m a n d 
outcomes: in two Ave make the correct decision, and in two we make the in­
correct decision. We showr the four possible outcomes in Table 3.1. Each entry 
of die table contains a "cost" or "loss" to you corresponding to the associated 
dec i s ion /ou tcome pah. The good pairs on the diagonal have zero loss—you 
did the right thing, building inventory when d e m a n d tu rned ou t to be high or 



36 Chapter 3 

T A B L £ 3 » 

Decision Making 
with Symmetric IMSS B u i l d I n v e n t o r y 

D e m a n d H i g h D e m a n d L o w 

0 $ 1 0 , 0 0 0 

R e d u c e I n v e n t o r y SI 0 . 0 0 0 0 

contracting inventory when d e m a n d turned out to be low. T h e bad pairs off 
the diagonal have positive loss—you did the wrong thing, building inventory 
when demand tu rned out to be low or contracting inventory when d e m a n d 
turned out to be high. 

In Table 3.1, the loss associated with each incorrect decision is $10,000. We 
call such a loss structure symmetric, because the loss is the same for both of the 
bad outcomes. In many important decision environments , a symmetric loss 
structure closely approximates the t rue losses of die forecaster. In o ther deci­
sion environments , however, symmetric loss may not be realistic; in general , 
there 's no reason for loss to be symmetric. 

In Table 3.2, we summarize a decision environment with an asymmetric 
loss s tructure. As before, each entry of the table contains a loss corresponding 
to the associated decis ion/outcome pair. T h e good pairs on the diagonal have 
zero loss for the same reason as before—when you do the right thing, you 
incur no loss. T h e bad pairs off die diagonal again have positive loss—when 
you do the wrong thing, you suffer—but now the amount of the loss differs de­
pending on what sort of mistake you make. If you reduce inventories and de­
mand turns out to be high, then you have insufficient inventories to meet 
demand , and you miss out on a lot of business, which is very costly ($20,000). 
If you build inventories and demand turns out to be low, then you must carry 
u n n e e d e d inventories, which is not as costly ($10,000). 

To recap: For every decision-making problem, there is an associated loss 
structure; for each dec is ion /ou tcome pair, there is an associated loss. We can 
think of zero loss as associated with the correct decision and positive loss as as­
sociated with the incorrect decision. 

Recall that forecasts are made to help guide decisions. Thus, the loss structure 
associated with a particular decision induces a similar loss structure for fore­
casts used to inform that decision. Continuing with our example, we might fore­
cast sales to help us decide whether to build or reduce inventory, and the loss we 
incur depends on the divergence between actual and predicted sales. To keep 
things simple, imagine that sales forecasts and sales realizations are either 
"high" or "low." Table 3.3 illustrates a symmetric forecasting loss structure, and 

T A B L E 3 . 2 

Derision Making 
with Asymmetric 
Loss 

D e m a n d H i g h D e m a n d L o w 

B u i l d I n v e n t o r y 

R e d u c e I n v e n t o r y 

0 $ 1 0 , 0 0 0 

$ 2 0 , 0 0 0 0 
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H i g h Ac tua l S a l e s L o w Actua l S a l e s T A B L E 3 3 
Forecasting with 

H i g h F o r e c a s t e d S a l e s 0 $10,000 Symmetric Loss 
L o w F o r e c a s t e d S a l e s $10,000 0 

Table 3.4 illustrates an asymmetric forecasting loss structure. Note that a fore­
cast of high sales implies the decision "build inventory" (likewise for low sales 
and "reduce inventory"); thus, we derive the loss structure associated widi a 
forecast from die loss structure of decisions based on the forecasts. 

This example is highly simplified: Forecasts are ei ther "up" or "down," and 
realizations are similarly "up" or "down." In the impor tant case of time series 
forecasting, both the forecast and the realization can typically assume a con­
t inuous range of values, so a more general not ion of loss function is needed . 

Let v denote a series and y its forecast. T h e corresponding forecast error, e, 
is the difference between die realization and die previously made forecast: 

e = y - y . 

We consider loss functions of the form L(e). This means that the loss associ­
ated with a forecast depends only on the size of the forecast error. We require 
the loss function L(e) to satisfy' three conditions: 

• L(0) = 0. Tha t is, no loss is incurred when the forecast e r ror is 0. (A 0 fore­
cast error, after all, corresponds to a perfect forecast!) 

• L(e) is cont inuous. That is, nearly identical forecast er rors should produce 
nearly identical losses. 

• L(e) is increasing on each side of the origin. Tha t is, the bigger the ab­
solute value of the error, the bigger the loss. 

Apart from these three requirements , we impose no restrictions on the form 
of the loss function. 

T h e quadratic loss function is tremendously impor tant in practice, both 
because it is often an adequate approximation to realistic loss structures and 
because it is madiematically convenient. Quadrat ic loss is given by 

He) = e\ 

and we graph it as a function of the forecast e r ro r in Figure 3.1. Because of the 
squaring associated with the quadratic loss function, it is symmetric a round 
the origin; in addit ion, it increases at an increasing rate on each side of die ori­
gin, so that large errors are penalized much more severely than small ones. 

H i g h Actua l S a l e s L o w Actua l S a l e s ' "j A 
Forecasting with 

H i g h F o r e c a s t e d S a l e s 0 $10,000 Asymmetric Loss 
L o w F o r e c a s t e d S a l e s $20,000 0 
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Another impor tant symmetric loss function is absolute loss, or absolute 
error loss, given by 

/ . 0 ) = kl • 
Like quadrat ic loss, absolute loss is increasing on each side of the origin, but 
loss increases at a constant (linear) rate with the size of the error. We illustrate 
absolute loss in Figure 3.2. 

In certain contexts, symmetric loss functions may no t be an adequate dis­
tillation of the forecast/decision environment . In Figure 3.3, for example, we 
show a particular asymmetric loss function for which negative forecast errors 
are less costly than positive errors . 

Absolute Loss 

- 1 . 5 - 1 . 0 - 0 . 5 0.0 0.5 1.0 1.5 
Error 
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L(y, V) = 

In some situations, even the L(e) form of the loss function is too restrictive. 
Although loss will always be of the form L(y, y), there 's n o reason that y and y 
should necessarily enter as y — y. In predictions of financial asset re turns , for 
example, interest sometimes focuses on direction of change. A direction-of-
change forecast takes one of two values—up or down. T h e loss function asso­
ciated with a direction of change forecast might b e 2 

0, if sign(Ay) = sign(Ay) 
1, if sign(Ay) # sign(Ay) . 

With this loss function, if you predict the direction of change correctly, you 
incur n o loss; but if your prediction is wrong, you're penalized. 

Much of this book is about how to p roduce optimal forecasts. What pre­
cisely do we mean by an optimal forecast? That ' s where the loss function 
comes in. We'll wrork with a wide class of symmetric loss functions, and we'll 
learn how to p roduce forecasts that are optimal in the sense that they mini­
mize expected loss for any such loss function. 3 

2. The Forecast Object 
There are many objects that we might want to forecast. In business and eco­
nomics, the forecast object is typically one of three types: event outcome, event 
timing, o r time series. 

- The operator A means "change." Thus. Ay/ is the change in y from period f — 1 to period /, or 
\i - V / - I -

* As noted earlier, not all relevant loss functions need be symmetric. Symmetric loss, however, is 
usually a reasonable approximation, and symmetric loss is used routinely for practical forecasting. 
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Event outcome forecasts are relevant to situations in which an event is cer­
tain to take place at a given time but the ou tcome is uncertain. For example, 
many people are interested in whether the cur ren t chairman of the Board of 
Governors of the U.S. Federal Reserve System will eventually be reappointed. 
The "event" is the reappoin tment decision; the decision will occur at the end 
of the term. The ou tcome of this decision is confirmation or denial of the 
reappoin tment . 

Event timing forecasts are relevant when an event is certain to take place 
and the ou tcome is known, but the timing is uncertain. A classic example of an 
event timing forecast concerns business cycle turn ing points. The re are two 
types of turn ing points: peaks and troughs. A peak occurs when the economy 
moves from expansion into recession, and a t rough occurs when the economy 
moves from recession into expansion. If, for example, the economy is cur­
rently in an expansion, then there is n o doub t that the next turn ing point will 
be a peak, but there is substantial uncertainty as to its timing. Will the peak 
occur this quarter, this year, or JO years from now? 

Time series forecasts are relevant when the future value of a t ime series 
is of interest and must be projected. As we'll see, there are many ways to make 
such forecasts, but the basic forecasting se tup doesn ' t change much . Based 
on the history of the time series (and possibly a variety of o the r types of in­
formation as well, such as the histories of related time series or subjective 
considerat ions) , we want to project future values of the series. For example , 
we may have data on the n u m b e r of Apple computers sold in Germany in 
each of the last 60 months , and we may want to use that data to forecast the 
n u m b e r of Apple computers to be sold in Germany in each m o n t h of the 
next year. 

Time series forecasts are by far the most frequendy encoun te red in prac­
tice for at least two reasons. First, most business, economic, and financial data 
are time series; thus, the general scenario of projecting the future of a series 
for which we have historical data arises constantly. Second, the technology for 
making and evaluating time series forecasts is well developed, and the typical 
time series forecasting scenario is precise, so time series forecasts can be made 
and evaluated routinely. In contrast, the situations associated with event out­
come and event t iming forecasts arise less frequently and are often less 
amenable to quantitative t reatment . 

3. The Forecast Statement 
When we make a forecast, we must decide whether the forecast will be (1) a 
single n u m b e r (a "best guess"), (2) a range of numbers , into which the future 
value can be expected to fall a certain percentage of the time, or (3) an entire 
probability distribution for the future value. In short, we need to decide on the 
forecast type. 
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More precisely, we must decide whether the forecast will be (1) a point fore­
cast, (2) an interval forecast, or (3) a density forecast. A point forecast is a sin­
gle number . For example, one possible point forecast of the growth rate of the 
total number of web pages over the next year might be +23 .3%; likewise, a point 
forecast of the growth rate of U.S. real GDP over the next year might be + 1 . 3 % . 
Point forecasts are made routinelv in numerous applications, and the methods 
used to construct them varv in difficulty from simple to sophisticated. T h e 
defining characteristic of a point forecast is simply that it is a single number. 

A good point forecast provides a simple and easily digested guide to the fu­
ture of a time series. However, r andom and unpredictable "shocks" affect all of 
the series that wre forecast. As a result of such shocks, we expect nonzero fore­
cast errors, even from very good forecasts. Thus, we may want to know the de­
gree of confidence we have in a particular point forecast. Stated differently, we 
may want to know how much uncertainty is associated with a particular point 
forecast. The uncertainty sur rounding point forecasts suggests the usefulness 
of an interval forecast. 

An interval forecast is not a single number ; rather, it is a range of values in 
which we expect the realized value of the series to fall widi some (prespeci-
fied) probability. 4 Cont inuing with our examples, a 90% interval forecast for 
the growth rate of web pages might be the interval [11.3%, 35.3% J (23.3% 
± 12%). That is, the forecast states that with probability 90%, the future growth 
rate of web pages will be in the interval [11.3%, 35 .3%] . Similarly, a 90% in­
terval forecast for the growth rate of U.S. real GDP might be [ - 2 . 3 % , 4.3%] 
(1 .3% ± 3%); that is, the forecast states that with probability 90% the future 
growth rate of U.S. real GDP will be in the interval [ - 2 . 3 % , 4 .3%] . 

A n u m b e r of remarks are in order regarding interval forecasts. First, the 
length (size) of the intervals conveys information regarding forecast uncer­
tainty. T h e GDP growth rate interval is much shorter then the web page 
growth rate interval; this reflects the fact that there is less uncertainty associ­
ated with the real GDP growth rate forecast dian the web page growth rate 
forecast. Second, interval forecasts convey more information than point fore­
casts. Given an interval forecast, you can construct a point forecast by using 
the midpoint of the interval. 5 Conversely, given only a point forecast, there is 
no way to infer an interval forecast. 

Finally, we consider density forecasts. A density forecast gives the ent i re 
density (or probability distribution) of the future value of the series of inter­
est. For example, the density forecast of future web page growth might be 
normally distributed with a mean of 23.3% and a s tandard deviation of 7.32%. 

1 An interval forecast is very similar to the more general idea of a confidence interval that you stud­
ied in statistics. An interval forecast is simplv a confidence interval for the true (but unknown) fu­
ture value of a series, computed using a sample of historical data. We'll say that [a. b] is a 
100(1 — a)% interval forecast if the probability of the future value being less than a is a/2, and 
the probabilitv of the future value being greater than b is also a/2. 
1 An interval forecast doesn't have to be svmmetric around the point forecast, so that we wouldn't 
necessarily infer a point forecast as the midpoint of the interval forecast, but in many cases such a 
procedure is appropriate. 



42 Chapter 3 

F I G U R E 3 4 
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Likewise, the density forecast of future real GDP growth might be normally 
distributed with a mean of 1.3% and a s tandard deviation of 1.83%. 

As with interval forecasts, density forecasts convey more information than 
point forecasts. Density forecasts also convey more information than interval 
forecasts, because given a density, interval forecasts at any desired confidence 
level are readily constructed. For example, if the future value of some series x 
is distributed as N(u,, a2) then a 9 5 % interval forecast of x is p. ± 1.96cr, a 90% 
interval forecast of xis u, ± 1.64cr, and so forth. Cont inuing with our example, 
the relationships among density, interval, and point forecasts are made clear 
in Figure 3.4 (web page growth) and Figure 3.5 (U.S. real GDP growth). 

F I G U R E 3 5 

U.S. Real GDP 
Growth: Point, 
Interval, and 
Density Forecasts 

Probability 
density 

Density forecast 

GDP growth 

90% Interval forecast 
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To recap, there are three time series forecast types: point, interval, and 
density. Density forecasts convey more information than interval forecasts, 
which in turn convey more information than point forecasts. This may seem to 
suggest that density forecasts are always the preferred forecast, that density 
forecasts are the most commonly used forecasts in practice, and that we 
should focus most of our attention in this book on density forecasts. 

In fact, the opposite is t rue. Point forecasts are the most commonly used 
forecasts in practice, interval forecasts are a rather distant second, and density 
forecasts are rarely made—for at least two reasons. First, the construction of 
interval and density forecasts requires ei ther (1) additional and possibly in­
correct assumptions relative to those required for construction of point fore­
casts or (2) advanced and computer-intensive mediods involving—for exam­
ple, extensive simulation. Second, point forecasts are often easier to 
unders tand and act on than interval or density forecasts. Tha t is, the extra in­
formation provided by interval and density forecasts is no t necessarily an ad­
vantage when information processing is costly. 

Thus far, we have focused exclusively on types of time series forecasts, be­
cause time series are so prevalent and important in numerous fields. It is worth 
ment ioning another forecast type of particular relevance to event outcome and 
event timing forecasting, the probability forecast. To unders tand the idea of a 
probability forecast, consider forecasting which of two politicians, Mr. Liar or 
Ms. Cheat, will win an election. (This is an event ou tcome forecasting situa­
tion.) If our calculations tell us that the odds favor Mr. Liar, we might issue the 
forecast simply as "Mr. Liar will win." This is roughly analogous to the time se­
ries point forecasts discussed earlier, in the sense that we're not report ing any 
measure of the uncertainty associated with our forecast. Alternatively, we could 
report the probabilities associated with each of the possible outcomes; for ex­
ample, "Mr. Liar will win with probability .6, and Ms. Cheat will win with proba­
bility .4." This is roughly analogous to the time series interval or density fore­
casts discussed earlier, in the sense that it explicitly quantifies the uncertainty 
associated with the future event with a probability distribution. 

Event ou tcome and timing forecasts, a l though not as common as time se­
ries forecasts, do nevertheless arise in certain impor tant situations and are 
often stated as probabilities. For example, when a bank assesses the probabil­
ity of default on a new loan or a macroeconomist assesses the probability that 
a business cycle turn ing point will occur in the next 6 months , the banker or 
macroeconomist will often use a probability forecast. 

1 I I I I I I I 

4. The Forecast Horizon 
T h e forecast horizon is defined as the n u m b e r of periods benveen today and 
the date of the forecast we make. For example , if we have annual data, and it's 
now year T, then a forecast of GDP for year 7' + 2 has a forecast horizon of 
2 steps. The mean ing of a step depends on the frequency of observation of the 
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data. For monthly data, a step is one mon th ; for quarterly data, a step is one 
quar ter (3 months ) ; and so forth. In general , we speak of an A-step-ahead 
forecast, where the horizon h is at the discretion of the user. 6 

T h e horizon is impor tant for at least two reasons. First, of course, the fore­
cast changes with the forecast horizon. Second, the best forecasting model will 
often change with the forecasting horizon as well. All of our forecasting mod­
els are approximations to the underlying dynamic pat terns in the series we 
forecast; there 's no reason why the best approximation for one purpose (such 
as short-term forecasting) should be the same as the best approximation for 
ano the r purpose (such as long-term forecasting). 

In closing this section, let's distinguish between what we've called /j-step-
ahead forecasts and what we'll call A-step-ahead extrapolation forecasts. In 
/*-step-ahead forecasts, the horizon is always fixed at the same value, h. For 
example, every m o n t h we might make a 4-month-ahead forecast. Alternatively, 
in extrapolation forecasts, the horizon includes all steps from 1-step-ahead to 
A-steps-ahead. There ' s noth ing particularly d e e p or difficult about the distinc­
tion, but it's useful to make it, and we'll use it subsequently. 

Suppose, for example , that you observe a series from some initial t ime 1 
to some final t ime T, and you plan to forecast the series. 7 We illustrate the dif­
ference between /t-step-ahead and /i-step-ahead extrapolat ion forecasts in 
Figures 3.6 and 3.7. In Figure 3.6, we show a 4-step-ahead point forecast; 
in Figure 3.7, we show a 4-step-ahead extrapolat ion point forecast. T h e 

6 T h e choice of h depends on the decision that the forecast will guide. T h e nature of the decision 
environment typically dictates whether short-term, medium-term, or long-term forecasts are 
needed. 
7 For a sample of data on a series y, we'll typically write {yi)J-\. This notation means, "We observe 
the series jy from some beginning time / = 1 to some ending time / = T." 
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extrapolat ion forecast is no th ing more than a set consisting of 1-, 2-, 3-, and 
4-step-ahead forecasts. 

T h e quality of ou r forecasts is limited by the quality and quantity of informa­
tion available when forecasts are made . Any forecast we p roduce is condit ional 
on the information used to p roduce it, whether explicidy or implicidy. 

T h e idea of an information set is fundamental to constructing good fore­
casts. In forecasting a series, y, using historical data from time 1 to time T, 
sometimes we use the univariate information set, which is the set of historical 
values of y u p to and including the present, 

where the x's are a set of additional variables potentially related to y . Regard­
less, it's always important to think hard about what information is available, 
what additional information could be collected o r made available, the form of 
the information (for example, quantitative or qualitative), and so on . 

T h e idea of an information set is also fundamental for evaluating forecasts. 
When evaluating a forecast, we ' re sometimes interested in whether the fore­
cast could be improved by using a given set of information more efficiendy, 
and we're sometimes interested in whether the forecast could be improved by 
using more information. Either way, the ideas of information and information 
sets play crucial roles in forecasting. 

I I M I I f I 

5. The Information Set 
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B. Methods and Complexity, the Parsimony Principle, 
and the Shrinkage Principle 
It's crucial to tailor forecasting tools to forecasting tasks, and doing so is partly 
a matter of j udgmen t . Typically the specifics of the situation (such as decision 
environment , forecast object, forecast statement, forecast horizon, informa­
tion set, and so forth) will indicate the desirability of a specific me thod or 
model ing strategy. Moreover, as we'll see. formal statistical criteria exist to 
guide model selection within certain classes of models. 

We've stressed that a variety of forecasting applications use a small set of 
common tools and models. You might guess that those models are tremen­
dously complex, because of the obvious complexity' of the real-world phenom­
ena that we seek to forecast. Fortunately, such is not the case. In fact, decades of 
professional experience suggest just the opposite: Simple, parsimonious models 
tend to be best for out-of-sample forecasting in business, finance, and econom­
ics. Hence, die parsimony principle: O the r things being the same, simple models 
are usually preferable to complex models. 

A n u m b e r of reasons explain why smaller, simpler models are often more 
attractive than larger, more complicated ones. First, by virtue of their parsi­
mony, we can estimate the parameters of simpler models more precisely. Sec­
ond, because simpler models are more easily interpreted, unders tood, and 
scrutinized, anomalous behavior is more easily spotted. Third, it's easier to 
communicate an intuitive feel for the behavior of simple models, which makes 
them more useful in the decision-making process. Finally, enforcing simplicity 
lessens the scope for "data mining"—tailoring a model to maximize its fit to 
historical data. Data mining often results in models that fit historical data 
beautifully (by construction) but perform miserably in out-of-sample forecast­
ing, because it tailors models in part to the idiosyncracies of historical data, 
which have no relationship to unrealized future data. 

T h e parsimony principle is related to, but distinct from, the shrinkage 
principle, which codifies the idea that imposing restrictions on forecasting 
models often improves forecast pe r formance . T h e n a m e shrinkage comes 
from the notion of coaxing, o r "shrinking," forecasts in certain directions by 
imposing restrictions of various sorts on the models ttsed to p roduce the fore­
casts. 8 The reasoning beh ind the shrinkage principle is subtle, but it pe rme­
ates forecasting. By the t ime you've comple ted diis book, you'll have a firm 
grasp of it. 

Finally, no te that simple models should not be confused with naive mod­
els. All of this is well formalized in the KISS principle (appropriately modified 
for forecasting): "Keep It Sophisticated!)' Simple." We'll a t tempt to do so 
throughout . 

K One such possible restriction is that, loosely speaking, forecasting models be simple, hence the 
link to the parsimony principle. 
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7. Concluding Remarks 
This chapter, like Chapter 1, deals with broad issues of general relevance. 
For the most part, it avoids detailed discussion of specific model ing or fore­
casting techniques. In the next chapter, we begin to change the mix toward 
specific tools with specific applications. In the broad-brush tradition of Chap­
ters 1,2, and 3, we focus on principles of statistical graphics, which are relevant 
in any forecasting situation, but we also introduce a variety of specific graphi­
cal techniques, which are useful in a variety of situations. 

Exercises, Problems, and Complements 
(Data and forecast timing conventions) Suppose that, in a particular monthly 
dataset, time / = 10 corresponds to September 1960. 
a. Name the month and year of each of the following times: t + 5, / + 10, 

/ + 1 2 , / + 6 0 . 
b. Suppose that a series of interest follows the simple process yt = v,_i + 1, for 

/ = 1, 2, 3 , . . . , meaning that each successive month's value is one higher than 
the previous month's. Suppose that y„ = 0, and suppose that at present 
/ = 10. Calculate the forecasts y/+5./, y/+io,/» V/+12./. yt*-au.i where, for example, 
y'»+s.» denotes a forecast made at time / for future time / + 5, assuming that 
/ = 10 at present. 

(Properties of loss functions) Stale whether the following potential loss functions 
meet the criteria introduced in the text and, if so, whether they are symmetric or 
asymmetric: 
a. L(e) = e~ + e 
b. L(e) = r* + 2e2 

c. /-(/) = .V 2 + 1 
yfe if e > 0 

if e <0 

(Relationships among point, interval, and density forecasts) For each of the 
following density forecasts, how might you infer "good" point and 90% interval 
forecasts? Conversely, if you started with vour point and interval forecasts, could 
you infer "good" density forecasts? Be sure to defend your definition of "good." 
a. Future y is distributed as A'(10, 2). 

y - 5 

b. P(y) = 
25 
y - 15 

if 5 < y < 10 

if 1 0 < y < 1 5 
25 
0 otherwise 

(Forecasting at short through long horizons) Consider the claim "The distant 
future is harder to forecast than the near future." Is it sometimes true? Usually 
true? Always true? Why or whv not? Discuss in detail. Be sure to define "harder." 
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5. (Forecasting as an ongoing process in organizations) We could add another very 
important item to this chapter's list of considerations basic to successful 
forecasting: Forecasting in organizations is an ongoing process of building, using, 
evaluating, and improving forecasting models. Provide a concrete example of a 
forecasting model used in business, finance, economics, or government, and 
discuss ways in which each of the following questions might be resolved prior to, 
during, or after its construction. 
a. Are the data "dirty"? For example, are there "ragged edges"? That is, do the 

starting and ending dates of relevant series differ? Are there m i s s i n g 
o b s e r v a t i o n s ? Are there aberrant observations, called ou t l i e r s , perhaps due 
to m e a s u r e m e n t error? Are the data stored in a format that inhibits 
computerized analysis? 

b. Has software been written for importing the data in an ongoing forecasting 
operation? 

c. Who will build and maintain the model? 
d. Are sufficient resources available (time, money, staff) to facilitate model 

building, use, evaluation, and improvement on a routine and ongoing basis? 
e. How much time remains before the first forecast must be produced? 
f. How many series must be forecast, and how often must ongoing forecasts be 

produced? 
g. What level of data a g g r e g a t i o n or d i s a g g r e g a t i o n is desirable? 
h. To whom does the forecaster or forecasting group report, and how will the 

forecasts be communicated? 
i. How might you conduct a "forecasting audit"? 

6. (Assessing forecasting situations) For each of the following scenarios, discuss the 
decision environment, the nature of the object to be forecast, the forecast type, 
the forecast horizon, the loss function, the information set, and what sorts of 
simple or complex forecasting approaches you might entertain. 
a. You work for Airborne .Analytics, a highly specialized mutual fund investing 

exclusively in airline stocks. The stocks held by the fund are chosen based on 
your recommendations. You learn that a newly rich oil-producing country has 
requested bids on a huge contract to deliver SO state-of-the-art fighter planes, 
but that only two companies submitted bids. The stock of the successful 
bidder is likelv to rise. 

b. You work for the Office of Management and Budget in Washington, D.C., 
and must forecast tax revenues for the upcoming fiscal year. You work for a 
president who wants to maintain funding for his pilot social programs, and 
high revenue forecasts ensure that the programs keep their funding. 
However, if the forecast is too high, and the president runs a large deficit at 
the end of the vear, he will be seen as fiscally irresponsible, which will lessen 
his probability of reelection. Furthermore, your forecast will be scrutinized by 
the more conservative members of Congress; if they find fault with your 
procedures, thev might have fiscal grounds to undermine the president's 
planned budget. 

c. You work for D&D, a major Los Angeles advertising firm, and you must create 
an ad for a client's product. The ad must be targeted toward teenagers, 
because thev constitute the primary market for the product. You must 
(somehow) find out what kids currently think is cool, incorporate that 
information into your ad, and make your client's product attractive to the new 
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generation. If your hunch is right, your firm basks in glory, and you can 
expect multiple future clients from this one advertisement. If you miss, 
however, and the kids don't respond to the ad, then your client's sales fall, 
and the client may reduce or even close its account with you. 

Bibliographical and Computational Notes 
Klein (1971) and Granger and Newbold (1986) contain a wealth of insightful (but 
more advanced) discussion of many of the topics discussed in this chapter. The links 
between forecasts and decisions are clearly displayed in many of the chapters of 
Makridakis and Wheelwright (1987). Armstrong (1978) provides entertaining and 
insightful discussion of many of the specialized issues and techniques relevant in 
long-horizon forecasting. Several of the essays in Diebold and Watson (1996) con­
cern the use of loss functions tailored to the decision-making situation of interest, 
both with respect to the forecast horizon and with respect to the shape of the loss 
function, as does Christoffersen and Diebold (1997). Zellner (1992) provides an in­
sightful statement of the KISS principle, which is very much related to the parsimony 
principle of Box and Jenkins (see Box, Jenkins, and Reinsel, 1994). Levenbach and 
Cleary (1984) contains useful discussion of forecasting as an ongoing process. 
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Missing observations 
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Disaggregation 
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Statistical Graphics 
for Forecasting 

It's almost always a good idea to begin forecasting projects with graphical data 
analysis. When compared with the modern array of statistical model ing meth­
ods, graphical analysis might seem trivially simple, perhaps even so simple as 
to be incapable of delivering serious insights into the series to be forecast. 
Such is not the case: In many respects the h u m a n eye is a far more sophisti­
cated tool for data analysis and model ing than even the most sophisticated 
mode rn model ing techniques. That ' s certainly not to say that graphical analy­
sis alone will get the j o b done—certainly, graphical analysis has its limitations— 
but it's usually the best place to start. With that in mind, we introduce in this 
chapter some simple graphical techniques, and we consider some basic ele­
ments of graphical style. 

I. The Power of Statistical Graphics 
T h e four datasets shown in Table 4.1, known as Anscombe's quartet , provide 
stark illustration of the power of statistical graphics. Each dataset consists of 11 
observations on two variables. Simply glancing at the data—or even studying it 
with some care—yields little insight. Of course, you say, but that 's why we have 
powerful mode rn statistical techniques, such as the linear regression model . 
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T A B L E 4 I ( 1 ) ( 2 ) ( 3 ) < 4 ) 

Anscombe's Quartet 
xl 3»1 x2 >2 x3 x4 y4 

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04 
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50 

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89 

So let's regress y on x for each of the four datasets. The results appear in 
Table 4.2. Interestingly enough , al though the four datasets certainly contain 
different numerical data values, the s tandard linear regression output is iden­
tical in each case. First, the fitted regression line is the same in each case, 
y = 3 + %x. Second, the uncertainty associated with the estimated parameters , 
as summarized by standard errors, is also the same in each dataset. Hence , the 
/-statistics, which are simply ratios of estimated coefficients to their s tandard 
errors , are also identical across datasets. Third, 7r\ which is the percentage of 
variation in y explained by variation in x, is identical across datasets. Fourth, 
the sum of squared residuals, and hence the standard e r ror of the regression 
( the estimated standard deviation of the stochastic disturbance to the linear 
regression relationship), is the same in each dataset. 

That 's all fine, too. you say—the relationship between y and x is simply the 
same in each dataset, even though the specific data differ due to r andom in­
fluences. The assertion that the relationship between y and x is the same in 
each dataset couldbe correct, but graphical examination of the data reveals im­
mediately that it's not correct . In Figure 4 .1 , we show graphs of y versus x 
(called pairwise scatterplots or bivariate scatterplots) for each of the four 
datasets, with fitted regression lines superimposed. Although the fitted regres­
sion line is the same in each case, the reasons differ greatly, and it's clear that 
for most of the datasets the linear regression model is not appropriate . 

In dataset 1, all looks well. We see that yl and xl are clearly positively cor­
related, and they appear to conform ra ther well to a linear relationship, al­
though the relationship is certainly not perfect. In short, all die conditions of 
the classical linear regression model appear satisfied in dataset 1. 

In dataset 2, the situation is very different. The graph reveals that there 's 
certainly a relationship between y2 and x2—perhaps even a deterministic 
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\JS / / Dependent variable is vl. 
Variable Coefficient Std. Error 
C 3 .00 1.12 
xl 0.5(1 0.12 
fl* 0.67 

LS / / Dependent variable is \2. 
Variable Coefficient Std. Error 
C 3.00 1.12 
x2 0.50 0.12 
f? 0.67 

LS / / Dependent Variable is y3. 
Variable Coefficient Std. Error 
C 3.00 1.12 
x3 0.50 0.12 
R2 0.67 

LS / / Dependent Variable is y4. 
Variable Coefficient Std. Error 
C 3.00 1.12 
\4 0.50 0.12 
/?* 0.67 

f-Statistic 
2.67 
4.24 

S.E. of regression 1.24 

f-Statistic 
2.67 
4.24 

S.E. of regression 1.24 

r-Statistic 
2.67 
4.24 

S.E. of regression 1.24 

f-Statistic 
2.67 
4.24 

S.E. of regression 1.24 

TABLE 4 2 
Anscombe's 
Quartet: 
Regressions of y; on 
Xj, i= 1, . . . , 4 

relationship)—but it also makes clear that the relationship is not at all linear. 
Thus, the use of die linear regression model is not desirable in dataset 2. 

In dataset 3, the graphics indicate that a l though y and x do seem to con­
form to a linear relationship, there is one key (y3, x3) pair that doesn ' t con­
form well to the linear relationship. Most likely you never noticed that data 
point when you simply examined the raw data in tabular form, in spite of the 
fact that it's visually obvious when we make use of graphics. 

Dataset 4 is ra ther odd—the (y4, .v4) pairs are all stacked vertically, with the 
exception of one point, which exerts a huge influence on the fitted regression 
line. At any rate, the graphics once again make the anomalous na ture of this 
situation immediately apparent . 

Let's summarize what we've learned about the power of graphics: 

a. Graphics helps us to summarize and rexreal patterns in data, as, for example, with 
linear versus nonl inear functional form in the first and second Anscombe 
datasets. That 's key in am forecasting project. 

b . Graphics helps us identify anomalies in data, as in the third Anscombe dataset. 
That ' s also key in forecasting, because we'll p roduce our forecasts from 
models fit to the historical data, and the dictum "garbage in, garbage out" 
most definitely applies. 
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c. Less obvious, but most definitely relevant, is the fact that graphics facilitates 
and encourages comparison of different pieces of data. That ' s whv, for example, 
we g raphed all four datasets in one big figure. By doing so, we facilitate ef­
fortless and instantaneous cross-dataset comparison of statistical relation­
ships. This technique is called multiple comparisons. 

d. There 's one more aspect of the power of statistical graphics. It comes into plav 
in the analysis of large datasets, so it wasn't revealed in the analysis of the 
Anscombe datasets. which are not large, but it's nevertheless tremendously 
important. Graphics enables us topresent a huge amount of data in a small space, and 
it enables us to make huge datasets coherent. We might, for example, have super­
market scanner data, recorded in 5-minute intervals for a year, on the quanti­
ties of goods sold in each of four food categories: dairv, meat, grains, and veg­
etables. Tabular or similar analysis of such data is simply out of die question, 
bu t graphics is still straightforward and can reveal important patterns. 



Statistical Graphics for Forecasting 55 

2. Simple Graphical Techniques 
As we discussed in Chapter 3, time series are by far the most common objects 
for which forecasts are made . Thus, we will focus primarily on graphics useful 
for modeling and forecasting time series. T h e dimensionality of the data—the 
n u m b e r of time series we wish to examine—plays a key role. Because graphi­
cal analysis "lets the data speak for themselves," it is most useful when the di­
mensionality of the data is low. We will segment our discussion into two parts: 
univariate and multivariate. 

First and foremost, graphics is used to reveal the pat terns in t ime series data. 
We use graphical analysis to get a preliminary and informal idea of the nature 
of t rend, seasonality, and cycles, as well as the na ture and location of any un­
usual or aberrant observations, structural breaks, and so forth. The great 
workhorse of univariate time series graphics is the simple time series plot, in 
which the series of interest is g raphed against time. 

In Figure 4.2, for example, we present a t ime series plot of the 1-year U.S. 
Treasury bond rate, 1960.01-2005.03. ' A n u m b e r of important features of the 
series are apparent . Among other things, its movements appear sluggish and 
persistent, it appears to t rend gently upward until about 1980, and it appears 
to t rend gendy downward thereafter. 

UNIVARIATE GRAPHICS 

F I G U R E A . 2 
1-Year Treasury 
Bond Rate 

60 65 70 75 80 85 

Time 
85 90 95 00 05 

The notation "1960.01-2005.03" means the first month of 1960 through the third month of 2005. 
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F I G U R E A 3 
Change in 1-Year 
Treasury Bond 
Rate 

Figure 4.3 provides a different perspective; we plot the change in the 1-year 
T-bond rate, which highlights volatility fluctuations. Interest rate volatility ap­
pears low in the 1960s, a bit higher in the 1970s, and very high from late 1979 
through late 1982 (the per iod dur ing which the Federal Reserve targeted a 
monetary aggregate, which had the side effect of increasing interest rate 
volatility), after which volatility' gradually declines. 

Time series plots are helpful for learning about o ther features of time se­
ries as well. In Figure 4.4, for example, we show a time series plot of U.S. liquor 
sales, 1960.01-2001.03. Clearly they're t rending upward, but the plot indicates 
that a break in the t rend may occur sometime dur ing the 1980s. In addition, 

F I G U R E A . A 
Liquor Sates 

68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 

Time 
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F I G U R E A £> 
Histogram and Descriptive Statistics: Change in 1-Year Treasury Bond Rate 

- 3 - 2 - 1 
Change in Rate 

Sample I960M01 2005M03 
Observations 543 

Mean - 0 . 0 0 3 3 8 9 
Median 0.000000 
Maximum 1.900000 
Minimum -3 .910000 
Std. dev. 0.470731 
Skewness - 1 . 3 8 0 5 8 0 
Kurtosis 17.44767 

Jarque-Bera 4895.124 
Probability 0.000000 

the plot makes clear the p ronounced seasonality in the series—liquor sales 
skyrocket every December—and moreover that the volatility of the seasonal 
fluctuations grows over time as the level of the series increases. 

Univariate graphical techniques are also routinely used to assess distribu­
tional shape. A histogram, for example, provides a simple estimate of the prob­
ability density of a r andom variable. The observed range of variation of the 
series is split into a n u m b e r of segments of equal length, and the height of the 
bar placed at a segment is the percentage of observations falling in that 
segment . 2 Figure 4.5 shows a histogram for the change in the 1-year T-bond 
rate with related diagnostic information. The histogram indicates that the se­
ries is roughly symmetrically distributed, and the additional statistics such as 
the sample mean, median, maximum, min imum, and s tandard deviation con­
vey important additional information about the distribution. 

For example, a key feature of the distribution of T-bond rate changes, 
which may not have been immediately apparen t from the histogram, is that it 
has fatter tails than would be the case u n d e r normality. This is at once appar­
ent from the kurtosis statistic, which would be approximately 3 if the data were 
normally distributed. Instead, it's about 10, indicating much fatter tails than 
the normal , which is very common in high-frequency financial data. T h e skew­
ness statistic is modestly negative, indicating a rather long left tail. T h e Jarque-
Bera normality test rejects the hvpothesis of i ndependen t normally distributed 

2 In some software packages (for evample, Eviews), the height of the bar placed at a segment is 
simply the number, not die percentage, of observations falling in that segment. Strictly speaking, 
such histograms are not densit\ estimators, because the "area under the curve" doesn't add to 1, 
but they are equally useful for summarizing the shape of the density. 
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Scatteiplot: 1-Year 
20 r 

versus 10-Year 
Treasury Bond 
Rate 

0 
2 4 fi 8 10 12 14 lfi 

10-Year Rate 

observations. The rejection occurs because the interest rate changes are not 
independent , not normally distributed, or both. It's likely both, and the devi­
ation from normality is due more to leptokurtosis than to asymmetry. 3 

When two or more variables are available, the possibility of relations benveen 
the variables becomes important , and we use graphics to uncover the exis­
tence and nature of such relationships. We use relational graphics to display 
relationships and flag anomalous observations. You already unders tand the 
idea of a bivariate scatterplot—we used it extensively to uncover relationships 
and anomalies in the Anscombe data . 4 In Figure 4.6, for example, we show a 
bivariate scatterplot of the 1-year U.S. Treasury bond rate versus the 10-year 
U.S. Treasury bond rate, 1960.01-2005.03. T h e scatterplot indicates tiiat the 
twTo move closely together. Although each of the rates is individually highly 
persistent, the deviations from the superimposed regression line appear tran­
sient. You can think of the line as perhaps represent ing long-run equilibrium 
relationships, to which the variables tend to cling. 

The regression line that we superimpose on a scatterplot ofy versus x is an 
a t tempt to summarize how die conditional mean of y (given x) varies with x. 

*The rejection could also occur because the sample size is too small to invoke the large-sample 
theorv on which the Jarque-Bera test is based, but that's not likely in the present application, for 
which we have quite a large sample of data. 
4 Just as in our analysis of the Anscombe data, we often make bivariate scatterplots widi fitted re­
gression lines superimposed, to help us to visually assess the adequacy of a linear model. Note dial 
although superimposing a regression line is helpful in bivariate scatterplots, "connecting the dots" 
is not. This contrasts to time series plots, for which connecting the dots is fine and is typically done. 

MULTIVARIATE GRAPHICS 
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U n d e r certain conditions that we'll discuss in later chapters, this condidonal 
mean is the best point forecast of v. Thus , you can think of the regression line 
as summarizing how our best point forecast of y varies with x. T h e linear re­
gression model involves a lot of s tructure (it assumes that E(y\x) is a l inear 
function of x), but less s tructured approaches exist and are often used to pro­
vide potentially nonl inear estimates of conditional mean functions for super-
imposition on scatterplots. 

Thus far, all ou r discussion of multivariate graphics has been bivariate. 
Tha t ' s because graphical techniques are best suited to low-dimensional data. 
Much recent research has been devoted to graphical techniques for high-
dimensional data, but all such high-dimensional graphical analysis is subject 
to certain inheren t limitations. Here we'll discuss jus t one simple and popu­
lar scatterplot technique for high-dimensional da ta—and one that 's been 
a r o u n d for a long t ime—the scatterplot matrix, or multiway scatterplot. The 
scatterplot matrix is just the set of all possible bivariate scatterplots, a r ranged 
in the upper-r ight or lower-left part of a matrix to facilitate multiple compar­
isons. If we have data on iV variables, there are such pairwise scatter­
plots. In Figure 4.7, for example , we show a scatterplot matrix for the 1-year, 
10-year, 20-year, and 30-year U.S. Treasury bond rates, 1960.01-2005.03. 
T h e r e are a total of six pairwise scatterplots, and the mult iple comparison 
makes clear that a l though the interest rates are closely related in each case, 
with a regression slope of approximately 1, the relat ionship is more precise 
in some cases (such as 20- and 30-year rates) than in o thers (such as 1- and 
30-year rates) . 

i M I \ I M 

3. Elements of Graphical Style 
In the preceding section, we discussed various graphical tools. As with all tools, 
however, graphical tools can be used effectively or ineffectively. In this section, 
you'll learn what makes good graphics good and bad graphics bad. In doing 
so, you'll learn to use graphical tools effectively. 

Bad graphics is like obscenity: It's hard to define, but you know it when you 
see it. Conversely producing good graphics is like good writing: It's an itera­
tive, trial-and-error p rocedure and very much an art ra ther than a science. Btit 
that 's not to say that anything goes; as with good writing, good graphics re­
quires discipline. The re are at least three keys to good graphics: 

a. Know your audience, and know r your goals. 
b . Unders tand and follow two fundamental principles: show the data, and ap­

peal to the viewer. 
c. Revise and edit, again and again. 

We can use a n u m b e r of devices to show the data. First, avoid distorting 
the data or misleading the viewer. Thus , for example, avoid changing scales 
in midstream, use common scales when performing multiple comparisons, 
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F I G U R E 4 . 7 Scatterplot Matrix: 1-, 10-, 20-, and 30-Year Treasury Bond Rates 

and so on . Second, minimize, within reason, nondata ink. 5 Avoid charrjunk 
(elaborate shadings and grids, decorat ion, and related nonsense) , erase un­
necessary axes, refrain from use of artificial three-dimensional perspective, 
and so forth. 

Nondata ink is ink used to depict anything other than data points. 
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F I G U R E A B 
Time Seiies Plot, 
Aspect Ratio 1:1.6 

Other guidelines help us appeal to the viewer. First, use clear and modest type, 
avoid mnemonics and abbreviations, and use labels rather then legends when 
possible. Second, make graphics self-contained; a knowledgeable reader should 
be able to unders tand your graphics without reading pages of accompanying 
text. Third, as with our prescriptions for showing the data, avoid chartjunk. 

An additional aspect of creating graphics that show the data and appeal to 
the viewer is selection of a graph 's aspect ratio. The aspect ratio is the ratio of 
the graph 's height, h, to its width, w, and it should be selected such that the 
graph reveals pat terns in the data and is visually appealing. O n e t ime-honored 
approach geared toward visual appeal is to use an aspect ratio such that height 
is to width as width is to the sum of height and width. Algebraically, 

h w 
w h + w 

Dividing numera to r and denomina to r of the right side by w yields 
1 

a- + a - 1 = 0 . 

T h e positive root of this quadrat ic polynomial is a = 0.618, the so-called 
golden rat io. Graphics that conform to the golden ratio, with height a bit less 
than two-thirds of width, are visually appealing. In Figure 4.8, for example, we 
show a plot whose dimensions roughly correspond to the golden aspect ratio. 

O the r things the same, it's a good idea to keep the golden ratio in mind 
when producing graphics. O the r things are not always the same, however. In 
particular, the golden aspect ratio may not be the o n e that maximizes pattern 
revelation. Consider Figure 4.9. for example, in which we plot exacdy the 
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F I G U R E 4 . a Time Series Plot, Banked to 45 Degrees 
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same data as in Figure 4.8, but with a smaller aspect ratio. T h e new plot reveals 
an obvious pat tern in the data, which you probably d idn ' t notice before, and 
is therefore a superior graphic. 

T h e improved aspect ratio of Figure 4.9 was selected to make the average 
absolute slope of the line segments connect ing the data points approximately 
equal to 45 degrees. This procedure , banking to 45 degrees, is useful for se­
lecting a revealing aspect ratio. As in Figure 4.9, the most revealing aspect 
ratio for time series—especially long time series—is often less than the golden 
ratio. Sometimes, however, various devices can be used to maintain the golden 
aspect ratio while nevertheless clearly revealing pat terns in the data. In Fig­
ure 4.10, for example, we use the golden aspect ratio but connect the data 
points, which makes the pat tern clear. 

F I G U R E A I D 
Time Series Plot, 
Aspect Ratio 1:1.6 

_ i 51 i i i i i • ' • • i 1 • 1 ' • 1 1 • 1 1 • 1 1 1 1 1 • 1 1 • 1 1 • • 1 1 1 * 1 1 • 1 * 

5 10 15 20 25 30 35 40 45 
Time 



Statistical Graphics for Forecasting 63 

A. Application: Graphing Four Components of Real GDP 
As with writing, the best way to learn graphics is to d o it, so let's proceed im­
mediately with an application that illustrates various points of graphical style. 
We'll examine four key components of U.S. real GDP: manufacturing, retail, 
services, and agriculture, recorded annually from 1960 to 2001 in millions of 
cur ren t dollars. 

We begin in Figure 4.11 with a set of bar graphs. T h e value of each series 
in each year is represented by the height of a vertical bar, with different bar 
shadings for the different series. It's r epugnan t and unreadable , with n o title, 
n o axis number ing or labels, bad mnemonics , and so on. T h e good news is 
there 's plenty of room for improvement . 

We cont inue in Figure 4.12 with a set of stacked bar graphs, which are a bit 
easier to read because there 's only one bar at each time point ra ther than four, 
but otherwise they suffer from all the defects of the bar graphs in Figure 4.11. 
Typically, bar graphs are simply not good graphical tools for time series. We 
therefore switch in Figure 4.13 to a time series plot with different types of lines 
and symbols for each series, which is a big improvement , but there 's still room 
for additional improvement . 

In Figure 4.14, we d rop the symbols and add axis number ing . This figure 
is a major improvement, but the plot is still poor. In particular, it still has bad 
mnemonics , n o tide, and no axis labels. Moreover, it's not clear that d ropping 

F I G U R E 4 II 
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F I G U R E A.12 

F I G U R E A 13 

—o— GA8GFF - 0 - G A 8 G R 
—•— GA8GM - • - GA8GS 
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F I G U R E 4,14 

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 

GA8GFF GA8GR 
GA8GM GA8GS 

the plotting symbols p roduced an improvement , even though they are 
nonda ta ink. (Why?) 

In Figure 4.15, we d rop the different plotting lines and symbols altogether. 
Instead, we simply plot all the series with solid lines and label them direcdy. 
This approach produces a much more informative and appealing plot, in large 
par t because there 's n o longer a need for the hideous legend and associated 



66 Chapter 4 

mnemonics . However, a new annoyance has been introduced; the CAPITAL 
series labeling repels the viewer. 

In Figure 4.16, we a t tempt to remedy the remaining defects of the plot. 
Both the horizontal and vertical axes are labeled, all labeling makes use of 
both capital and lowercase type as appropriate , the no r the rn and eastern box 
lines have been el iminated (they're nonda ta ink and serve n o useful purpose) , 
the plot has a descriptive tide, and, for visual reference, we have added shad­
ing indicating recessions. 

5. Concluding Remarks 
We've emphasized in this chapter that graphics is a powerful tool with a variety 
of uses in the construction and evaluation of forecasts and forecasting models. 
We hasten to add, however, that graphics has its limitations. In particular, 
graphics loses a lot of its power as the dimension of the data grows. If we have 
data in 10 dimensions, and we try to squash it into 2 or 3 dimensions to make a 
graph, we're bound to lose some information. That ' s also t rue of the models we 
fit; a linear regression model with 10 right-hand-side variables, for example, as­
sumes diat the data tend to lie in a small subset of 10-dimensional space. 

Thus , in contrast to the analysis of data in two or three dimensions, in 
which case learning about data by fitting models involves a loss of information 
whereas graphical analysis does not , graphical methods lose their comparative 
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advantage in h igher dimensions. In higher dimensions, both graphics and 
models lose information, and graphical analysis can become comparatively 
laborious and less insightful. The conclusion, however, is straightforward: 
Graphical analysis and model fitting are complements , not substitutes, and 
when used together they can make valuable contr ibutions to forecasting. 

Exercises, Problems, and Complements 
1. (Outliers) Recall the lower-left panel of the multiple comparison plot of the 

Anscombe data (Figure 4.1), which made clear that dataset 3 contained a severely 
anomalous observation. We call such data points ou t l i er s . 
a. Oudiers require special attention because they can have substantial influence 

on the fitted regression line. Regression parameter estimates obtained by least 
squares are particularly susceptible to such distortions. Why? 

b. Outliers can arise for a number of reasons. Perhaps the oudier is simply a 
mistake because of a clerical recording error, in which case you'd want to 
replace the incorrect data with the correct data. We'll call such outliers 
m e a s u r e m e n t o u t l i e r s , because they simply reflect measurement errors. If a 
particular value of a recorded series is plagued by a measurement outiier, 
there's no reason that observations at other times should necessarily be 
affected. But they might be affected. Why? 

c. Alternatively, outliers in time series may be associated with large 
unanticipated shocks, the effects of which may linger. If, for instance, an 
adverse shock hits the U.S. economy this quarter (for example, the price of 
oil on the world market triples) and the U.S. plunges into a severe depression, 
then it's likely that the depression will persist for some time. Such outliers are 
called i n n o v a t i o n o u t l i e r s , because they're driven by shocks, or "innovations," 
whose effects naturally last more than one peiiod because of the dynamics 
operative in business, economic, and financial series. 

d. How to identify and treat outliers is a time-honored problem in data analysis, 
and there's no easy answer. What factors would you, as a forecaster, examine 
when deciding what to do with an outlier? 

2. (Simple versus partial correlation) The set of pairwise scatterplots that comprises 
a multiway scatterplot provides useful information about the joint distribution of 
the .V variables, but it's incomplete information and should be interpreted with 
care. A pairwise scatterplot summarizes information regarding the simple 
correlation between, sav, x and v. But x and y may appear highly related in a 
pairwise scatterplot even if they are in fact unrelated, if each depends on a third 
variable—say, z. The crux of the problem is that there's no way in a pairwise 
scatterplot to examine the correlation between xand y controlling for z, which we 
call part ial c o r r e l a t i o n . When interpreting a scatterplot matrix, keep in mind that 
the pairwise scatterplots provide information only on s i m p l e c o r r e l a t i o n . 

3. (Graphical regression diagnostic 1: time series plot of >•/, V/, and e,) After 
estimating a forecasting model, we often make use of graphical techniques to 
provide important diagnostic information regarding the adequacy of the model. 
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Often the graphical techniques involve the residuals from the model. 
Throughout, let the regression model be 

* 
yt = £ ] P \ X , / + e, . 

and let the fitted values be 

i=i 

The difference between the actual and fitted values is the residual, 

e, = y,- y, . 

a. Superimposed time series plots ofy, and yt help us to assess the overall fit of a 
forecasting model and to assess variations in its performance at different 
times (for example, performance in tracking peaks versus troughs in the 
business cycle). 

b. A time series plot of e, (a so-called residual plot) helps to reveal patterns in the 
residuals. Most important, it helps us to assess whether the residuals are 
correlated over rime—that is, whether the residuals are serially correlated, as 
well as whether there are any anomalous residuals. Note that even though 
there might be many right-hand-side variables in this regression model, the 
actual values ofy, the fitted values ofy, and the residuals are simple univariate 
series that can be plotted easily. We'll make use of such plots throughout 
this book. 

4. (Graphical regression diagnostic 2: time series plot of e"{ or \et\) Plots of e, or 
\e,\ reveal patterns (most notably serial correlation) in the squared or absolute 
residuals, which correspond to nonconstant volatility, or heteroskedasticity, in the 
levels of the residuals. As with the standard residual plot, die squared or absolute 
residual plot is always a simple univariate plot, even when there are many right-
hand-side variables. Such plots feature prominendy, for example, in tracking and 
forecasting time-varying volatility. 

5. (Graphical regression diagnostic 3: scatterplot of e, versus x,) This plot helps us to 
assess whether the relationship benveen y and the set of .v's is truly linear, as 
assumed in linear regression analysis. If not, the linear regression residuals will 
depend on x. In die case where there is only one right-hand-side variable, as 
earlier, we can simply make a scatterplot of et versus x,. When there is more than 
one right-hand-side variable, we can make separate plots for each, although the 
procedure loses some of its simplicity and transparency. 

6. (Graphical analysis of foreign exchange rate data) Magyar Select, a marketing 
firm representing a group of Hungarian wineries, is considering entering into a 
contract to sell 8,000 cases of premium Hungarian dessert wine to AMI Imports, a 
worldwide distributor based in New York and London. The contract must be 
signed now, but payment and deliverv is 90 davs hence. Payment is to be in U.S. 
dollars; Magyar is therefore concerned about U.S. dollar/Hungarian forint 
(USD/HUF) exchange rate volatility oxer the ne\t 90 days. Magyar has hired you 
to analyze and forecast die exchange rate, on xvhich it has collected data for the 
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last 620 days. Naturally, you suggest that Magyar begin with a graphical 
examination of the data. (The USD/HUF exchange rate data is on the book's 
web page.) 
a. Why might we be interested in examining data on the log rather than die 

level of the USD HUF exchange rate? 
b. Take logs and produce a time series plot of the log of the USD/HUF 

exchange rate. Discuss. 
c. Produce a scatterplot of the log of the USD/HUF exchange rate against the 

lagged log of the USD/HUF exchange rate. Discuss. 
d. Produce a time series plot of the change in the log USD/HUF exchange 

rate, and also produce a histogram, normality test, and other descriptive 
statistics. Discuss. (For small changes, the change in the logarithm is 
approximately equal to the percent change, expressed as a decimal.) Do 
the log exchange rate changes appear normally distributed? If not, what is 
the nature of the deviation from normality? Why do you think we computed 
the histogram and so fortii for the differenced log data, rather than for the 
original series? 

e. Produce a time seiies plot of the square of the change in the log USD/HUF 
exchange rate. Discuss and compare with the earlier series of log changes. 
What do you conclude about the volatility of the exchange rate, as proxied by 
the squared log changes? 

7. (Common scales) Redo the multiple comparison of the Anscombe data in 
Figure 4.1 using common scales. Do you prefer the original or your newly 
created graphic? Why or why not? 

8. (Graphing real GDP, continued from Section 4) 
a. Consider the final plot at which we arrived when graphing four components 

of U.S. real GDP. What do you like about the plot? What do you dislike about 
die plot? How could you make it still better? Do it! 

b. To help sharpen your eye (or so I claim), some of the graphics in this book 
fail to adhere strictly to the elements of graphical style that we emphasized. 
Pick and critique three graphs from anywhere in die book (apart from this 
chapter), and produce improved versions. 

9. (Color) 
a. Cxi lor can aid graphics both in showing the data and in appealing to die 

viewer. How? 
b. Color can also confuse. How? 
c. Keeping in mind the principles of graphical style, formulate as many 

guidelines for color graphics as you can. 

10. (Regression, regression diagnostics, and regression graphics in action) You're a 
new financial analyst at a major investment house, tracking and forecasting 
earnings of the health care industry. At the end of each quarter, you forecast 
industry earnings for the next quarter. Experience has revealed that your clients 
care about your forecast accuracy—that is, they want small errors—but that they 
are not particularly concerned with the sign of your error. (Your clients use your 
forecast to help to allocate their portfolios, and if vour forecast is wav off, they 
lose money, regardless of whether you're too optimistic or too pessimistic.) Your 
immediate predecessor has bequeathed to you a forecasting model in which 
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current earnings (>•,) are explained by one variable lagged bv one quarter ( ) . 
(Both are on the book's web page.) 
a. Suggest and defend some candidate x variables. Why might lagged x, rather 

than current x, be included in the model? 
b. Graph y, versus .v,_i and discuss. 
c. Regress y, on and discuss (including related regression diagnostics that 

you deem relevant). 
d. Assess the enure situation in light of the "six considerations basic to successful 

forecasting" emphasized in Chapter 3: the decision environment and loss 
function, the forecast object, the forecast statement, the forecast horizon, die 
information set, and the parsimony principle. 

e. Consider as many variations as you deem relevant on the general theme. At a 
minimum, you will want to consider die following: 
• Does it appear necessary to include an intercept in the regression? 
• Does the functional form appear adequate? Might the relationship be 

nonlinear? 
• Do the regression residuals seem random, and, in particular, do thev 

appear serially correlated or heteroskedastic? 
• Are there any outliers? If so, does the estimated model appear robust to 

their inclusion/exclusion? 
• Do the regression disturbances appear normally distributed? 
• How might vou assess whether the estimated model is structurally stable? 

Bibliographical and Computational Notes 
A subfield of statistics called exploratory data analysis (EDA) focuses on learning 
about patterns in daui without pretending to have too much a priori theory. As you 
would guess, EDA makes heavy use of graphical and related techniques. For an 
introduction, see Tukey (1977), a well-known book by a pioneer in the area. 

This chapter has been heavily influenced by Tufte (1983), as are all modern 
discussions of statistical graphics. Tufte's book is an insightful and entertaining 
masterpiece on graphical style that I recommend enthusiastically. Our discussion of 
Anscombe's quartet follows Tufte's; the original paper is Anscombe (1973). 

Cleveland (1993, 1994) and Cook and Weisberg (1994) are fine examples of 
modern graphical techniques. Cleveland (1993) stresses tools for revealing 
information in high-dimensional data, as well as techniques that aid in showing the 
data and appealing to the viewer in standard low-dimensional situations. It also 
contains extensive discussion of banking to 45 degrees. Cook and Weisberg (1994) 
develop powerful graphical tools useful in the specification and evaluation of 
regression models. 

Details of the Jarque-Bera test may be found injarque and Bcra (1987). 
.All graphics in this chapter were done using Eviews. S+ implements a variety of 

more sophisticated graphical techniques and in many respects represents the cutting 
edge of statistical graphics software. 
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Concepts for Review 

Anscombe's quartet 
Pairwise scatterplot 
Bivariate scatterplot 
Multiple comparison 
Time series plot 
Histogram 
Relational graphics 
Scatterplot matrix 
Multiway scatterplot 
Nondata ink 
Chartjunk 

Aspect ratio 
Golden ratio 
Banking to 45 degrees 
Outlier 
Measurement oudier 
Innovation oudier 
Simple correlation 
Partial correlation 
Common scales 
Exploratory data analysis 
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Modeling and 
Forecasting Trend 

I. Modeling Trend 
T h e series that we want to forecast vary over time, and we often mentally 
at tr ibute that variation to unobserved underlying components , such as trends, 
seasonals, and cycles. In this chapter, we focus on t rend. 1 Trend is slow, long-
run evolution in the variables that we want to model and forecast. In business, 
finance, and economics, for example, t rend is p roduced by slowly evolving 
preferences, technologies, institutions, and demographics . We'll focus here 
on models of deterministic trend, in which the t rend evolves in a perfectly pre­
dictable way. Deterministic t rend models are tremendously useful in practice. 2 

Existence of t rend is empirically obvious. Numerous series in diverse fields 
display trends. In Figure 5.1, we show the U.S. labor force participation rate 
for females aged 16 and over, the t rend in which appears roughly linear, mean­
ing that it increases or decreases like a straight line. That is, a simple linear 
function of t ime, 

S = 0o + B.TIME, , 

1 Later we'll define and study seasonals and cycles. Not all components need be present in all 
observed series. 

* Later we'll broaden our discussion to allow for stochastic trend. 
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provides a good description of the t rend. The variable TIME is constructed 
artificially and is called a time trend or time dummy. Time equals 1 in the first 
per iod of the sample, 2 in the second period, and so on. Thus, for a sample of 
size T, TIME = (1 , 2, 3 T — 1, T); put differendy, TIME, = B,, is the re­
gression intercept; it's the value of the t rend at d m e / = 0. Bj is the regression 
slope; it's positive if the t rend is increasing and negative if the t rend is de­
creasing. The larger the absolute value of ($!, the steeper the t rend 's slope. In 
Figure 5.2, for example, we show two linear trends, one increasing and o n e de­
creasing. The increasing t rend has an intercept of Bo = — 50 and a slope of 
Bj = 0.8, whereas the decreasing t rend has an intercept of Bo = 10 and a gentler 
absolute slope of Bj = —0.25. 

40 

20 -
Trend = 10 - 0.25 • TIME 

F I G U R E 5 2 
Increasing and 
Decreasing Linear 
Trends 

- 2 0 

- 4 0 - Trend = - 5 0 + 0 .8 -TIME 
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In business, finance, and economics, l inear t rends are typically increasing, 
corresponding to growth, but such need not be the case. In Figure 5.3, for ex­
ample, we show the U.S. labor force participation rate for males aged 16 and 
over, which displays linearly decreasing t rend. 

To provide a visual check of the adequacy of linear t rends for the labor 
force participation rates, we show them with linear t rends superimposed in 
Figures 5.4 and 5.5. 3 In each case, we show the actual participation rate series 

F I G U R E 5 . A 
Linear Trend, 
Female Labor Force 
Participation Rate 

Year 

3 Shortly we'll discuss how we estimated the trends. For now, just take diem as given. 
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F I G U R E S 5 
Linear Trend, Male 
Labor Force 
Participation Rate 

together with the fitted t rend, and we also show the residual—the deviation of 
the actual participation rate from the t rend. T h e linear t rends seem adequate . 
The re are still obvious dynamic pat terns in the residuals, bu t that 's to be 
expected—persistent dynamic pat terns are typically observed in the devia­
tions of variables from trend. 

Sometimes t rend appears nonlinear, or curved, as, for example, when a 
variable increases at an increasing or decreasing rate. Ultimately, we don ' t re­
quire that t rends be linear, only that they be smooth. Figure 5.6 shows the 
monthly volume of shares t raded on the New York Stock Exchange (NYSE). 
Volume increases at an increasing rate; the t rend is therefore nonlinear. 

8000 r F I G U R E 5 B 
Volume on the New 
York Slock 
Exchange 
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Quadrat ic t rend models can potendally capture nonl inear ides such as 
those observed in the volume series. Such t rends are quadratic, as opposed to 
linear, functions of time, 

T, = ft, + BiTIME, + fcTTME? . 

Linear t rend emerges as a special (and potentially restrictive) case when 
02 = 0. Higher-order polynomial t rends are sometimes enter ta ined, bu t it's 
impor tan t to use low-order polynomials to maintain smoothness. 

A variety of different nonl inear quadrat ic t rend shapes are possible, 
depend ing on the signs and sizes of the coefficients; we show several in Fig­
ure 5.7. In particular, if 0 j > 0 and 02 > 0 as in the upper-left panel , the t rend 
is monotonically, but nonlinearly, increasing, Conversely, if 0 , < 0 and 02 < 0, 
the t rend is monotonically decreasing. If 0 j < 0 and 02 > 0, the t rend has a 
U shape; and if 0 j > 0 and 02 < 0, the t rend has an inverted U shape. Keep in 
mind that quadrat ic t rends are used to provide local approximations; o n e 
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rarely has a "U-shaped" t rend, for example. Instead, all of the data may lie on 
one or the o ther side of the U. 

Figure 5.8 presents the stock market volume data with a super imposed 
quadrat ic t rend. T h e quadrat ic t rend fits bet ter than the linear t rend, bu t it 
still has some awkward features. T h e best-fitting quadrat ic t rend is still a litde 
more U-shaped than the volume data, resulting in an odd pat tern of devia­
tions from trend, as reflected in the residual series. 

O the r types of nonl inear t rend are sometimes appropria te . Consider the 
NYSE volume series once again. In Figure 5.9, we show the logarithm of vol­
ume , the t rend of which appears approximately linear.* This situation, in 
which a t rend appears nonl inear in levels but linear in logarithms, is called 

F I G U R E 5 . a 

Log Volume on the 
Neio York Stock 
Exchange 

4 Throughout this book, logarithms are natural (base e) logarithms. 
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exponential trend, or log-linear trend, and is very common in business, fi­
nance , and economics. That ' s because economic variables often display 
roughly constant growth rates (for example, 3 % per year). If t rend is charac­
terized by constant growth at rate , then we can write 

T, = ft,,*1™*' . 
The t rend is a nonl inear (exponential) function of t ime in levels, but in loga­
rithms we have 

l n ( : 0 = l n ( f t , ) - f P i T l M E , . 

Thus, In(T,) is a linear function of time. 
Figure 5.10 shows the variety of exponential trend shapes that can be 

obtained depending on the parameters. As with quadratic trend, depending on 
the signs and sizes of the parameter values, exponential t rend can achieve a va­
riety of patterns, increasing or decreasing at an increasing or decreasing rate. 
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F I G U R E 5 II 
Linear Trend, Log 
Volume on the New 
York Stock 
Exchange 

50 55 60 65 70 75 80 85 90 
Time 

It 's impor tan t to no te that, a l though the same sorts of qualitative t rend 
shapes can be achieved with quadrat ic and exponent ia l t rends, there are sub­
tle differences between them. The nonl inear t rends in some series are well 
approximated by quadrat ic t rend, whereas the t rends in o ther series are bet­
ter approximated by exponent ia l t rend. We have already seen, for example, 
that a l though quadrat ic t rend looked bet ter than l inear t rend for the NYSE 
volume data, the quadrat ic fit still had some undesirable features. Let 's see 
how an exponent ia l t rend compares . In Figure 5.11, we plot the log volume 
data with linear t rend superimposed; the log-linear t rend looks qui te good. 
Equivalently, Figure 5.12 shows the volume data in levels with exponent ia l 
t r end superimposed; the exponent ia l t r end looks much bet ter than did the 
quadrat ic . 
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2. Estimating Trend Models 
Before we can estimate t rend models, we need to create and store on the com­
puter variables such as TIME and its square. Fortunately, we don ' t have to type 
the t rend values (1, 2, 3, 4, . . .) in by hand; in most good software packages, a 
command exists to create the t rend automatically, after which we can immedi­
ately compute derived variables such as the square of TIME, or TIME 2 . Be­
cause, for example, TIME = ( 1 , 2 T), T IME 2 = ( 1 , 4 T 2 ) ; that is, 
TIME? = t2. 

We fit ou r various t rend models to data on a t ime series y using least-
squares regression. Tha t is, we use a compute r to find5 

r 
0 = argmin Y (y, - 7J(e)) 2 , 

8 1=1 

where 8 denotes the set of parameters to be estimated. A linear t rend, for ex­
ample , has T,(Q) = Bo + pi TIME, and 6 = (Bo, Bj), in which case the compute r 
finds 

T 

( P 0 , &,) = argmin £ ( > , - & - B.TIME,) 2 . 

Similarly, in the quadratic t rend case, the compute r finds 
7 

<0o. P i , P . ) = argmin T ( > ' - ft» - P.TIME, - P , T I M E 2 ) 2 . 
fc.fc.fc ,=i 

We can estimate an exponenda l t rend in two ways. First, we can proceed di-
recdy from d i e exponenda l representat ion and let the computer find 

(Po, P , ) = argmin £ (y, - P o ^ ™ E < ) 2 . 
ft..Pi ,=i 

Alternatively, because the nonl inear exponent ial t rend is nevertheless linear 
in logs, we can estimate it by regressing log y on an intercept and TIME. Thus , 
we l e t the computer find 

7" 
( P 0 , P , ) = argmin ^ U n y , - lnPo - p .TIME,) 2 . 

Note that the fitted values from this regression are the fitted values of log y, so 
they must be exponent ia ted to ge t the fitted values of y. 

S ARGMIN just means "the argument that minimizes." Least squares proceeds by finding the argu­
ment (in this case, the value of 6) that minimizes the sum of squared residuals; thus, the least 
squares estimator is the "argmin" of the sum of squared residuals function. 
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3. Forecasting Trend 
Consider first the construction of poin t forecasts. Suppose we're presendy at 
d m e T, and we want to use a t rend model to forecast the /i-step-ahead value of 
a series y. For illustrative purposes, we'll work with a linear t rend, but the pro­
cedures are identical with more complicated trends. The linear t rend model , 
which holds for any time t, is 

y, = ft + Pi TIME, 4- e, . 

In particular, at t ime 7-1- A, the future t ime of interest, 

yT^h = Po + P i T I M E ^ , + e m . 

Two future values of series appear on the right side of the equation, T I M E r + A 

and e-r+h- If T I M E r + / l and £/+/, were known at t ime T, we could immediately 
crank out the forecast. In fact, T I M E r + / ( is known at t ime T, because the arti­
ficially constructed time variable is perfectly predictable; specifically, 
T I M E / + ft = T-r h. Unfortunately Zj+h is not known at t ime T, so we replace it 
with an optimal forecast of £ 7 + / , constructed using information only u p to time 
T.6 Under the assumption that E is simply independen t zero-mean random 
noise, the optimal forecast of £ T + A for any future per iod is 0, yielding the po in t 
forecast 7 

y r ^ . r = po + P ,TIME T + , ( . 

T h e subscript "T+ h, V on the forecast reminds us that the forecast is for time 
T + h and is made at t ime T. 

T h e point forecast formula just given is not of practical use, because it as­
sumes known values of the t rend parameters ft) and pi . But it's a simple mat­
ter to make it operational—we jus t replace unknown parameters with their 
least squares estimates, yielding 

yr+h.T = p „ - r P , T I M E r + / l . 

To form an interval forecast, we assume further that the t rend regression 
disturbance is normally distributed, in which case a 9 5 % interval forecast 
ignoring parameter estimation uncertainty is yr+hj =t 1.96a, where a is the 
s tandard deviation of the disturbance in the t rend regression. 8 To make this 

fi More formally, we say that we're "projecting £r+h o n the time-T information set," which we'll 
discuss in detail in Chapter 9. 
7 "Independent zero-mean random noise" is just a fancy way of saying that the regression distur­
bances satisfy the usual assumptions—they are identically and independently distributed. 
* When we say that we ignore parameter estimation uncertainty, we mean diat we use the esti­
mated parameters as if they were the true values, ignoring the fact diat they are only estimates and 
subject to sampling variabilitv. Later we'll see how to account for parameter estimation uncer­
tainty by using simulation techniques. 
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operational , we use )'•/•+*. r ± 1.966\ where a is the s tandard e r ro r of the t rend 
regression, an esdmate of o\ 

To form a density forecast, we again assume that the t rend regression 
disturbance is normally distributed. T h e n , ignoring parameter estimation 
uncertainty, we have the density forecast N(yr+t,.T* °"2)> where a is the stan­
dard deviation of the disturbance in the t rend regression. To make this oper­
ational, we use the density forecast N(yT+h.T* v2)-

4. Selecting Forecasting Models Using the Akaike 
and Schwarz Criteria 
We've in t roduced a n u m b e r of t rend models, but how d o we select among 
them when fitting a t rend to a specific series? WTiat are the consequences, for 
example, of fitting a n u m b e r of t rend models and selecting the model with 
highest if9? Is there a better way? This issue of model selection is of t remen­
dous importance in all of forecasting, so we int roduce it now. 

It turns out that model selection strategies such as selecting the model 
with highest R2 d o not p roduce good out-of-sample forecasting models. Fortu­
nately, however, a n u m b e r of powerful mode rn tools exist to assist with model 
selection. Here we digress to discuss some of the available methods , which will 
be immediately useful in selecting among alternative t rend models, as well as 
many other situations. 

Most model selection criteria a t tempt to find the model with the smallest 
out-of-sample 1-step-ahead mean squared prediction error. T h e criteria we 
examine fit this general approach; the differences a m o n g criteria amount to 
different penalties for the number of degrees of freedom used in estimating 
the model (that is, the n u m b e r of parameters est imated). Because all of the 
criteria are effectively estimates of out-of-sample mean square prediction 
error, they have a negative or ienta t ion—the smaller, the better. 

First, consider the mean squared error (MSE), 

MSE = - — — , 
T 

where T is the sample size and 

e, = y,- y, , 

where 

y , = p 0 - | -&,TIME, . 

MSE is intimately related to two o ther diagnostic statistics routinely computed 
by regression software, the sum of squared residuals and /? 2 . Looking at the 
MSE formula reveals that the model with the smallest MSE is also the model 
with smallest sum of squared residuals, because scaling the sum of squared 



Modeling and Forecasting Trend 

residuals by 1 / 7 ' doesn ' t change the ranking. So selecting the model with the 
smallest MSE is equivalent to selecting the model with the smallest sum of 
squared residuals. Similarly, recall the formula for R2, 

T h e denomina to r of the ratio that appears in the formula is just the sum 
of squared deviations o f y from its sample mean (die so-called total sum of 
squares), which depends only on the data, not on the particular model fit. 
Thus , selecting the model that minimizes the sum of squared residuals— 
which, as we saw, is equivalent to selecting the model that minimizes MSE—is 
also equivalent to selecting the model that maximizes R2. 

Selecting forecasting models on the basis of MSE or any of the equivalent 
forms discussed—that is, using in-sample MSE to estimate the out-of-sample 
1-step-ahead MSE—turns out to be a bad idea. In-sample MSE can't rise when 
more variables are added to a model , and typically it will fall continuously 
as more variables are added. To see why, consider the fitting of polynomial 
t rend models. In that context, the n u m b e r of variables in the model is linked 
to the degree of the polynomial (call it p): 

We've already considered the cases of p = 1 (linear t rend) and p = 2 (qua­
dratic t rend) , but there 's no th ing to stop us from fitting models with higher 
powers of time included. As we include higher powers of time, the sum of 
squared residuals can't rise, because the estimated parameters are explicitly 
chosen to minimize the sum of squared residuals. The last-included power of 
time could always wind up with an estimated coefficient of 0; to the extent that 
the estimate is anything else, the sum of squared residuals must have fallen. 
Thus , the more variables we include in a forecasting model , the lower the sum 
of squared residuals will be, and therefore the lower MSE will be, and the 
higher R2 will be. T h e reduction in MSE as higher powers of time are included 
in the model occurs even if diey are in fact of n o use in forecasting the variable 
of interest. Again, the sum of squared residuals can' t rise, and because of sam­
pling error, it's very unlikely that we'd get a coefficient of exacdy 0 on a newly 
included variable even if the coefficient is 0 in populat ion. 

The effects described here go under various names, including in-sample 
overfitting and data mining, reflecting the idea that including more variables 
in a forecasting model won't necessarily improve its out-of-sample forecasting 
performance, a l though it will improve the model 's "fit" on historical data. The 
upshot is that MSE is a biased estimator of out-of-sample 1-step-ahead predic­
tion error variance, and the size of the bias increases with the n u m b e r of 
variables included in the model . The direction of the bias is downward—in-
sample MSE provides an overly optimistic (that is, too small) assessment of 
out-of-sample prediction e r ror variance. 

T 

I 

T, = ft, 4- S.TIME, + fcTIME* 4- • • • + fyTIMEf . 
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To reduce the bias associated with MSE and its relatives, we need to penal­
ize for degrees of freedom used- Thus , let's consider the mean squared e r ror 
corrected for degrees of freedom, 

r 

where k is the n u m b e r of degrees of f reedom used in model f i t t ing, 9 and s2 

is jus t the usual unbiased estimate of the regression dis turbance variance. 
Tha t is, it is the square of the usual s tandard e r ro r of the regression. So se­
lecting the mode l that minimizes r is also equivalent to selecting the mode l 
that minimizes the s tandard e r ro r of the regression. Also, s~ is intimately 
connec ted to the R2 adjusted for degrees of f reedom ( the adjusted /?", o r 
R 8 ) . Recall that 

> - - - • 
2 > , - Y ) 7 ( T - l ) 

T h e denomina to r of the R2 expression depends only on the data, not the par­
ticular model fit, so the model that minimizes r is also the model that maxi­
mizes R2. In short , the strategies of selecting the model that minimizes s 2 , or 
the model that minimizes the standard e r ror of the regression, or the model 
that maximizes 7?2. are equivalent, and they do penalize for degrees of free­
dom used. 

To highlight the degree-of-freedom penalty, let's rewrite 52 as a penalty fac­
tor times the MSE, 

T 

Note in particular that including more variables in a regression will not neces­
sarily lower r or raise R2—the MSE will fall, but the degrees-of-freedom 
penalty will rise, so the product could go ei ther way. 

As with s2, many of the most important forecast model selection criteria 
are of the form "penalty factor times MSE." The idea is simply that if we want 
to get an accurate estimate of the 1-step-ahead out-of-sample prediction e r ro r 
variance, we need to penalize the in-sample residual variance ( the MSE) to re­
flect the degrees of freedom used. Two very impor tant such criteria are the 

T h e degrees of freedom used in model fitting is simply the number of parameters estimated. 

j > / / < r - * ) 
F? = 1 -

£ > - y ) V ( r - i ) 
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Akaike information criterion (AIC) and the Schwarz information criterion 
(SIC). Thei r formulas are 

A , C = e ( T ) ^ 
T 

and 

SIC = T " < t ) - ^ r - . 

How d o the penalty factors associated with MSE, s 2 , AIC, and SIC compare 
in terms of severity? All of the penalty factors are functions of k/T, the num­
ber of parameters estimated per sample observation, and we can compare the 
penalty factors graphically as k/ Tvaries. In Figure 5.13, we show7 the penalties 
as k/ T moves from 0 to 0.25, for a sample size of T= 100. The r penalty is 
small and rises slowly with k/ T; the AIC penalty is a bit larger and still rises only 
slowly with k/ T. The SIC penalty, on the o ther hand, is substantially larger and 
rises at a slightly increasing rate with k/ T. 

It's clear that the different criteria penalize degrees of freedom differently. 
In addition, we could propose many o ther criteria by altering the penalty. 
How, then, do we select among the criteria? More generally, what propert ies 
might we expect a "good" model selection criterion to have? Are s2, AIC, and 
SIC "good" model selection criteria? 

We evaluate model selection criteria in terms of a key property called con­
sistency. A model selection criterion is consistent if the following condit ions 
are met: 

a. when the true model—that is, the data-generating process (DGP)—is among 
the models considered, the probability of selecting the t rue DGP ap­
proaches 1 as the sample size gets large; and 
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b . when the t rue model is not a m o n g those considered, so that it's impossible 
to select the t rue DGP, the probability of selecting the best approximation to 
the t rue DGP approaches 1 as the sample size gets l a rge . 1 0 

Consistency is, of course, desirable. If the DGP is among those considered, 
then we'd h o p e that as the sample size gets large, we'd eventual!) select it. Of 
course, all of our models are false—they're intentional simplifications of a 
much more complex reality. Thus, the second notion of consistency is the 
more compelling. 

MSE is inconsistent, because it doesn ' t penalize for degrees of freedom; 
that 's why it's unattractive, does penalize for degrees of freedom but, as it 
turns out, not enough to r ender it a consistent model selection procedure . 
T h e AIC penalizes degrees of freedom more heavily than r , but it, too, re­
mains inconsistent; even as the sample size gets large, the AIC selects models 
that are too large ("overparameterized"). The SIC, which penalizes degrees of 
freedom most heavily, « consistent. 

T h e discussion thus far conveys the impression that SIC is unambiguously 
superior to .AIC for selecting forecasting models, but such is not the case. Until 
now, we've implicidy assumed that either the true DGP or the best approxima­
tion to the t rue DGP is in the fixed set of models considered. In that case, SIC 
u a superior model selection criterion. However, a potentially more compelling 
view for forecasters is that both the true DGP and the best approximation to it 
are much more complicated than any model we fit, in which case we may want 
to expand the set of models we entertain as the sample size grows. We're then 
led to a different optimality property, called asymptotic efficiency. An asymp­
totically efficient model selection criterion chooses a sequence of models, 
as the sample size get large, whose 1-step-ahead forecast e r ror variances ap­
proach the one that would be obtained using the t rue model with known para­
meters at a rate at least as fast as that of any other model selection criterion. The 
AIC, although inconsistent, is asymptotically efficient, whereas the SIC is not. 

In practical forecasting, we usually report and examine both AIC and SIC. 
Most often they select the same model . When they don ' t , and in spite of the 
theoretical asymptotic efficiency property of .AIC, I r ecommend use of the 
more parsimonious model selected by the SIC, o ther things being equal. This 
approach is in accord with the KISS principle of Chapter 3 and with the results 
of studies compar ing out-of-sample forecasting performance of models se­
lected by various criteria. 

The AIC and SIC have enjoyed widespread popularity, btit they are not 
universally applicable, and we ' re still learning abotit their per formance in spe­
cific situations. However, the general principle that we need to correct some­
how for degrees of freedom when estimating out-of-sample MSE on the basis 
of in-sample MSE is universally applicable. Judicious use of criteria like the 
AIC and SIC, in conjunction widi knowledge about the na ture of the system 
being forecast, is helpful in a variety of forecasting situations. 

1 0 Most model selection criteria—including all of those discussed here—assess goodness of 
approximation in terms of 1-step-ahead mean squared forecast error. 
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5. Application: Forecasting Retail Sales 
We'll illustrate trend modeling with an application to forecasting U.S. current-
dollar retail sales. T h e data are monthly from 1955.01 through 1994.12 and have 
been seasonally adjusted." We'll use the period 1955.01-1993.12 to estimate 
our forecasting models, and we'll use the "holdout sample" 1994.01-1994.12 to 
examine their out-of-sample forecasting performance. 

In Figure 5.14, we provide a time series plot of the retail sales data, which 
display a clear nonl inear t rend and not much else. Cycles are probably present 
but are not easily visible, because they account for a comparatively minor 
share of the series' variation. 

In Table 5.1, we show the results of fitting a linear t rend model by regressing 
retail sales on a constant and a linear time trend. The t rend appears highly sig­
nificant as judged by the /rvalue of the /-statistic on the time trend, and the re­
gression's R2 is high. Moreover, the Durbin-Watson statistic indicates that the 
disturbances are positively serially correlated, so that the disturbance at any 
time / is positively' correlated with the disturbance at time / — 1. In later chap­
ters, we'll show how to model such residual serial correlation and exploit it for 
forecasting purposes, but for now we'll ignore it and focus only on the t r end . 1 2 
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Retail Sales 

1 1 When we say that the data have been "seasonally adjusted,** we simply mean that they have 
been smoothed in a way thai eliminates seasonal variation. We'll discuss seasonality in detail in 
Chapter 6. 

Such residual serial correlation mav. however, render the standard errors of estimated coeffi­
cients (and the associated ^statistics) untrustworthy. Here that's not a big problem, because it's vi­
sually obvious thai trend is important in retail sales, but in other situations it may well be. Typi­
cally, when constructing forecasting models, we're concerned more widi point estimation than 
with inference. 
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T A B L E 5 1 Dependent variable is RTRR. 
Retail Sales, Linear Sample: 1955:01 1993:12 
Trend Regression Included observations: 448 

Variable C o e f f i c i e n t S t d . Error r-Statistic P r o b . 

C -10391.25 1469.177 -11.15676 0.0000 
TIME 349.7731 5.428670 64.43073 0.0000 

0.899076 Mean dependent var. 65630.56 
Adjusted R2 0.898859 SD dependent var. 49889.26 
SE of regression 15866.12 Akaike info criterion 19.34815 
Sum squared resid. 1.17E+11 Schwarz criterion 19.36587 
Log likelihood -5189.529 /•"•statistic 4151.319 
Durbin-Watson stat. 0.004682 Prob (^-statistic) 0.000000 

T h e residual plot in Figure 5.15 makes clear what's happening . T h e linear 
t rend is simply inadequate, because the actual t rend is nonlinear. That ' s one 
key reason why the residuals are so highly serially correlated—first the data are 
all above the linear trend, then below, and then above. Along with the residu­
als, we plot ± 1 standard e r ror of the regression, for visual reference. 

Table 5.2 presents the results of fitting a quadratic t rend model . Both the 
linear and quadrat ic terms appear highly significant. 1* R2 is now almost 1. 

F I G U R E 5 15 
Retail Sales, Linear 
Trend Residual 
Plot 

, s The earlier caveat regarding the effects of serial correlation on inference applies, however. 
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Dependent variable is RTRR. 
Sample: 1955:01 1993:12 
Included observations: 468 

Variable Coefficient Std. Error f-Statistic Prob. 

C 18708.70 379.9566 49.23905 0.0000 
TIME -98.31130 3.741388 -26.27669 0.0000 
TIME2 0.955404 0.007725 123.6754 0.0000 

0.997022 Mean dependent var. 65630.56 
Adjusted R2 0.997010 SD dependent var. 49889.26 
SE of regression 2728.205 Akaike info criterion 15.82919 
Sum squared resid. 3.46E+09 Schwarz criterion 15.85578 
Log likelihood -4365.093 /•"•statistic 77848.80 
Durbin-Watson stat. 0.151089 ProM/^statistic) O.(HHNMX) 

T A B L E S 2 
Retail Sales, 
Quadratic Trend 
Regression 

Figure 5.16 shows the residual plot, which now looks very nice, as the fitted 
nonl inear t rend tracks the evolution of retail sales well. The residuals still 
display persistent dynamics (indicated as well by the still-low Dtirbin-Watson 
statistic), but there 's little scope for explaining such dynamics with t rend, be­
cause they're related to the business cycle, not the growth trend. 

Now let's estimate a different type of nonl inear t rend model , the expo­
nential t rend. First, we'll d o it by OLS regression of the log of retail sales on a 
constant and linear time t rend variable. We show the estimation results and 
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T A B L E S 3 
Retail Sales, 
Log-Linear Trend 
Regtession 

Dependent variable is LRTRR. 
Sample: 1955:01 1993:12 
Included observations: 408 

Variable Coefficient Std. Error f-Statistic Prob. 

C 9.389975 0.008508 1103.684 0.0000 
TIME 0.005931 3.14E-05 188.6541 0.0000 

0.987076 Mean dependent var. 10.78072 
Adjusted 0.987048 SD dependent var. 0.807325 
SE of regression 0.091879 Akaike info criterion -4.770302 
Sum squared resid. 3.933853 Schwarz criterion -4.752573 
Log likelihood 454.1874 /•'-statistic 35590.36 
Durbin-Watson stat. 0.019949 Probf/^statistic) 0.000000 

residual plot in Table 5.3 and Figure 5.17. As with the quadratic nonl inear 
t rend, the exponential nonl inear t rend model seems to fit well, apart from the 
low Durbin-Watson statistic. 

In sharp contrast to the results of fitting a linear t rend to retail sales, which 
were poor, the results of fitting a linear t rend to the log of retail sales seem 
much improved. But it's hard to compare the log-linear t rend model with the 
linear and quadratic models because they're in levels, not logs, which renders 
diagnostic statistics like R2 and the standard e r ror of the regression incompa­
rable. O n e way a round this problem is to estimate the exponent ial t rend 
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Dependent variable is RTRR. 
Sample: 1955:01 1993:12 
Included observations: 468 
Convergence achieved after 1 iteration 
RTRR=C(1)*EXP(C(2)*TIME) 

T A B L E 5 A 
Retail Sales, 
Exponential Trend 
Regression 

Coefficient Std. Error f-Statistic Prob. 

C(l) 11967.80 177.9598 67.25003 0.0000 
C(2) 0.005944 3.77E-05 157.7469 0.0000 

A* 0.988796 Mean dependent var. 65630.56 
Adjusted R2 0.988772 SD dependent var. 49889.26 
SE of regression 5286.406 Akaike info criterion 17.15005 
Sum squared resid. 1.30E+10 Schwarz criterion 17.16778 
Log likelihood -4675.175 /""•statistic 41126.02 
Durbin-Watson stat. 0.040527 Prob(/7-statistic) 0.000000 

model direcdy in levels, using nonl inear least squares. In Table 5.4 and 
Figure 5.18, we show the nonl inear least-squares estimation results and resid­
ual plot for the exponential t rend model . The diagnostic statistics and residual 
plot indicate that the exponential t rend fits bet ter than the linear bu t worse 
than the quadratic. 

Thus far, we've been informal in ou r comparison of the linear, quadratic, 
and exponential t rend models for retail sales. We've noticed, for example, that 
the quadrat ic t rend seems to fit the best. T h e quadrat ic t rend model , however, 
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T A B L E 5 . 5 linear Trend Quadratic Trend Exponential Trend 
Model Selection 
Criteria, Linear, AIC 19.35 15.83 17.15 
Quadratic, and S I C 19.37 15.86 17.17 
Exponential Trend 
Models 

contains one more parameter than the o ther two, so it's no t surprising that it 
fits a little better, and there 's no guarantee that its bet ter fit on historical data 
will translate into better out-of-sample forecasting performance. (Recall the 
KISS principle.) To settle on a final model , we examine the AIC or SIC, which 
are summarized in Table 5.5 for the three t rend mode l s . 1 4 Both the AIC and 
SIC indicate that nonlinearity is impor tant in the t rend, as both rank the lin­
ear t rend last. Both, moreover, favor the quadrat ic t rend model . So let's use 
the quadratic t rend model . 

Figure 5.19 shows the history of retail sales, 1990.01-1993.12, together 
with out-of-sample point and 9 5 % interval extrapolation forecasts, 
1994.01-1994.12. T h e point forecasts look reasonable. The interval forecasts 
are computed u n d e r the (incorrect) assumption that the deviation of retail 
sales from trend is r andom noise, which is why they're of equal width through­
out. Nevertheless, they look reasonable. 

In Figure 5.20, we show the history of retail sales through 1993, the qua­
dratic t rend forecast for 1994, and the realization for 1994. The forecast is 
quite good, as the realization hugs die forecasted t rend line quite closely. All 
of the realizations, moreover, fall inside the 9 5 % forecast interval. 

F I G U R E s 13 

Retail Sales: 
History, 
1990.01-1993.12; 
and Quadratic 
Trend Forecast, 
1994.01-1994.12 

200.000 

150 000 i 11 11 T i i 11 111111 • I • • I 111 11 i i 1111 111111111 

90:01 90:07 91:01 91:07 92:01 92:07 93:01 93:07 94:01 94:07 

Time 

1 4 It's important that the exponential trend model be estimated in levels, in order to maintain 
comparability of the exponential trend model AIC and SIC with those of the other trend models. 
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F I G U R E 5 . 2 D 
Retail Sales: 
History, 
1990.01-1993.12; 
and Quadratic 
Trend Forecast and 
Realization, 
1994.01-1994.12 

For comparison, we examine the forecasting per formance of a simple lin­
ear t rend model . Figure 5.21 presents the history of retail sales and the out-of-
sample point and 95% interval extrapolation forecasts for 1994. T h e point 
forecasts look very strange. The huge d r o p forecasted relative to the historical 
sample path occurs because the linear t rend is far below the sample path by 
the end of the sample. The confidence intervals are very wide, reflecting the 
large standard e r ro r of the l inear t rend regression relative to the quadrat ic 
t rend regression. 

Finally, Figure 5.22 shows the history, the linear trend forecast for 1994, and 
the realization. The forecast is terrible—far below the realization. Even the 
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F I G U R E 5 2 2 
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very wide interval forecasts fail to contain the realizations. T h e reason for the 
failure of the linear t rend forecast is that the forecasts (point and interval) are 
computed under the assumption that the linear t rend model is actually 
the t rue DGP, whereas in fact the linear t rend model is a very poor approxima­
tion to the t rend in retail sales. 

Exercises, Problems, and Complements 
1. (Calculating forecasts from trend models) You work for the International 

Monetary Fund in Washington, D.C., monitoring Singapore's real consumption 
expenditures. Using a sample of real consumption data (measured in billions of 
2005 Singapore dollars), y„ / = 1990:Q1, . . . . 2006:0, you estimate the linear 
consumption trend model, y, = p\i + 8 1 T I M E , - I - £,, where e, ~ N(0, or'2), 
obtaining the estimates p\) = 0.51, pi = 2.30, and o~'2 = 16. Based on your 
estimated trend model, construct feasible point, interval, and density forecasts for 
2010:Q1. 

2. (Identifying and testing trend models) In 1965, Intel cofounder Gordon Moore 
predicted that the number of transistors that one could place on a square inch 
integrated circuit would double every 12 months. 
a. What sort of trend is this? 
b. Given a monthly series containing the number of transistors per square inch 

for the latest integrated circuit, how would you test Moore's prediction? How 
would you test the currently accepted form of Moore's Law—namely, that the 
number of transistors actually doubles every 18 months? 

3. (Understanding model selection criteria) You are tracking and forecasting the 
earnings of a new company developing and applying proprietary nanotechnology. 
The earnings are trending upward. You fit linear, quadratic, and exponential 
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trend models, yielding sums of squared residuals of 4352, 2791, and 2749, 
respectively. Which trend model would you select, and why? 

4. (Mechanics of trend estimation and forecasting) Obtain from the web an upward-
trending monthly series that interests you. Choose your series such that it spans at 
least 10 years and ends at the end of a year (that is, in December). 
a. What is the series, and why does it interest you? Produce a time series plot of 

it. Discuss. 
b. Fit linear, quadratic, and exponential trend models to your series. Discuss the 

associated diagnostic statistics and residual plots. 
c. Select a trend model using the AIC and one using the SIC. Do the selected 

models agree? If not, which do you prefer? 
d. Use your preferred model to forecast each of the 12 months of die next year. 

Discuss. 
e. The residuals from your fitted model are effectively a detrended version of your 

original series. Why? Plot them and discuss. 

5. (Properties of polynomial trends) Consider a sixth-order deterministic 
polynomial trend: 

T, = ft, + Pi TIME, + pVTlME? + • • + peTIME? . 

a. How many local maxima or minima may such a trend display? 
b. Plot the trend for various values of the parameters to reveal some of the 

different possible trend shapes. 
c. Is this an attractive trend model in general? Why or why not? 
d. Fit the sixth-order polynomial trend model to the NYSE volume series. How 

does it perform in that particular case? 

6. (Specialized nonlinear trends) The logistic trend is 
1 

' ~ a + br> ' 
with 0 < r < 1. 
a. Display the trend shape for various a and Rvalues. When might such a trend 

shape be useful? 
b. Can you think of other specialized situations in which other specialized trend 

shapes might be useful? Produce mathematical formulas for the additional 
specialized trend shapes you suggest. 

7. (Moving average smoothing for trend estimation) The trend regression 
technique is one wav to estimate and forecast trend. Another way to estimate 
trend is by smoothing techniques, which we briefly introduce here. We'll focus on 
three: two-sided moving averages, one-sided moving averages, and one-sided 
weighted moving averages. Here we presettt them as ways to estimate and 
examine the trend in a time series; later we'll see how they can actually be used to 
forecast time series. 

Denote the original data by [yA^i and the smoothed data by [y,\. Then the two-
m 

sided moving average is y, = (2w» -+• l ) - ' £ >'/-(. the one-sided moving average is 
m 

y , = (m + 1 ) _ 1 £ ) ' ' - " a n f l m e one-sided weighted moving average is 
m 

y, = 21 ii>i\t-i, where the w, are weights and m is an integer chosen by the user. 
»=<> 
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The "standard" one-sided moving average corresponds to a one-sided weighted 
moving average with all weights equal to (m + l ) - 1 . 
a. For each of the smoothing techniques, discuss the role played by m. What 

happens as m gets very large? Very small? In what sense does m play a role 
similar to p, the order of a polynomial trend? 

b. If the original data runs from time 1 to lime T, over what range can smoothed 
values be produced using each of the three smoothing methods? What are 
the implications for real-time (on-line) smoothing versus ex post (off-line) 
smoothing? 

c. You've been hired as a consultant by ICSB, a major international bank, to 
advise its management on trends in North American and European stock 
markets and to help them to allocate their capital. You have extracted from 
your database the recent history of EUROStar, an index of 11 major 
European stock markets. Smooth the EUROStar data using equally weighted 
one-sided and two-sided moving averages, for a variety of m values, until 
you have found values of m that work well. Wbat do we mean by "work well"? 
Must the chosen value of m be the same for the one- and two-sided 
smoothers? For your chosen m values, plot the two-sided smoothed series 
against the actual, and plot the one-sided smoothed series against the actual. 
Do you notice any systematic difference in the relationship of the smoothed 
to the actual series depending on whether you do a two-sided or one-sided 
smooth? Explain. 

d. Moving average procedures can also be used to detrend a series—we simply 
subtract the estimated trend from the series. Sometimes, but not usually, it's 
appropriate and desirable to detrend a series before modeling and 
forecasting it. Why might it sometimes be appropriate? Why is it not usually 
appropriate? 

8. (Bias corrections when forecasting from logarithmic models) 
a. In Chapter 3, we introduced squared error loss, L(e) = e2. A popular measure 

of forecast accuracy is out-of-sample mean squared error, MSE = £(<*2). ,n The 
more accurate the forecast, the smaller is MSE. Show that MSE is equal to the 
sum of the variance of the error and the square of the mean error. 

b. A forecast is unbiased if the mean forecast error is 0. Why might unbiased 
forecasts be desirable? Are they necessarily desirable? 

c. Suppose that (log >)/+*.< is an unbiased forecast of (log yh+A- Then 
exp( (log y) is a biased forecast of y,+/,. More generally, if (Jly)) H - A . / is an 
unbiased forecast of ( / ( y ) ) / + A . then f~] ((f(y)),+h.t) is a biased forecast of 
yt+h, for the arbitrary nonlinear function / Why? (Hint: Is the expected value 
of a nonlinear function of the random variable the same as the nonlinear 
function of the expected value?) 

d. Various "corrections" for the bias exp((log y)t+h,i) have been proposed. In 
practice, however, bias corrections may increase the variance of the forecast 
error even if they succeed in reducing bias. Why? (Hint: In practice, die 
corrections involve estimated parameters.) 

e. In practice, will bias corrections necessarily reduce the forecast MSE? Why or 
why not? 

1 5 The MSE introduced earlier in the context of model selection is the mean of the in-sample 
residuals, as opposed to out-of-sample prediction errors. The distinction is crucial. 
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9. (Model selection for long-horizon forecasting) Suppose that you want to forecast 
monthly inventory of Lamborgini autos at an exclusive Manhattan dealership. 
a. Using the true data-generating process is best for forecasting at any horizon. 

Unfortunately, we never know the true data-generating process! All our 
models are approximations to the true but unknown data-generating process, 
in which case the best forecasdng model may change with the horizon. Why? 

b. At what horizon are the forecasts generated by models selected by the AIC 
and SIC likely to be most accurate? Why? 

c. How might you proceed to select a 1-month-ahead forecasdng model? A 
2-month-ahead model? A 3-month-ahead model? A 4-month-ahead model? 

d. What are the implications of your answer for construction of an extrapolation 
forecast, at horizons 1-month-ahead through 4-months-ahead? 

e. In consuucdng our extrapolation forecasts for retail sales, we used the AIC 
and SIC to select one model, which we then used to forecast all horizons. Why 
do you think we didn't adopt a more sophisticated strategy? 

10. (The variety of "information criteria" reported across software packages) Some 
authors, and software packages, examine and report the logarithms of the AIC 
and SIC as 

In (AIC) = In + (") 
and V 

/ T 

E ' 7 
ln(SIC) = ln + 

k\n(T) 

\ / 
The practice is so common diat log(AIC) and log(SIC) are often simply called die 
"AIC" and "SIC." AIC and SIC must be greater than 0, so log(AIC) and log(SIC) 
are always well defined and can take on any real value. Other authors and packages 
use other variants, based, for example, on the value of the maximized likelihood or 
log likelihood function. Some software packages have even changed definitions of 
AIC and SIC across releases! The important insight, however, is that although these 
variations will of course change the numerical values of AIC and SIC produced by 
your computer, they will not change the rankings of models under the various 
criteria. Consider, for example, selecting among three models. If AICi < AIC^ < 
AIC3, then it must be true as well that In(AlCi) < ln(AIC2) < ln(AICs), so we would 
select model 1 regardless of the "definition" of the information criterion used. 

Bibliographical and Computational Notes 
The AIC and SIC trace at least to Akaike (1974) and Schwarz (1978). Granger, King, 
and White (1995) provide insightful discussion of consistency of model selection 
criteria, and the key (and difficult) reference on efficiency is Shibata (1980). Engle 
and Brown (1986) find that criteria with comparatively harsh degrees-of-freedom 
penalties (for example, the SIC) select the best forecasdng models. 
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Kennedy (1992) reviews a number of corrections for the bias in exp((log y),+ M ) . 
A number of authors have investigated the use of multiple models for multiple 

horizons, including Findley (1983) and Tiao and Tsay (1994). Findley (1985) 
develops criteria for selection of multi-step-ahead forecasting models. 

Concepts for Review 
Trend 
Deterministic trend 
Stochastic trend 
Time dummy 
Regression intercept 
Regression slope 
Quadratic trend 
Exponential trend 
Log-linear trend 
Least-squares regression 
Argmin 
Model selection 
Mean squared error 
In-sample over fitting 
Data mining 
Out-of-sample 1-step-ahead prediction 

error variance 
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I. The Nature and Sources of Seasonality 
In the last chapter, we focused on the trends; now we'll focus on seasonality. A 
seasonal pat tern is one that repeats itself every year. 1 T h e annual repetit ion can 
be exact, in which case we speak of deterministic seasonality, or approximate , 
in which case we speak of stochastic seasonality. Just as we focused exclusively 
on deterministic t rend in Chapter 5, reserving stochastic t rend for subsequent 
t reatment , so shall we focus exclusively on deterministic seasonality here . 

Seasonality arises from links of technologies, preferences, and institutions 
to the calendar. The weather (for example, daily high tempera ture in Tokyo) 
is a trivial but very important seasonal series, as it's always hot ter in the sum­
mer than in the winter. Any technology that involves the weather, such as pro­
duction of agricultural commodities, is likely to be seasonal as well. 

Preferences may also be linked to the calendar. Consider, for example, 
gasoline sales. In Figure 6.1, we show monthly U.S. current-dollar gasoline 
sales, 1980.01-1992.01. People want to d o more vacation travel in the summer, 
which tends to increase both the price and quantity of summert ime gasoline 
sales, both of which feed into higher current-dollar sales. 

1 Note, therefore, that seasonality is impossible, and thus not an issue, in data recorded once per 
year or less often than once per year. 
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Finally, social institutions that are linked to the calendar, such as holidays, 
are responsible for seasonal variation in a variety of series. Purchases of retail 
goods skyrocket, for example, every Christmas season. In Figure 6.2, we plot 
monthly U.S. current-dollar liquor sales, 1980.01-1992.01, which are very 
high in November and December. In contrast, sales of durable goods fall in 
December, as holiday purchases tend to be nondurables . This emerges clearly 
in Figure 6.3, in which we show monthly U.S. current-dollar durable goods 
sales, 1980.01-1992.01. 

You might imagine that, a l though certain series are seasonal for obvious 
reasons, seasonality is nevertheless u n c o m m o n . O n the contrary, and perhaps 
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surprisingly, seasonality is pervasive in business and economics. Many indus­
trialized economies, for example, expand briskly every fourth quar ter and 
contract every first quarter. 

O n e way to deal with seasonality in a series is simply to remove it and then 
to model and forecast the seasonally adjusted time series. 2 This strategy is per­
haps appropr ia te in certain situations, such as when interest centers explicitly 
on forecasting nonseasonal fluctuations, as is often the case in macroeconom­
ics. Seasonal adjustment is often inappropriate in business forecasting situa­
tions, however, precisely because interest typically centers on forecasting all 
the variation in a series, not jus t the nonseasonal part. If seasonality is respon­
sible for a large part of the variation in a series of interest, the last thing a fore­
caster wants to d o is discard it and pre tend it isn't there. 

2. Modeling Seasonality 
A key technique for model ing seasonality is regression on seasonal dummies. 
Let s be the n u m b e r of seasons in a year. Normally we'd think of four seasons 
in a year, but that notion is too restrictive for our purposes. Instead, think of s 
as the number of observations on a series in each year. Thus, s = 4 if we have 
quarterly data, s = 12 if we have monthly data, s = 52 if we have weekly data, 
and so forth. 

Removal of seasonality is called seasonal adjustment. 
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Now let's construct seasonal dummy variables, which indicate which sea­
son we're in. If, for example, there are four seasons, we create 

D\ indicates whether we're in the first quar te r (it's I in the first quar te r and 
0 otherwise), Lh indicates whether we're in the second quarter (it's 1 in the sec­
o n d quar ter and 0 otherwise), and so on. At any given time, we can be in only 
one of the four quarters, so one seasonal dummy is 1, and all others are 0. 

T h e pure seasonal dummy model is 

Effectively, we're just regressing on an intercept, but we allow for a different 
intercept in each season. Those different intercepts, the *y,'s, are called the 
seasonal factors; they summarize die seasonal pat tern over the year. In the ab­
sence of seasonality, the 7 / s are all the same, so we can d rop all the seasonal 
dummies and instead simply include an intercept in the usual way. 

Instead of including a full set of s seasonal dummies , we can include any 
5 — 1 seasonal dummies and an intercept. Then die constant term is the in­
tercept for the omit ted season, and the coefficients on the seasonal dummies 
give the seasonal increase or decrease relative to the omit ted season. In n o 
case, however, should we include s seasonal dummies and an intercept. In­
cluding an intercept is equivalent to including a variable in the regression 
whose value is always 1, but note that the full set of 5 seasonal dummies sums 
to a variable whose value is always 1. Thus , inclusion of an intercept and a full 
set of seasonal dummies produces perfect multicollinearity, and your com­
puter will scream at you if you run such a regression. (Try it!) 

Trend may be included as well, in which case the model is 3 

In fact, you can think of what we're doing in this chapter as a generalization of 
what we did in the last, in which we focused exclusively on trend. We stillwa.nl 
to account for t rend, if it's present, but we want to expand the model so that 
we can account for seasonality' as well. 

The idea of seasonal ity may be extended to allow for more general calendar 
effects. "Standard" seasonality is just one type of calendar effect. Two additional 
important calendar effects are holiday variation and trading-day variation. 

Holiday variation refers to the fact that some holidays' dates change over 
time. Tha t is, a l though they arrive at approximately the same time each year, 
the exact dates differ. Easter is a common example. Because die behavior of 

A> 
As 

(1 ,0 , 0, 0, 1,0, 0, 0, 1,0, 0 ,0 , . . .) ; 
(0, 1,0, 0, 0, 1,0, 0, 0, 1,0. 0 , . . . ) : 
( 0 ,0 , 1,0, 0, 0, 1,0, 0, 0, 1,0 ) ; 
(0, 0, 0, 1, 0, 0. 0, 1,0. 0, 0. 1, . . . ) . 

y , = ^2yiD» + e, • 

For simplicity, we have included only a linear trend, but more complicated models of trend, such 
as quadratic, exponendal , or logistic, could of course be used. 

http://stillwa.nl
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many series, such as sales, shipments, inventories, hours worked, and so on , 
depends in part on the timing of such holidays, we may want to keep track of 
them in our forecasting models. As with seasonality, holiday effects may be 
handled with dummy variables. In a monthly model , for example, in addit ion 
to a full set of seasonal dummies , we might include an "Easter dummy," which 
is 1 if the month contains Easter and 0 otherwise. 

Trading-day variation refers to the fact that different months contain differ­
ent numbers of trading days or business days, which is an important considera­
tion when modeling and forecasting certain series. For example, in a monthly 
forecasting model of volume traded on the London Stock Exchange, in addi­
tion to a full set of seasonal dummies, we might include a trading-day variable, 
whose value each month is the number of trading days that month . 

Allowing for the possibility of holiday or trading-day variation gives the 
complete model 

y, = B.TIME, + J^yM, + £ > (

H D H D V ( < + ] T 5 , T D TDV, , + e , , 

where the HDVs are the relevant holiday variables ( there are vi of them) , and 
the TDVs are the relevant trading-day variables (here we've allowed for of 
them, but in most applications, v> = 1 will be adequate) . This is just a s tandard 
regression equation and can be estimated by ordinary least squares. 

3. Forecasting Seasonal Series 
Now consider constructing an /^-step-ahead point forecast, yj±i,,T, at t ime T. As 
with the pure t rend models discussed in the previous chapter, there 's no prob­
lem of forecasting the right-hand-side variables, because of the special (per­
fectly predictable) nature of t rend and seasonal variables, so point forecasts 
are easy to generate . 

T h e full model is 

y, = B.TIME, + £ -y,D„ + £ 5 (

H D HDV ; / + ] T o r o T D V „ + e, . 

so that at t ime T + h, 

\ T'L '"2 

yT+k = ft T I M E r + A + £ 7 > D , r + „ + £ &™HDV,, T + k + £ o T O TDV, m + e 7 + „ . 
»=i <=i I = I 

As with the pure t rend model of Chapter 5, we project d ie right side of the 
equat ion on what's known at time T ( t h a t is, the time-Tinformation set, Qr) 
to obtain the forecast 

y m , r = ftTIME.,+ A + J > D , T + . + X > M D H D V , . 7 > , , + £ o T O T D V , / m . 
=i ,=i <=i 
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As always, we make this point forecast operat ional by replacing unknown 
parameters with estimates, 

To form an interval forecast, we proceed precisely as in pu re t rend models 
we studied earlier. We assume that the regression disturbance is normally dis­
tr ibuted, in which case a 9 5 % interval forecast ignoring parameter estimation 
uncertainty is y T + h , r ± 1.96a. where cr is the standard deviation of the re­
gression disturbance. To make the interval forecast operat ional , we use 
yr-rh.T i 1.966*, where o- is the standard e r ror of the regression. 

To form a density forecast, we again assume that the t rend regression dis­
turbance is normally distributed. Then , ignoring parameter estimation uncer­
tainty, the density forecast is N(y/+it.T, o"2). where o is the standard deviation 
of the disturbance in the t rend regression. T h e operational density forecast is 
then N(yT+h,r, o*2). 

We'll use the seasonal model ing techniques that we've developed in this chap­
ter to build a forecasting model for housing starts. Housing starts are seasonal 
because it's usually preferable to start houses in the spring, so that thev're 
completed before winter arrives. We have monthly data on U.S. housing starts; 
we'll use the 1946.01-1993.12 period for estimation and the 1994.01-1994.11 
per iod for out-of-sample forecasting. We show the entire series in Figure 6.4, 

yT+k.T = & . T l M E r + , + £7 i -Mi .™ + Yl&™HDV, ^ + £ & ™ T D V , 

4. Application: Forecasting Housing Starts 

Housing Starts, 
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and we zoom in on the 1990.01-1994.11 per iod in Figure 6.5 in o rde r to reveal 
the seasonal pa t te rn in bet ter detail. 

T h e figures reveal that there is n o trend, so we'll work with the pure sea­
sonal model , 

Table 6.1 shows the estimation results. The 12 seasonal dummies account for 
more than a third of the variation in housing starts, as R*= 0.38. At least some 
of the remaining variation is cyclical, which the model is not designed to cap­
ture. (Note the very low Durbin-Watson statistic.) 

T h e residual plot in Figure 6.6 makes clear the strengths and limitations of 
the model . First compare the actual and fitted values. The fitted values go 
through the same seasonal pat tern every year—there 's nothing in the model 
o ther than deterministic seasonal dummies—but that rigid seasonal pat tern 
picks u p a lot of the variation in housing starts. It doesn ' t pick up all of the vari­
ation, however, as evidenced by the serial correlation that 's apparent in the 
residuals. Note the dips in the residuals, for example, in recessions (for exam­
ple 1990. 1982, 1980, and 1975), and the peaks in booms. 

The estimated seasonal factors are just the 12 estimated coefficients on the 
seasonal dummies; we graph them in Figure 6.7. The seasonal effects are very 
low in January and February and then rise quickly and peak in May, after which 
they decline, at first slowly and then abruptly in November and December. 

In Figure 6.8, we see the history of housing starts th rough 1993, together 
with the out-of-sample point and 9 5 % interval extrapolation forecasts for the 
first 11 months of 1994. The forecasts look reasonable, as the model has 

Time 



106 Chapter 6 

T A B L E 6.1 
Regression Results: 
Seasonal Dummy 
Variable Model, 
Housing Starts 

LS//Dependent variable is STARTS. 
Sample: 1946:01 1993:12 
Included observations: 576 

Variable Coefficient Std. Error f-Statistic Prob. 

Dl 86.50417 4.029055 21.47009 0.0000 
D2 89.50417 4.029055 22.21468 0.0000 
m 122.8833 4.029055 30.49929 0.0000 
D4 142.1687 4.029055 35.28588 0.0000 
D5 147.5000 4.029055 36.60908 0.0000 
D6 145.9979 4.029055 36.23627 0.0000 
Dl 139.1125 4.029055 34.52733 0.0000 
£>8 138.4167 4.029055 34.35462 0.0000 
D9 130.5625 4.029055 32.40524 0.0000 
D10 134.0917 4.029055 33.28117 0.0000 
DU 111.8333 4.029055 27.75671 0.0000 
D12 92.15833 4.029055 22.87344 0.0000 

R* 0.383780 Mean dependent var. 123.3944 
Adjusted fl? 0.371762 SD dependent var. 35.21775 
SE of regression 27.91411 Akaike info criterion 6.678878 
Sum squared resid. 439467.5 Schwarz criterion 6.769630 
Log likelihood -2728.825 /^statistic 31.93250 
Durbin-WaLson stat. 0.154140 Prob(F-statistic) 0.000000 
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evidently d o n e a good j o b of captur ing the seasonal pa t tern . The forecast 
intervals are quite wide, however, reflecting the fact that the seasonal effects 
captured by the forecasting model are responsible for only about a third of the 
variation in the variable being forecast. 

In Figure 6.9, we include the 1994 realization. T h e forecast appears highly 
accurate, as the realization and forecast are quite close th roughout . Moreover, 
the realization is everywhere well within the 9 5 % interval. 
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F I G U R E 6 . 3 
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Exercises, Problems, and Complements 
1. (Log transformations in seasonal models) Just as log transformations were useful 

in trend models to allow for nonlinearity, so too are they useful in seasonal 
models, although for a somewhat different purpose: stabilization of variance. 
Often log transformations stabilize seasonal patterns whose variance is growing 
over time. Explain and illustrate. 

2. (Seasonal adjustment) Just as we sometimes want to remove the trend from a 
series, sometimes we want to seasonally adjust a series before modeling and 
forecasting it. Seasonal adjustment may be done with moving-average methods 
analogous to those used for detrending in Chapter 5 , or with the dummy variable 
methods discussed in this chapter, or with sophisticated hybrid methods like the 
X-ll procedure developed at the U.S. Census Bureau. 
a. Discuss in detail how you'd use dummy variable regression methods to 

seasonally adjust a series. (Hint: The seasonally adjusted series is closely 
related to the residual from the seasonal dummy variable regression.) 

b. Seasonally adjust the housing starts series using dummy variable regression. 
Discuss die patterns present and absent from the seasonally adjusted series. 

c. Search the web (or the librarv) for information on the latest U.S. Census 
Bureau seasonal adjustment procedure, and report what you learned. 

3. (Selecting forecasting models involving calendar effects) You're sure that a series 
you want to forecast is trending and that a linear trend is adequate, but you're not 
sure whether seasonality is important. To be safe, you fit a forecasting model with 
both trend and seasonal dummies, 

y , = BjTIME, + ^ 7 , A , + E, . 
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a. The hypothesis of no seasonality, in which case you could drop the seasonal 
dummies, corresponds to equal seasonal coefficients across seasons, which is a 
set of s — 1 linear restrictions: 

71 = 7a. 72 = 73, • • • . 7*-i = 7* • 

How would you perform an F-test of the hypothesis? What assumptions are 
you implicitly making about the regression's disturbance term? 

b. Alternatively, how would you use forecast model selection criteria to decide 
whether to include the seasonal dummies? 

c. What would you do in the event that the results of the "hypothesis testing" 
and "model selection" approaches disagree? 

d. How, if at all, would your answers change if instead of considering whether to 
include seasonal dummies you were considering whether to include holiday 
dummies? Trading-day dummies? 

4. (Testing for seasonality) Using the housing starts data: 
a. As in the chapter, construct and estimate a model with a full set of seasonal 

dummies. 
b. Test the hypothesis of no seasonal variation. Discuss your results. 
c. Test for the equality of the coefficients on March and November and the 

coefficients on all the months in between, and construct a model that uses 
three dummy variables, one for December, January, and February, one for 
March and November, and one for the remaining months. 

5. (Seasonal regressions with an intercept and s — 1 seasonal dummies) Reestimate 
the housing starts model using an intercept and 11 seasonal dummies, rather 
than die full set of seasonal dummies as in the text. Compare and contrast your 
results with those reported in the text. What is the interpretation of the intercept? 
What are the interpretations of the coefficients on the 11 included seasonal 
dummies? Does it matter which month's dummy you drop? 

6. (Applied trend and seasonal modeling) Nile.com, a successful online bookseller, 
monitors and forecasts the number of hits per day to its web page. You have daily 
hits data for January 1, 1998, through September 28, 1998. 
a. Fit and assess the standard linear, quadratic, and log linear trend models. 
b. For a few contiguous days roughly in late April and early May, hits were much 

higher than usual during a big sale. Do you find evidence of a corresponding 
group of outliers in the residuals from your trend models? Do they influence 
your trend estimates much? How should you treat them? 

c. Model and assess the significance of day-of-week effects in Nile.com web page 
hits. 

d. Select a final model, consisting only of trend and seasonal components, to use 
for forecasting. 

e. Use your model to forecast Nile.com hits through the end of 1998. 

7. (Periodic models) We introduced the seasonal dummy model as a natural and 
simple method for generalizing a simple "mean plus noise" model, 

y, = \l + E, , 

to allow the mean to varv with the seasons, 

Yf = ^7. Ay + £ / 

http://Nile.com
http://Nile.com
http://Nile.com
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More generally, we can also allow the coefficients of richer models to vary with 
the seasons, as, for example, when we move from the fixed-coefficient regression 
model, 

This model, which permits not only a seasonally varying intercept but also a 
seasonally varying slope, is an example of a p e r i o d i c r e g r e s s i o n m o d e l . The word 
periodic refers to the coefficients, which vary regularly with a fixed seasonal 
periodicity. 

8. (Interpreting dummy variables) You fit a purely seasonal model with a full set of 
standard monthly dummy variables to a monthly series of employee hours 
worked. Discuss how the estimated dummy variable coefficients y \, "yv, • • • would 
change if you changed the first dummy variable D\ = (1, 0, 0 , . . . ) (with all the 
other dummy variables remaining the same) to 
a. Di = (2, 0 , 0 , . . . ) ; 
b. D, = (-10, 0 , 0 , . . . ) ; 
c. i7i = ( 1 , 1 , 0 , . . . ) . 

9. (Constructing seasonal models) Describe how you would construct a purely 
seasonal model for the following monthly series. In particular, what dummy 
variable(s) would you use to capture the relevant effects? 
a. A sporting goods store finds that detrended monthly sales are roughly the 

same for each month in a given 5-month season. For example, sales are 
similar in the winter months of January, February, and March; in the spring 
months of April, May, and June; and so on. 

b. A campus bookstore finds that detrended sales are roughly the same tor all 
first, all second, all third, and all fourth months of each trimester. For 
example, sales are similar in January, May, and September, the first months of 
the first, second, and third trimesters, respectively. 

c. A Christmas ornament store is only open in November and December, so 
sales are zero in all other months. 

10. (Calendar effects) You run a large catering firm, specializing in Sunday brunches 
and weddings. You model the firm's monthly income as \t — Bo + 8, S, + oM.Vr, 
+ £,, where y is monthly income, and .S'and Ware calendar effect variables 
indicating the number of Sundays and weddings in a month. 
a. What are die units of Bo, 5,, and o u? 
b. How could you estimate the average income the firm receives per wedding? 
c. Cher the past 30 years, you have regularly increased your prices to keep pace 

with inflation. How would you modify- the model to account for the effects of 
such increases? 

y , = B,, + Bi*/+£, , 

to the model widi time-varying parameters 
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Characterizing Cycles 

We've already built forecasting models with t rend and seasonal components . 
In this chapter, as well as the next two, we consider a crucial third componen t , 
cycles. WTien you think of a "cycle," you probably think of the sort of rigid up-
and-down pat tern depicted in Figure 7.1. Such cycles can sometimes arise, but 
cyclical fluctuations in business, finance, economics, and government are typ­
ically much less rigid. In fact, when we speak of cycles, we have in mind a much 
more general , all-encompassing notion of cyclicality: any sort of dynamics not 
captured by t rends or seasonals. 

Cycles, according to our broad interpretat ion, may display the sort of back-
and-forth movement characterized in Figure 7.1, but they don ' t have to. All we 
require is that there be some dynamics, some persistence, some way in which 
the present is linked to the past and the future to the present. Cycles are pre­
sent in most of the series that concern us, and it's crucial that we know how to 
model and forecast them, because their history conveys information regard­
ing their future. 

Trend and seasonal dynamics are simple, so we can capture them with sim­
ple models. Cyclical dynamics, however, are more complicated. Because of the 
wide variety of cyclical patterns, the sorts of models we need are substantially 
more involved. Thus , we split the discussion into three parts. Here in Chap­
ter 7 wre develop methods for characterizingcycles, in Chapter 8 we discuss mod­
els of cycles, and following that, in Chapter 9, we show how to use those models 

112 
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to forecast cycles. All of the material is crucial to a real unders tanding of fore­
casting and forecasting models, and it's also a bit difficult the first time a round 
because it's unavoidably rather mathematical, so careful, systematic study is re­
quired. The payoff will be large when we arrive at Chapter 10, in which we as­
semble and apply extensively the ideas for model ing and forecasting trends, 
seasonals, and cycles developed in Chapters 5-9. 

A realization of a time series is an o rdered set, | . . . , y-2, Y-i, yo, Vi, Vs, • • Typ­
ically the observations are o rde red in t ime—hence the name time series—but 
they don ' t have to be. We could, for example, examine a spatial series, such as 
office space rental rates as we move along a line from a point in Midtown 
Manhattan to a point in the New York suburbs 30 miles away. But die most 
important case for forecasting, by far, involves observations ordered in time, 
so that 's what we'll stress. 

In theory, a time series realization begins in the infinite past and continues 
into the infinite future. This perspective may seem abstract and of limited 
practical applicability, but it will be useful in deriving certain very important 
propert ies of the forecasting models we'll be using soon. In practice, of 
course, the data we observe are just a finite subset of a realization, {y\,.. . , ydi 
called a sample path. 

Shortly we'll be building forecasting models for cyclical time series. If the 
underlying probabilistic structure of the series were changing over time, we'd 
be doomed—there would be no way to predict the future accurately on the 
basis of the past, because the laws governing the future would differ from 

I. Covariance Stationary Time Series 
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those governing the past. If we want to forecast a series, at a min imum we'd 
like its mean and its covariance structure (i.e., the covariances between cur­
ren t a n d past values) to be stable over time, in which case we say that the series 
is covariance stationary. 

Let's discuss covariance stationarity in greater dep th . T h e first require­
ment for a series to be covariance stationary is that the mean of the series be 
stable over time. The mean of the series at time / is 

£(y , ) = p,, . 

If the mean is stable over t ime, as required by covariance stationarity, then we 
can write 

E(y>) = p- . 

for all t. Because the mean is constant over time, there 's n o need to put a time 
subscript on it. 

The second requi rement for a series to be covariance stationary is that its 
covariance structure be stable over time. Quantifying stability of the covari­
ance structure is a bit tricky, but tremendously important , and we d o it using 
the autocovariance function. T h e autocovariance at displacement T is just the 
covariance between y, and y,_ T . It will of course d e p e n d on T , and it may also 
d e p e n d on t, so in general we write 

y(t, T) = cov(y„ y,_ T) = E(y,- ii)(y,^ - p . ) . 

If the covariance structure is stable over time, as required by covariance sta­
tionarity, then die autocovariances d e p e n d only on displacement, T , not on 
time, /, and we write 

7 ( / , T ) = 7(T) , 

for all /. 
T h e autocovariance function is impor tant because it provides a basic sum­

mary of cyclical dynamics in a covariance stationary series. By examining the 
autocovariance structure of a series, we learn about its dynamic behavior. We 
graph and examine the autocovariances as a function of T . Note that the auto­
covariance function is symmetric; that is, 

*Y(T) = " , ( - T ) , 

for all T . Typically, we'll consider only nonnegative values of T . Symmetry re­
flects the fact that the autocovariance of a covariance stationary series de­
pends only on displacement; it doesn ' t mat ter whether we go forward o r 
backward. Note also that 

7(0) = cov(y / f y,) = var(y , ) . 

The re is one more technical requi rement of covariance stationarity: We 
require that the variance of the series—the autocovariance at displacement 0, 
7(0)—be finite. It can be shown that n o autocovariance can be larger in 
absolute value than 7(0), so if 7(0) < oo, then so, too, are all the o the r auto­
covariances. 
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It may seem that the requirements for covariance stationarity are quite 
stringent, which would bode poorly for our forecasting models, almost all of 
which invoke covariance stationaritv in one way or another . It is certainly t rue 
that many economic, business, financial, and government series are not co-
variance stationary. An upward trend, for example, corresponds to a steadily 
increasing mean, and seasonality corresponds to means that vary widi the sea­
son, both of which are violations of covariance stationarity. 

But appearances can be deceptive. Although many series are not covariance 
stationary, it is frequently possible to work with models diat give special t reatment 
to nonstationary components such as trend and seasonality, so that the cyclical 
component that's left over is likely to be covariance stationary. We'll often adopt 
that strategy. Alternatively, simple transformations often appear to transform 
nonstationarv series to covariance stationaritv. For example, many series that are 
clearly nonstationary in levels appear covariance stationary in growth rates. 

In addition, note that a l though covariance stationarity requires means and 
covariances to be stable and finite, it places n o restrictions on o the r aspects of 
the distribution of the series, such as skewness and kurtosis. 1 The upshot is 
simple: Whether we work directly in levels and include special components for 
the nonstationary elements of our models, or we work on transformed data 
such as growth rates, the covariance stationaritv assumption is no t as unrealis­
tic as it may seem. 

Recall that the correlation between nvo random variables x and y is de­
fined by 

That is, the correlation is simply the covariance, "normalized" or "standard­
ized," by the product of the standard deviations of .v and y. Bodi the correlation 
and the covariance are measures of linear association between two random 
variables. The correlation is often more informative and easily interpreted, 
however, because the construction of the correlat ion coefficient guarantees 
that corr(x, y) G [ — 1, 1 ] , whereas the covariance between the same two ran­
dom variables may take any value. The correlation, moreover, does not depend 
on the units in which .vand y are measured, whereas the covariance does. Thus, 
for example, if x and y have a covariance of 10 million, they're not necessarily 
very strongly associated, whereas if thev have a correlation of .95, it is unam­
biguously clear that thev are very strongly associated. 

In light of the superior interpretability of correlations as compared with 
covariances, we often work with the correlation, ra ther than the covariance, 
between y, and y,_T. That is, we work with the autocorrelat ion function, p(T), 
ra ther than the autocovariance function, 7 (1") . The autocorrelat ion function is 
obtained by dividing the autocovariance function by the variance, 

7 ( T ) 

P(T) = ^ , T = 0 , l , 2 , . . . . 
7(0) 

1 For that reason, covariance stationaritv is sometimes called second-order stationarity or weak 
stationarity. 
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T h e formula for the autocorrelat ion is just the usual correlation formula, spe­
cialized to the correlation between y, and >',_-. To see why, note that the vari­
ance of y, is 7 (0), and by covariance stationarity, the variance of y at any o the r 
time y,-T is also 7 (0). Thus , 

, , _ cov(y„ y,_ 7) _ 7 ( T ) _ T(T) 
P 7 ) ~ V ^ a 7 ( ^ v / v a r ( y / _ 7 ) v ^ v ^ O ) 7 ( 0 ) ' 

as claimed. Note that we always have p(0) = = 1, because an)' series is 

perfectly correlated with itself. Thus , the autocorrelat ion at displacement 0 
isn't of interest; rather, only the autocorrelat ions beyond displacement 0 in­
form us about a series' dynamic structure. 

Finally, the partial autocorrelation function, />(T), is sometimes useful. />(T) 
is just the coefficient of y,_T in a populat ion linear regression of y, on 
yt-i,..., y , - T

2 We call such a regression an autoregression, because the vari­
able is regressed on lagged values of itself. It's easy to see that the autocorrela­
tions and partial autocorrelations, al though related, differ in an important way. 
The autocorrelations are just the "simple" or "regular" correlations between yt 

and y<-T. The partial autocorrelations, on the other hand, measure the associ­
ation between y,and y,_T after con trolling for the effects of y , _ i , . . . , y , _ T + i ; that 
is, they measure the partial correlation between y, and y,_ T. 

As with the autocorrelat ions, we often graph the partial autocorrelat ions 
as a function of T and examine their qualitative shape, which we'll d o soon. 
Like the autocorrelat ion function, the partial autocorrelat ion function pro­
vides a summary of a series' dynamics, but as we'll see, it does so in a differ­
en t way. 3 

All of the covariance stationary processes that we will study subsequently 
have autocorrelat ion and partial autocorrelat ion functions that approach 0, 
one way or another, as the displacement gets large. In Figure 7.2 we show an 
autocorrelat ion function that displavs gradual one-sided damping, and in Fig­
ure 7.3 we show a constant autocorrelat ion function; the latter could not be 
the autocorrelat ion function of a stationary process, whose autocorrelat ion 
function must eventually decay. The precise decay pat terns of autocorrela­
tions and partial autocorrelat ions of a covariance stationary series, however, 
d e p e n d on the specifics of the series, as we'll see in detail in the next chapter. 
In Figure 7.4, for example, we show an autocorrelat ion function that displays 
d a m p e d oscillation—the autocorrelat ions are positive at first, then become 
negative for a while, then positive again, and so on, while continuously getting 

2 To get a feel for what we mean by "population regression," imagine that we have an infinite sam­
ple of data al our disposal, so that the parameter estimates in the regression are not contaminated 
by sampling variation; that is. thev're die true population values. The thought experiment just de­
scribed is a population regression. 
s Also in parallel to the autocorrelation function, the partial autocorrelation at displacement 0 is 
always 1 and is therefore uninformative and uninteresting. Thus, when we graph the autocorrelation 
and partial autocorrelation functions, we'll begin at displacement I radier than displacement 0. 
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smaller in absolute value. Finally, in Figure 7.5 we show an autocorrelat ion 
function that differs in the way it approaches 0—the autocorrelat ions d r o p 
abruptly to 0 beyond a certain displacement. 

2. White Noise 
In this section and throughout the next chapter, we'll study the populat ion 
propert ies of certain time series models, or time series processes, which are 
very impor tant for forecasting. Before we estimate time series forecasting 
models, we need to unders tand their populat ion properties, assuming that the 
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postulated model is t rue. The simplest of all such time series processes is the 
fundamental building block from which all others are constructed. In fact, it's 
so impor tant that we introduce it now. We use y to deno te the observed series 
of interest. Suppose that 

y, -

e , - ( 0 \ < x 2 ) , 

where the "shock," e,, is uncorre la ted over time. We say that and hence y,, is 
serially uncorrelated. Throughout , unless explicitly stated otherwise, we 
assume that a2 < oo. Such a process, with zero mean, constant variance, and 
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n o serial correlation, is called zero-mean white noise, or simply white noise . 4 

Sometimes for short we write 

E, ~ VV riV(0,a*) 

a n d hence 

y, - WN(0, o--) . 
Note that, a l though e, and hence y , are serially uncorrelated, they are no t 
necessarily serially independent , because they are not necessarily normally 
disnibuted. 1 1 If in addition to being serially uncorre la ted, y is serially indepen­
dent , d ien we say that y is independent white noise . 5 We write 

„S(p,a ' ) . 
and we say that "y is independent ly and identically distributed with zero mean 
and constant variance." If v is serially uncorre la ted and normally distributed, 
then it follows that y is also serially independent , and we say that y is normal 
white noise or Gaussian white noise. ' We write 

We read "y is independendy and identically distributed as normal , with zero 
mean and constant variance" or simply "y is Gaussian white noise." In Fig­
ure 7.6 we show a sample path of Gaussian white noise, of length T = 150, sim­
ulated on a computer . The re are no pat terns of any kind in the series d u e to 
the independence over time. 

You're already familiar with white noise, al though you may not realize it. 
Recall that the disturbance in a regression model is typically assumed to be 
white noise of one sort or another . There ' s a subtle difference here , however. 
Regression disturbances are not observable, whereas we're working with an 
observed series. Later, however, we'll see how all of ou r models for observed 
series can be used to model unobserved variables such as regression distur­
bances. 

Let's characterize the dynamic stochastic s t ructure of white noise, 
y, — WA'(0, o- J). By construction the uncondit ional mean ofy is 

£(y,) = 0 , 

and the uncondit ional variance ofy is 

var(yv) = a'2 . 

' It's called white noise b\ analogy widi white light, which is composed of all colors of the 
spectrum, in equal amounts. We can think of white noise as being composed of a wide variety of 
cvcles of differing periodicities, in equal amounts. 

' Recall that zero correlation implies independence onlv in the normal case. 

" Another name for independent white noise is strong white noise, in contrast to standard serially 
uncorrelated weak white noise. 
' Karl Friedrich Gauss, one of the greatest mathematicians of all time, discovered the normal 
distribution some 200 years ago—hence the adjective Gaussian. 
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F I G U R E V B 
Realization of 
White Noise Process 

X 0 

Note that the uncondit ional mean and variance are constant. In fact, the un­
conditional mean and variance must be constant for any covariance stationary 
process. T h e reason is that constancy of the uncondit ional mean was our first 
explicit requi rement of covariance stationarity and that constancy of the un­
condit ional variance follows implicidy from the second requi rement of covari­
ance stationarity—that the autocovariances depend only on displacement, not 
on t ime. 8 

To unders tand fully the linear dynamic structure of a covariance stationary 
time series process, we need to compute and examine its mean and its auto­
covariance function. For white noise, we've already computed the mean and 
the variance, which is the autocovariance at displacement 0. We have yet to 
compute the rest of the autocovariance function; fortunatelv. however, it's 
very simple. Because white noise is, by definition, uncorrela ted over time, all 
the autocovariances, and hence all the autocorrelations, are 0 beyond dis­
placement 0. 9 Formally, then, the autocovariance function for a white noise 
process is 

7 (T) = 
T = 0 
T > 1 

and the autocorrelat ion function for a white noise process is 

I T = 0 
P(T) = 

0. T > 1 

In Figure 7.7 we plot the white noise autocorrelation function. 
Finally, consider the partial autocorrelat ion function for a while noise 

series. For the same reason that the autocorrelat ion at displacement 0 is always 
1, so, too, is the partial autocorrelation at displacement 0. For a white noise 

"Recall that a 2 = y(0). 
9 If the autocovariances are all 0. so are the autocorrelations, because the autocorrelations are 
proportional to the autocovariances. 
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process, all partial autocorrelat ions beyond displacement 0 are 0, which again 
follows from the fact that white noise, by construction, is serially uncorrelated. 
Population regressions of y , on y,-i» or on y,_i and y,-2 or on any o ther lags, 
p roduce noth ing but 0 coefficients, because the process is serially uncorre­
lated. Formally, the partial autocorrelat ion function of a white noise process is 

p(r) 
[ 1 , T = 0 

~ I 0, T > 1 . 
We show the partial autocorrelat ion function of a white noise process in Fig­
ure 7.8. Again, it's degenera te and exactly the same as the autocorrelat ion 
function! 

By now you've surely nodced that if you were assigned the task of forecast­
ing independen t white noise, you'd likely be doomed to failure. WTiat happens 
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to a white noise series at any time is uncorre la ted with anything in the past; 
similarly, what happens in the future is uncorre la ted with anything in the pre­
sent or past. But unders tanding white noise is tremendously important tor at 
least two reasons. First, as already ment ioned, processes with much richer dy­
namics are built up by taking simple transformations of white noise. Second, 
1-step-ahead forecast errors from good models should be white noise. .After 
all, if such forecast errors aren ' t white noise, then they're serially correlated, 
which means that diey're forecastable; and if forecast errors are forecastahle, 
then the forecast can ' t be very good. Thus, it's important that we unders tand 
and be able to recognize white noise. 

Thus far we've characterized white noise in terms of its mean, variance, 
autocorrelat ion function, and partial autocorrelat ion function. .Another char­
acterization of dynamics, with important implications for forecasting, involves 
the mean and variance of a process, conditional on its past. In particular, we 
often gain insight into the dynamics in a process by examining its conditional 
mean , which is a key object for forecasting. 1 0 In fact, t h roughou t our study of 
time series, we'll be interested in comput ing and contrasting the uncondi­
tional mean and variance and the conditional mean and variance of various 
processes of interest. Means and variances, which convey information about 
location and scale of random variables, are examples of what statisticians call 
moments. For die most part, ou r comparisons of the conditional and uncon­
ditional momen t structure of t ime series processes will focus on means and 
variances (they're the most important moments ) , but sometimes we'll be in­
terested in higher-order moments , which are related to properties such as 
skewness and kurtosis. 

For compar ing conditional and uncondi t ional means and^variances. it will 
simplify our story to consider independen t white noise, y, ~- (0, cr'-'). By the 
same arguments as before, the uncondit ional mean ofy is 0, and die uncondi­
tional variance is o*~. Now consider the conditional mean and variance, where 
the information set £2, , on which we condition contains ei ther the past his­
tory of the observed series, Q,. \ = >V2> • • •!» o r the past history of the 
shocks, C2,_, = { £ , _ ! , E/_2, -. .}• (They're the same in the white noise case.) In 
contrast to the uncondi t ional mean and variance, which must be constant by 
covariance stationarity, the conditional mean and variance need no t be con­
stant, and in general we'd expect them not to be constant. The uncondit ion­
ally expected growth of laptop computer sales next quar ter may be 10%. but 
expected sales growth may be much higher, conditional on knowledge that 
sales grew this quar ter by 20%. For the independen t white noise process, the 
conditional mean is 

E(y, | « , - i ) = 0 , 

and the conditional variance is 

var(y, | 0 , - i ) = - E{y, I ft,-,))2 | Q, . , ) = n1 . 

[f you need to refresh vour memory on conditional means, consult any good introductory 
statistics book, such as Wonnacott and Wonnacott (1990). 
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Conditional and uncondi t ional means and variances are identical for an inde­
penden t white noise series; there are n o dynamics in die process and hence no 
dynamics in the conditional moments to exploit for forecasdng. 

1 I I I I I I I I 

3. The Lag Dperator 
T h e lag operator and related constructs are the natural language in which fore­
casting models are expressed. If you want to unders tand and manipulate 
forecasting models—indeed, even if you simply want to be able to read the soft­
ware manuals—you have to be comfortable with the lag operator. T h e lag 
operator, L, is very simple; It "operates" on a series by lagging it. Hence, 

Ly, = y,_! . 

Similarly, 

L 2 y < = L(L(y / )) = L(y,_,) = y , _ 2 , 

and so on. Typically we'll operate on a series not with the lag opera tor but with 
a polynomial in the lag operator. A lag opera tor polynomial of degree m is just 
a linear function of powers of L, u p through the mth power, 

B(L) = h + biL+ hLr + • • • bmLm . 
To take a very simple example of a lag opera tor polynomial operat ing on 

a series, consider d ie mth-order lag opera tor polynomial Lm, for which 

Lmy\ = yi-m • 

A well-known operator, the first-difference opera tor A, is actually a first-order 
polynomial in the lag operator; you can readily verify that 

Ay, = (1 - L)y, ~ y, - y,_, . 

As a final example, consider the second-order lag opera tor polynomial 
(1 -(- 0.9L -I- 0.6L 2) operat ing on y,. We have 

(1 + 0 . 9 L + 0.6L 2 )y, = y ,+0 .9y ,_ i 4-0.6y,_ 2 , 

which is a weighted sum, or distributed lag, of cur ren t and past values. All 
forecasting models, o n e way or another, must contain such distributed lags, 
because they've got to quantify how the past evolves into the present and 
future; hence, lag opera tor notat ion is a useful shor thand for stating and ma­
nipulat ing forecasting models. 

Thus far, we've considered only finite-order polynomials in the lag opera­
tor; it turns out that infinite-order polynomials are also of great interest. We 
write the infinite-order lag opera tor polynomial as 

• X 

B(L) = 6„ + 6, L + bil} + • • • = ] T b, L'' . 
I =0 
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Thus , for example, to deno te an infinite distributed lag of cur ren t and past 
shocks, we might write 

B(L)e, = bu£, + 4- b2E,-2 -I = ^ biZ,-j . 

,"=» 

At first sight, infinite distributed lags may seem esoteric and of limited practi­
cal interest, because models with infinite distributed lags have infinitely many 
parameters (by, b\, bo,. . . ) and therefore can' t be estimated with a finite sam­
ple of data. On the contrary, and surprisingly, it turns out that models involv­
ing infinite distributed lags are central to time series model ing and forecast­
ing. Wold's theorem, to which we now turn, establishes that centrality. 

I I I I I I 

4. Wold's Theorem, the General Linear Process, 
and Rational Distributed Lags1 1 

WOLD'S THEOREM 

Many different dynamic pat terns are consistent with covariance stationarity. 
Thus , if we know only that a series is covariance stationary, it's not at all clear 
what sort of model we might fit to describe its evolution. The t rend and sea­
sonal models that we've studied aren ' t of use; they're models of specific non-
stationary components . Effectively, what we need now is an appropr ia te model 
for what 's left after fitting the t rend and seasonal components—a model for a 
covariance stationary residual. Wold's representation theorem points to the 
appropr ia te model . 

THEOREM 

Let \y,} be any zero-mean covariance-stationary process . 1 2 Then wre can write it as 

y, = B(L)£, = J2b>e<-> 
<=!» 

e, - WN(0, o--), 
- x 

where be, = 1 and £ < 0 0 • l*1 short, the correct "model" for any covariance 
1 = 0 

stationary series is some infinite distributed lag of white noise, called the Wold 
representation. The E,'s are often called innovations, because (as we'll see in 
Chapter 9) they correspond to the 1-step-ahead forecast er rors that we'd make 

1 1 This section is a bit more abstract than others, but don't be put off. On the contrary, you may 
want to read it several limes. The material in it is cruciallv important for time series modeling and 
forecasting and is therefore central to our concerns. 
1 2 Moreover, we require that the covariance stationary processes don't contain any deterministic 
components . 
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if we were to use a particularly good forecast. That is, the e, s represent that 
part of the evolution of v that 's linearly unpredictable on the basis of the past 
of y. Note also that the Er s. a l though uncorrela ted, are not necessarily inde­
penden t . Again, it's onlv for Gaussian r andom variables that lack of correla­
tion implies independence , and the innovations are not necessarily Gaussian. 

In our statement of Wold's theorem we assumed a zero mean. Tha t may 
seem restrictive, but it's not. Rather, whenever you see y,, just read y, — p., so 
that the process is expressed in deviations from its mean . T h e deviation from 
the mean has a zero mean, by construct ion. Working with zero-mean 
processes therefore involves no loss of generality while facilitating notational 
economy. We'll use this device frequently. 

THE GENERAL LINEAR PROCESS 

Wold's theorem tells us that when formulating forecasting models for covari­
ance stationary time series, we need only consider models of the form 

y, = £ ( ! ) £ , = ] T &,£,-, 

E, - vVA/(0, cr), 

where the b, are coefficients with &<> = 1 and ]T b~ < oo. We call this the general 

linear process, "general" because any covariance stationary series can be writ­
ten that way, and "linear" because the Wold representat ion expresses the series 
as a linear function of its innovations. 

T h e general l inear process is so impor tant that it's wortii examining its 
uncondi t ional and conditional m o m e n t structure in some detail. Taking 
means and variances, we obtain the uncondit ional moments 

E(y>) = E\Y1 ht<) = E * < £ < e ' - < ) = £ b > • • • 0 = 0 

\ ;=o / ( = 0 / = < > 

and 

( X \ X X X 

^ £,£,_, J = 2 ^ b~ var(£,_,) = b^a1 = a~ J 2 % ' 
, = F > / , = ( I , = ( » 

At this point, in parallel to our discussion of white noise, we could compute 
and examine the autocovariance and autocorrela t ion functions of the gen­
eral l inear process. Those calculations, however, are ra ther involved, and not 
particularly revealing, so we'll proceed instead to examine the condit ional 
mean and variance, where the information set Q,-\ on which we condit ion 
contains past innovations; that is, = {£,_|, E,_2,...). In this manner , 
we can see how dynamics are modeled via condit ional m o m e n t s . 1 3 The 
1 3 Although Wold's theorem guarantees onlv serially uncorrelated white noise innovations, we 
shall sometimes make a stronger assumption of independent white noise innovations to focus the 
discussion. We do so, for example, in the following characterization of the conditional moment 
structure of the general linear process. 
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condit ional mean is 

E(y, | ft,_,) = £(£, | n,_,) + 6iE(E,_, | « ,_ , ) + &.,£(£,_, | ft,_,)4-- •• 
• X 

= 0 + 6|E,_i -I- + • • • = £ Z , ' E ' - ' ' 

and the conditional variance is 

var(y, | ft,_,) = E((y, - E(y, | ft,.,))2 | ft,-,) = £(£? | ft,_,) = £(£?) = cr*. 
T h e key insight is that the condit ional mean worn over t ime in response to the 
evolving information set. T h e model captures the dynamics of die process, 
and the evolving conditional mean is one crucial ray of summarizing them. 
An impor tant goal of t ime series modeling, especially for forecasters, is cap­
turing such conditional mean dynamics—the uncondit ional mean is constant 
(a requi rement of stationarity), but the conditional mean varies in response to 
the evolving information se t . 1 4 

RATIONAL DISTRIBUTED LAGS 

As we've seen, the Wold representation points to the crucial importance of mod­
els with infinite distributed lags. Infinite distributed lag models, in turn, are 
stated in terms of infinite polynomials in the lag operator, which are therefore 
very important as well. Infinite distributed lag models are not of immediate 
practical use, however, because they contain infinitely many parameters, which 
certainly inhibits practical application! Fortunately, infinite polynomials in the 
lag operator needn ' t contain infinitely many free parameters. The infinite poly­
nomial B(L) may, for example, be a ratio of finite-order (and perhaps very low-
order) polynomials. Such polynomials are called rational polynomials, and dis-
u ibu ted lags constructed from them are called rational distributed lags. 

Suppose, for example, that 
0 ( £ ) 

where the numera to r polynomial is of degree q, 

0 ( L ) = 22e(£' , 
a n d the denomina to r polynomial is of degree p, 

<D(z,) = 22<P,£'. 
/ = < > 

T h e r e are not infinitely many free parameters in the B(L) polynomial: instead, 
there are only p 4- q parameters ( the O's and the tp's). If p and qare small—say, 

H Note, however, an embarrassing asymmetry: the conditional variance, like the unconditional 
variance, is a fixed constant However, models that allow the conditional variance to change with 
the information set have been developed recendy, as discussed in detail in Chapter 14. 
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0, 1 , or 2—then what seems like a hopeless task—estimation of B(L)—may 
actually be easy. 

More realistically, suppose that B(L) is not exactly rational but is approxi­
mately rational, 

T h e n we can find an approximation of the Wold representation using a ratio­
nal distributed lag. Rational distributed lags p roduce models of cycles that 
economize on parameters (they're parsimonious), while nevertheless provid­
ing accurate approximations to the Wold representat ion. T h e popular ARMA 
and ARIMA forecasting models, which we'll study shortly, are simply rational 
approximations to the Wold representat ion. 

5. Estimation and Inference for the Mean, 
Autocorrelation, and Partial Autocorrelation Functions 
Now suppose we have a sample of data on a t ime series, and we don ' t know the 
t rue model that generated the data, or the mean , autocorrelat ion function, or 
partial autocorrelat ion function associated with that true model. Instead, we 
want to use the data to estimate the mean, autocorrelat ion function, and partial 
autocorrelat ion function, which we might then use to help us learn about the 
underlying dynamics and to decide on a suitable model or set of models to fit 
to the data. 

T h e mean of a covariance stationary series is u, = ivy,. A fundamental princi­
ple of estimation, called the analog principle, suggests that we develop estima­
tors by replacing expectations with sample averages. Thus, our estimator for 
the populat ion mean, given a sample of size T, is the sample mean, 

Typically we're not directly interested in the estimate of the mean, but it's 
needed for estimation of the autocorrelat ion function. 

The autocorrelat ion at displacement T for the covariance stationary series y is 

SAMPLE MEAN 

SAMPLE AUTOCORRELATIONS 

p(T) = 
£((>, - u,)(y,- 7 -

E((.Y, - P ) 2 ) 
»t)) 
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Application of the analog principle yields a natural estimator, 
T 

22 ((yi - y)(yt-i - y)) 

T 

22(>' ~ 
This estimator, viewed as a function of T , is called the sample autocorrelat ion 
function or correlogram. Note that some of the summations begin at 
t = T + 1 , not at t = 1; this is necessary because of the appearance of y,_T in 
the sum. Note that we divide those same sums by T, even though only (T — T) 
terms appear in the sum. When T i s large relative to T (which is the relevant 
case), division by T o r by T — T will yield approximately the same result, so it 
won't make much difference for practical purposes; moreover, there are good 
mathematical reasons for preferring division by T. 1 5 

It 's often of interest to assess whether a series is reasonably approximated 
as white noise, which is to say whether all its autocorrelat ions are 0 in popula­
tion. A key result, which we simply assert, is that if a series is white noise, then 
the distribution of the sample autocorrelat ions in large samples is 

Note how simple the result is. T h e sample autocorrelat ions of a white noise se­
ries are approximately normally distributed, and the normal is always a conve­
nient distribution to work with. Their mean is 0, which is to say the sample au­
tocorrelations are unbiased estimators of the t rue autocorrelat ions, which are 
in fact 0. Finally, the variance of the sample autocorrelat ions is approximately 
1 / T (equivalendy, the s tandard deviation is \/yff), which is easy to construct 
and remember . U n d e r normality, taking plus or minus two standard errors 
yields an approximate 9 5 % confidence interval. Thus, if the series is white 
noise, then approximately 95% of the sample autocorrelat ions should fall in 
the interval ± ^ = . In practice, when we plot the sample autocorrelat ions for 
a sample of data, we typically include the "two-standard-error bands," which 
are useful for making informal graphical assessments of whether and how the 
series deviates from white noise. 

T h e rwo-standard-error bands, a l though very useful, only provide 9 5 % 
bounds for the sample autocorrelat ions taken one at a time. Ultimately, we're 
often interested in whether a series is white noise—that is, whether all its 
autocorrelat ions are jointly 0. A simple extension lets us test that hypothesis. 
Rewrite the expression 

1 5 For additional discussion, consult any of the more advanced time series texts mentioned in 
Chapter 1. 

as 
x / T p ( T ) ~ A r < o , D . 
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Squaring both sides vields 

7 p 2 ( T ) - x f • 

It can be shown that, in addition to being approximately normally distributed, 
the sample autocorrelat ions at various displacements are approximately inde­
penden t of one another. Recalling that the sum of independen t x 2 variables is 
also x~ with degrees of freedom equal to the sum of the degrees of freedom of 
the variables summed, we have shown that the Box-Pierce Q-statistic, 

m 

Qpp = r-£p2(T). 
is approximately distributed as a x»« r andom variable unde r the null hypothesis 
that y is white no i se . 1 7 A slight modification of this, designed to follow more 
closely the x2 distribution in small samples, is 

Q , B = T(T+2)J2(j^)p2(T) . 

U n d e r the null hypothesis that y is white noise, ( £ L B is approximately distrib­
uted as a Xm random variable. Note that the Ljung-Box Q-statistic is the same 
as the Box-Pierce Q-statistic, except that the sum of squared autocorrelat ions 
is replaced by a weighted sum of squared autocorrelat ions, where the weights 
are (T + 2 ) / (T — T ). For moderate and large T, the weights are approximately 1, 
so that the Ljung-Box statistic differs little from the Box-Pierce statistic. 

Selection of m is d o n e to balance compet ing criteria. On die one hand , we 
don ' t want m too small, because, after all, we're trying to do a jo in t test on a 
large part of the autocorrelat ion function. On the o the r hand , as m grows 
relative to T, the quality of die distributional approximations we've invoked 
deteriorates. In practice, focusing on m in the ne ighborhood of >/~T is often 
reasonable. 

SAMPLE PARTIAL AUTOCORRELATIONS 

Recall that the partial autocorrelat ions are obtained from populat ion linear 
regressions, which correspond to a thought exper iment involving linear re­
gression using an infinite sample of data. T h e sample partial autocorrelat ions 
cor respond to the same thought exper iment , except that the linear regression 
is now d o n e on the (feasible) sample of size T. If the fitted regression is 

y, = f + Pi_v,-i + • • • + (3Ty,_7 , 

then the sample partial autocorrelation at displacement T is 

, f i Recall that the square of a standard normal random variable is a x" random variable with I de­
gree of freedom. We square the sample autocorrelations p ( T ) so that positive and negative values 
don't cancel when we sum across \ai imis values of 7 , as we will soon do. 
17 m is a maximum displacement selected b\ the user. ShorUv we'll discuss how to choose it. 

file:///aiimis
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Distributional results identical to those we discussed for the sample autocor­
relations hold as well for the sample partial autocorrelat ions. Tha t is, if the se­
ries is white noise, approximately 9 5 % of the sample partial autocorrelat ions 
should fall in the interval As with the sample autocorre la t ions , we 
typically plot the sample partial autocorrelations along with their two-standard-
e r ro r bands. 

I I I I -1 - 1 - I I I M l - f I I \ 

G. Application: Characterizing Canadian Employment 
Dynamics 
To illustrate the ideas we've int roduced, we examine a quarterly, seasonally 
adjusted index of Canadian employment , 1962.1-1993.4, which we plot in 
Figure 7.9. The series displays no trend, and of course it displays n o seasonal­
ity because it's seasonally adjusted. It does, however, appear highly serially cor­
related. It evolves in a slow, persistent fashion—high in business cycle booms 
and low in recessions. 

To get a feel for the dynamics opera t ing in the employment series, we per­
form a correlogram analysis. 1 8 The results appear in Table 7.1. Consider first 
the Q-statistic. 1 9 We compute the Q-statistic and its Rvalue u n d e r the null hy­
pothesis of white noise for values of m ( the n u m b e r of terms in the sum that 

1 8 A correlogram analysis simply means examination of the sample autocorrelation and partial 
autocorrelation functions (with two-standard-error bands), together with related diagnostics, 
such as Q-statisUcs. 
l ! ' We show the Ljung-Box version of the Q*tatistic. 
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Sample: 1962:1 1993:4 
Included observations: 128 

Acorr . P. Acorr . S td . Error 

1 0.949 0.949 .088 
2 0.877 -0.244 .088 
3 0.795 -0.101 .088 
4 0.707 -0.070 .088 
5 0.617 -0.063 .088 
6 0.526 -0.048 .088 
7 0.438 -0.033 .088 
8 0.351 -0.049 .088 
9 0.258 -0.149 .088 
10 0.163 -0.O70 .088 
11 0.073 -0.011 .088 
12 -0.005 0.016 .088 

T A B I E 7 I 
Canadian 
Employment Index, 

L j u n g - B o x /••value 

118.07 0.000 
219.66 0.000 
303.72 0.000 
370.82 0.000 
422.27 0.000 
460.00 0.000 
486.32 0.000 
503.41 0.000 
512.70 0.000 
516.43 0.000 
517.20 0.000 
517.21 0.000 

underlies the Q-statistic) ranging from 1 through 12. The /rvalue is consis­
tently 0 to four decimal places, so the null hypothesis of white noise is deci­
sively rejected. 

Now we examine the sample autocorrelat ions and partial autocorrela­
tions. The sample autocorrelat ions are very large relative to their s tandard er­
rors and display slow one-sided decay. 2 0 The sample partial autocorrelations, 
in contrast, are large relative to their s tandard errors at first (particularly for 
the one-quarter displacement) bu t are statistically negligible beyond displace­
men t 2." 1 In Figure 7.10 we plot the sample autocorrelat ions and partial auto­
correlations along with their two-standard-error bands. 

It's clear that employment has a strong cyclical componen t ; all diagnostics 
reject the white noise hypothesis immediately. Moreover, the sample autocor­
relation and partial autocorrelat ion functions have particular shapes—the au­
tocorrelation function displays slow one-sided damping, while the partial 
autocorrelat ion function cuts off at displacement 2. You might guess that such 
pat terns , which summarize the dynamics in the series, might be useful for sug­
gesting candidate forecasting models. Such is indeed the case, as we'll see in 
the next chapter. 

We don't show the sample autocorrelation or partial autocorrelation at displacement 0. because 
as we mentioned earlier, thev equal 1.0, bv construction, and therefore convey no useful infor­
mation. We'll adopt this convention throughout. 

- 1 Note that the sample autocorrelation and partial autocorrelation are identical at displacement 
1. That's because at displacement 1. there are no earlier lags to control for when computing the 
sample partial autocorrelation, so it equals the sample autocorrelation. At higher displacements, 
of course, die two diverge. 



132 Chapter 7 

F I G U R E 7.1D 
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Exercises, Problems, and Complements 
1. (Lag operator expressions 1) Rewrite the following expressions without using the 

lag operator, 
a. (17 )y, = £, 

/ 2 + 5L + 0 .8L 2 \ 
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2. (Lag operator expressions 2) Rewrite the following expressions in lag operator 
form. 
a. y, + T/_i H h y,_.\ = a +£, + Et-\ H 1- E / _ \ , where a is a constant 
b. y, = e,_ 2 +£,_t + £/. 

3. (Autocorrelation functions of covariance stationary series) While interviewing at 
a top investment bank, vour interviewer is impressed by the fact that you have 
taken a course on time series forecasting. She decides to test your knowledge of 
the autocovariance structure of covariance stationary series and lists four 
autocovariance functions: 
a. -y(/, T) = a, 
b. 7( / ,T) = 
c. y ( / , T) = aT, and 

d. y((,T) = -, 
T 

where a is a positive constant. Which autocovariance function (s) are consistent 
with covariance stationarity, and which are not? Why? 

4. (Autocorrelation vs. partial autocorrelation) Describe the difference between 
autocorrelations and partial autocorrelations. How can autocorrelations at 
certain displacements be positive while the partial autocorrelations at those same 
displacements are negative? 

5. (Conditional and unconditional means) As head of sales of the leading 
technology and innovation magazine publisher TECCIT, your bonus is dependent 
on the firm's revenue. Revenue changes from season to season, as subscriptions 
and advertising deals are entered or renewed. From your experience in the 
publishing business, you know that the revenue in a season is a function of the 
number of magazines sold in the previous season and can be described as 
y, = 1000 + 0.9.x,_i 4- with uncorrelated residuals E, ~ N ( ( ) , 1000), where y is 
revenue and xis the number of magazines sold. 
a. What is the expected revenue for next season conditional on total sales of 

6340 this season? 
b. What is unconditionally expected revenue if unconditionally expected sales 

are 8500? 
c. A rival publisher offers you a contract identical to your current contract 

(same base pay and bonus). Based on a confidential interview, you know that 
the same revenue model with identical coefficients is appropriate for your 
rival. The rival has sold an average of 9000 magazines in previous seasons but 
only 5650 this season. "Will you accept the offer? Why or why not? 

6. (White noise residuals) You work for a top five consulting firm and are in the 
middle of a 1-week vacation, when one of the directors calls you and urges you 
immediately to join a turnaround project at Stardust Cinemas. You are briefed 
that despite its bad financial condition, the recently fired CEO had planned to 
increase Stardust's market share bv renovating every theater to include a bar, 
an arcade, and a restaurant. Your ta.sk on the team is to assess whether this 
renovation should be scrapped or included in a future value creation project. To 
do so, you spend a long night fitting a trend + seasonal model to a sample of 
7' = 100 observations of Stardust's recent box office income data. You find that 
the residuals (e) from vour model approximated follow e, = 0.5f,_i + v,, where 

• I'l 
v, ~ M((), 1). At 4 a.m. vou send vour results to vour project manager. 

http://ta.sk


Chapter 7 

a. The next morning vou receive an e-mail from your project manager. He 
thinks that your residuals do not look like white noise. Whv? Wh\ care? 

b. Assuming that the residuals do indeed follow e, = Q.5e,-\ + vt, what is their 
autocorrelation function? Discuss. 

c. What type of model might be useful for describing the historical path of box 
office income and its likely future path in the absence of renovations? How 
would you use it to assess the efficacy of the renovation project, if 
implemented? 

7. (Selecting an employment forecasting model with the .AIC and SIC) Use the AIC 
and SIC to assess the necessity and desirability of including trend and seasonal 
components in a forecasting model for Canadian employment. 
a. Display the AIC and SIC for a variety of specifications of trend and seasonality. 

Which would vou select using die AIC? SIC? Do the AIC and SIC select the 
same model? If not, which do you prefer? 

b. Discuss the estimation results and residual plot from your preferred model, 
and perform a correlogram analysis of the residuals. Discuss, in particular, the 
patterns of the sample autocorrelations and partial autocorrelations, and 
their statistical significance. 

c. How, if at all, are your results different from those reported in the text? Are 
the differences important? Why or why not? 

8. (Simulation of a time series process) Many cutting-edge estimation and 
forecasting techniques involve simulation. Moreover, simulation is often a good 
wav to get a feel for a model and its behavior. White noise can be simulated on a 
computer using random number generators, which are available in most statistics, 
econometrics, and forecasting packages. 
a. Simulate a Gaussian white noise realization of length 200. Call the white noise 

£/. Compute the correlogram. Discuss. 
b. Form the distributed lag \, = e, 4- 0.9£,_i, / = 2, 3 , . . . , 200. Compute the 

sample autocorrelations and partial autocorrelations. Discuss. 
c. Let yi - 1 and y, — 0.9y,-i + £/./ = 2, 3 200. Compute the sample 

autocorrelations and partial autocorrelations. Discuss. 

9. (Sample autocorrelation functions for trending series) A telltale sign of the slowly 
evolving nonstationarity associated with trend is a sample autocorrelation 
function thw*<liimps extremely slowly. 
a. Find three trending series, compute their sample autocorrelation functions, 

and report vour results. Discuss. 
b. Fit appropriate trend models, obtain the model residuals, compute theit 

sample autocorrelation functions, and report your results. Discuss. 

10. (Sample autocorrelation functions for seasonal series) A telltale sign of seasonality 
is a sample autocorrelation function with sharp peaks at the seasonal displacements 
(4, 8. 12, etc.. for quarterly data; 12, 24. 36, etc., for monthly data; etc.). 
a. Find a series with both trend and seasonal variation. Compute its sample 

autocorrelation function. Discuss. 
b. Detrend the series. Discuss. 
c. Compute the sample autocorrelation function of the deUended series. Discuss. 
d. Seasonally adjust the detrended series. Discuss. 
e. Compute the sample autocorrelation function of the detrended, seasonally-

adjusted series. Discuss. 
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11. (Volatility dynamics: correlograms of squares) In Chapter 4's Exercises, Problems, 
and Complements, we suggested that a time series plot of a squared residual, e't, 
can reveal serial correlation in squared residuals, which corresponds to 
nonconstant volatility, or heteroskedasticity, in the levels of the residuals. 
Financial asset returns often display little systematic variation, so instead of 
examining residuals from a model of returns, we often examine returns directly. 
In what follows, we will continue to use the notation e,, but you should interpret 
f,as an observed asset return. 
a. Find a high-frequency (e.g., daily) financial asset return series, eh plot it, and 

discuss your results. 
b. Perform a correlogram analysis of eu and discuss vour results. 
c. Plot e~>. and discuss vour results. 
d. In addition to plotting eJ", examining the correlogram of e~t often proves 

informative for assessing volatility persistence. Whv might that be so? Perform 
a correlogram analysis of e",, and discuss your results. 

Bibliographical and Computational Notes 
Wold's theorem was originally proved in a 1938 monograph. later revised as Wold 
(1954). Rational distributed lags have long been used in engineering, and their use in 
econometric modeling dates at least lojorgenson (1966). 

Bartlett (1946) derived the standard errors of the sample autocorrelations and 
partial autocorrelations of white noise. In fact, the plus-or-minus two-standard-error 
bands are often called the "Bartlett bands." 

The two variants of the Q-statistic that we introduced were developed in the 1970s 
by Box and Pierce (1970) and by Ijung and Box (1978). Some packages compute 
both variants, and some compute onlv one (typically Ljung-Box, because it's designed 
to be more accurate in small samples). In practice, the Box-Pierce and Ljung-Box 
statistics usually lead to the same conclusions. 

For concise and insightful discussion of random number generation, as well as a 
variety of numerical and computational techniques, see Press el al. (1992). 

Concepts for Review 
Cycle 
Realization 
Sample path 
Covariance stationarity 
Autocovariance function 
Second-order stationarity 
Weak stationaritv 
Autocorrelation function 
Partial autocorrelation function 
Population regression 
Autoregression 

Time series process 
Serially uncorrelated 
Zero-mean white noise 
White noise 
Strong white noise 
Weak white noise 
Independent white noise 
Normal white noise 
Gaussian white noise 
L'nconditional mean and variance 
Conditional mean and variance 
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Moments 
Lag operator 
Polynomial in the lag operator 
Distributed lag 
Wold's representation theorem 
Wold representation 
Innovation 
General linear process 
Rational polynomial 
Rational distributed lag 
Approximation of the Wold 

Parsimonious 
Analog principle 
Sample mean 
Sample autocorrelation function 
Box-Pierce Q-statistic 
Ljung-Box Qstatistic 
Sample partial autocorrelation 
Correlogram analysis 
Simulation of a time series process 
Random number generator 
BarUett bands 

representation 
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Modeling Cycles: MA, 
AR, and ARMA Models 

When building forecasdng models, we don ' t want to p re tend that the model 
we fit is t rue. Instead, we want to be aware that w re're approximating a more 
complex reality. That ' s the m o d e r n view, and it has impor tant implications for 
forecasting. In particular, we've seen that the key to successful time series 
model ing and forecasting is parsimonious, yet accurate, approximation of the 
Wold representat ion. In this chapter, we consider three approximations: mov­
ing average (MA) models, autoregressive (AR) models, and autoregressive 
moving average (ARMA) models. The three models vary in their specifics 
and have different strengths in capturing different sorts of autocorrelat ion 
behavior. 

We begin by characterizing the autocorrelat ion functions and related 
quantities associated with each model , unde r the assumption that the model is 
"true." We d o this separately for MA, AR, and ARMA models . 1 These charac­
terizations have noth ing to do with data or estimation, but they're crucial for 
developing a basic unders tanding of the propert ies of the models, which is 
necessary to perform intelligent model ing and forecasting. They enable us to 

1 Sometimes, especially when characterizing population properties under the assumption that the 
models are correct, we refer to them as processes, which is short for stochastic processes—hence 
die terms moving average process, autoregressive process, and ARMA process. 
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make statements such as "If the data were really genera ted by an autoregres­
sive process, then we'd expect its autocorrelat ion function to have property iv." 
Armed with that knowledge, we use the sample autocorrelat ions and partial 
autocorrelat ions, in conjunction with the AIC and the SIC, to suggest candi­
date forecasting models, which we then estimate. 

I I I * I I I 

I. Moving Average (MA) Models 
T h e finite-order moving average process is a natural and obvious approxima­
tion to the Wold representat ion, which is an infinite-order moving average 
process. Finite-order moving average processes also have direct motivation. 
T h e fact that all variation in time series, o n e way or another , is driven by 
shocks of various sorts suggests the possibility of model ing time series direcdy 
as distr ibuted lags of cu r r en t and past shocks—that is, as moving average 
processes. 2 

THE M A ( 1 ) PROCESS 

T h e first-order moving average process, or MA(1) process, is 

y, = £, + 8e,_, = (1 + 8L)E, 

6, - WN(Q, a-). 

T h e defining characteristic of the MA process in general , and the MA(1) in 
particular, is that the cur ren t value of die observed series is expressed as a 
function of cur ren t and lagged unobservable shocks. Think of it as a regres­
sion model with noth ing but cur ren t and lagged disturbances on the right-
hand side. 

To help develop a feel for the behavior of the MA(1) process, we show two 
simulated realizations of length 150 in Figure 8.1. T h e processes are 

y, = £ , + 0.4e,_, 

and 

y , = £, + 0.95e,_!, 
iid 

where in each case e, ~ N(0,1). To construct the realizations, we used die 
same series of underlying white noise shocks: the only difference in the real­
izations comes from the different coefficients. Past shocks feed positively into 
the cur ren t value of the series, with a small weight of 8 = 0.4 in one case and 
a large weight of 8 = 0.95 in the other. You might think that 8 = 0.95 would in­
duce much more persistence than 8 = 0.4, but it doesn ' t . The structure of the 

- Economic equilibria, for example, may be disturbed by shocks diat take some time to be full)' 
assimilated. 
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MA(1) process, in which only the first lag of the shock appears on the right, 
forces it to have a very short memory, and hence weak dynamics, regardless of 
the parameter value. 

T h e uncondi t ional mean and variance are 

E(j,) = E(et) + e £ ( E , - , ) = 0 

and 

var(y,) = varfo) + 0 2 var(E ,_i) = a2 + 0 V = (x 2(l + 8 2 ) . 

Note that for a fixed value of o\ as 8 increases in absolute value, so, too, does 
the uncondi t ional variance. That ' s why the MA(1) process with parameter 
8 = 0.95 varies a bit more than the process with a parameter of 8 = 0.4. 

T h e conditional mean and variance of an MA( 1), where the condit ioning 
information set is = {£,_i, £ / - 2 , • • •}, are 

E(y, | = £(£ , 4- 0£,_, | Q,- i) = £ (£ , | -f 8£ (£ , - , | fl,_i) = 0£,_, 

and 

var(y, | nf-i) = E{(y, - E(y, | Q,_,) ) 2 | = £(ef I = E(e2) = a 2 . 
T h e condit ional mean explicitly adapts to the information set, in contrast to 
the uncondi t ional mean , which is constant. Note , however, that only the first 
lag of the shock enters the condit ional m e a n — m o r e distant shocks have n o 
effect on the cur ren t condit ional expectat ion. This is indicative of the one-
per iod memory of MA( 1) processes, which we'll now characterize in terms of 
the autocorrelat ion function. 

To compute the autocorrelat ion function for the MA( 1) process, we must 
first compute the autocovariance function. We have 

7 ( t ) = £ ( „ , . , ) = £«e , + ee,.,)<e,- t + 9e,_,_,)) = I _ 
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(The proof is left as a problem.) T h e autocorrelat ion function is just the auto­
covariance function scaled by the variance, 

'/ x ' 6 

7(T) 
P(T) = 

7(0) 
i + e 2 

o, 

T = 1 

otherwise . 

T h e key feature h e r e is the sharp cutoff in the autocorrelation function. All 
au tocor re la t ions are 0 beyond d isp lacement 1, the o rde r of the MA process. 
In Figures 8.2 and 8.3, we show the au tocorre la t ion functions for ou r two 
MA(1) processes with pa ramete r s 0 = 0.4 and 0 = 0.95. At d isp lacement 1, 
the process with pa rame te r 0 = 0.4 has a smaller au tocor re la t ion (0.34) 

FIGURE 8 3 
Population 
Autocorrelation 
Function, 
MA(1) Process, 
0 =0.95 

1.0 r 

0.5 -r—i 

t 0.0 c 

- 0 . 5 

- 1 . 0 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Displacement 



Modeling Cycles: MA. AR. and ARMA Models 

than the process with pa ramete r 6 = 0.95 (0.50), bu t bo th d r o p to 0 beyond 
d isp lacement 1. 

Note that the requirements of covariance stationarity (constant uncondi ­
tional mean, constant and finite uncondit ional variance, autocorrelat ion 
d e p e n d e n t only on displacement) are me t for any MA(1) process, regardless of 
the values of its parameters . If, moreover, |8| < 1. then we say that the MA(1) 
process is invertible. In diat case, we can "invert" the MA(1) process and ex­
press the current value of the series no t in terms of a cur ren t shock and a 
lagged shock but ra ther in terms of a cur ren t shock and lagged values of the 
series. That ' s called an autoregressive representation. An autoregressive repre­
sentation has a cur ren t shock and lagged observable values of the series on the 
right, whereas a moving average representat ion has a cur ren t shock and 
lagged unobservable shocks on the right. 

Let's compute the autoregressive representat ion. T h e process is 

>, = £ ,+ 8e,_, 

e, ~ WN(0, tr-). 

Thus , we can solve for the innovation as 

e, = y , - 6e,_,. 

Lagging by successively more per iods gives expressions for the innovations at 
various dates, 

E / - I = y> - i - 6e, - 2 

= y> _2 — 0£/ - 3 

£ , - 3 = y> - 3 - 0E, - 4 

and so forth. Making use of these expressions for lagged innovations, we can 
substitute backward in the MA(1) process, yielding 

> , = £ , + 0y,_, - 8 2y,_ 2 + 8 ^ , - 3 . 

In lag opera tor notat ion, we write the infinite autoregressive representat ion as 

1 

Note that the back substitution used to obtain the autoregressive representa­
tion only makes sense, and in fact a convergent autoregressive representat ion 
only exists, if |8| < 1, because in the back substitution we raise 0 to progres­
sively h igher powers. 

We can restate the invertibility condition in ano ther way: The inverse of the 
root of the moving average lag operator polynomial (1 4- 8L) must be less than 
1 in absolute value. Recall that a polynomial of degree m has m roots. Thus, the 
MA( 1) lag operator pohnomia l has one root, which is the solution to 

1 + 8L = 0 . 



142 Chapter 8 

T h e root is L = —1/8, so its inverse will be less than 1 in absolute value if 
|8 | < 1, and the two invertibility condidons are equivalent. The "inverse root" 
way of stating invertibility condidons seems tedious, but it turns out to be of 
greater applicability than the |8 | < 1 condit ion, as we'll see shortly. 

Autoregressive representat ions are appeal ing to forecasters, because one 
way or another, if a model is to be used for real-world forecasting, it must link 
the present observables to the past history of observables, so that we can ex-
uapola te to form a forecast of future observables based on present and past 
observables. Superficially, moving average models don ' t seem to meet that re­
qui rement , because the cur ren t value of a series is expressed in terms of cur­
ren t and lagged unobservable shocks, not observable variables. But unde r die 
invertibility condit ions that we've described, moving average processes have 
equivalent autoregressive representat ions. Thus , a l though we want auto­
regressive representat ions for forecasting, we don ' t have to start with an autore­
gressive model . However, we typically restrict ourselves to invertible processes, 
because for forecasdng purposes we want to be able to express cur ren t ob­
servables as functions of past observables. 

Finally, let's consider the partial autocorrelat ion function for the MA(1) 
process. From the infinite autoregressive representation of the MA(1) process, 
we see that the partial autocorrelat ion function will decay gradually to 0. As we 
discussed in Chapter 7, the partial autocorrelat ions are just the coefficients on 
the last included lag in a sequence of progressively higher-order autoregres­
sive approximations. If 0 > 0. then the pat tern of decay will be one of d a m p e d 
oscillation; otherwise, the decay will be one-sided. 

In Figures 8.4 and 8.5 we show the partial autocorrelation functions for our 
example MA(1) processes. For each process, |0 | < 1, so that an autoregressive 
representation exists, and 8 > 0, so that the coefficients in the autoregressive 
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representations al ternate in sign. Specifically, we showed the general autore­
gressive representation to be 

so the autoregressive representadon for the process with 6 = 0.4 is 

y, = e, 4- 0.4y,_, - QA2y,-i + ••• = £ , + 0.4y,_, - 0.16y,_ 2 + • • • , 

and the autoregressive representat ion for the process with 0 = 0.95 is 

> , = £ , + 0.95y,_i - 0.95 2 y,_ 2 + • • • = £ , + 0.95y,_! - 0.9025y,_ 2 + • • • . 

The pardal autocorrelat ions display a similar d a m p e d oscillation. 3 T h e decay, 
however, is slower for the 8 = 0.95 case. 

Now consider the general finite-order moving average process of o rder q, o r 
MA(q) for short, 

is a <yth-order lag operator polvnomial. T h e MA(q) process is a natural gener­
alization of the MA( 1). Bv allowing for more lags of the shock on the r ight side 

5 Note, however, that the pardal autocorrelations are not the successive coefficients in the infinite 
autoregressive representation. Rather, thev are the coefficients on the last included lag in se­
quence of progressively longer autoregressions. The two are related but distinct. 

> , = £ , + 8 Y , _ I - 8 2 y,_ 2 + e3y,-3 - • • • , 

THE MA(q) PROCESS 

y, = E, + 6,E,_t + • • • + 8,E,_ 7 = 0 ( L ) E , 

8, - WN(0, c r 2 ) , 

where 

0 ( L ) = l - r - 8 , L + . . . - r 8 ? L * 
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of the equat ion, the MA(q) process can capture richer dynamic pat terns, 
which we can potentially exploit for improved forecasting. The MA(1) process 
is of course a special case of the MA(q), cor responding to q = 1. 

T h e propert ies of the MA(^) processes parallel those of the MA(1) process 
in all respects, so in what follows we'll refrain from grinding through the math­
ematical derivations. Instead, we'll focus on the key features of practical im­
por tance . Just as the MA(1) process was covariance stationary for any value of 
its parameters , so, too, is the finite-order MA{q) process. As with the MA(1) 
process, the MA(<jr) process is invertible on\\ if a root condit ion is satisfied. T h e 
MA(<y) lag opera tor polynomial has q roots; when q > 1, the possibility of com­
plex roots arises. T h e condition for invertibility of the MA(qr) process is that 
the inverses of all of the roots must be inside the unit circle, in which case we 
have the convergent autoregressive representat ion, 

1 

T h e conditional mean of the MA(^) process evolves with the information 
set, in contrast to the uncondit ional moments , which are fixed. In contrast to the 
MA(1) case, in which the conditional mean depends on only the first lag of the 
innovation, in the MA(^) case the conditional mean depends on q lags of 
the innovation. Thus, the MA(<jf) process has the potential for longer memory. 

T h e potentially longer memory of the MA(</) process emerges clearly in its 
autocorrelat ion function. In the MA(1) case, all autocorrelat ions beyond dis­
placement 1 are 0; in the M A (0 case, all autocorrelat ions beyond displace­
men t q are 0. This autocorrelat ion cutoff is a distinctive property of moving 
average processes. T h e partial autocorrelat ion function of the MA(q) process, 
in contrast, decays gradually, in accord with the infinite autoregressive repre­
sentation, in ei ther an oscillating or a one-sided fashion, depend ing on the pa­
rameters of the process. 

In closing this section, let's step back for a m o m e n t and consider in greater 
detail the precise way in which finite-order moving average processes approx­
imate the Wold representat ion. The Wold representat ion is 

y, = B(L)e,, 
where B{L) is of infinite order. The MA(1), in contrast, is simply a first-order 
moving average, in which a series is expressed as a one-period moving average 
of cur ren t and past innovations. Thus , when we fit an MA(1) model , we're 
using the first-order polynomial 1 + 6L to approximate the infinite-order poly­
nomial B(L). Note that 1 4- 0£ is a rational polynomial with numera to r poly­
nomial of degree 1 and degenera te denomina tor polynomial (degree 0) . 

MA(^) processes have the potential to deliver better approximations to the 
Wold representat ion, at the cost of m o r e parameters to be estimated. T h e 
Wold representat ion involves an infinite moving average; the MA(^) process 
approximates the infinite moving average with a finite-order moving average, 

y, = 0 ( L ) e , f 
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whereas the MA(1) process approximates the infinite moving average with 
only a first-order moving average, which can sometimes be very restrictive. 

I I I I I I 1 I 

Z. Autoregressive (AR) Models 
T h e autoregressive process is also a natural approximation to the Wold repre­
sentation. We've seen, in fact, that under certain conditions a moving average 
process has an autoregressive representation, so an autoregressive process is in a 
sense the same as a moving average process. Like die moving average process, the 
autoregressive process has direct motivation; it's simply a stochastic difference equa­
tion, a simple mathematical model in which the current value of a series is linearly 
related to its past values, plus an additive stochastic shock. Stochastic difference 
equations are a nantral vehicle for discrete-time stochastic dynamic modeling. 

THE A R ( 1 ) PROCESS 

The first-order autoregressive process, AR(1) for short, is 

y, = <p>/_i -f £, 

e, - WJV(0, o-*). 

In lag opera tor form, we write 

(1 - q>L)y, = e , . 

In Figure 8.6 we show simulated realizations of length 150 of two AR(1) 
processes; the first is 

y, = 0.4y,_i + £ , , 
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and the second is 

y, = 0 .95^-1 + E, 
iid 

where in each case e, — iV(0,1), and the same innovation sequence underl ies 
each realization. T h e fluctuations in the AR(1) with parameter <p = 0.95 ap­
pear much more persistent that those of the AR(1) with parameter <p = 0.4. 
This contrasts sharply with the MA( 1) process, which has a very short memory 
regardless of parameter value. Thus, the AR( 1) model is capable of capturing 
much more persistent dynamics than is the MA(1). 

Recall that a finite-order moving average process is always covariance sta­
tionary but that certain condit ions must be satisfied for invertibility, in which 
case an autoregressive representat ion exists. For autoregressive processes, 
the situation is precisely the reverse. Autoregressive processes are always 
invertible—in fact, invertibility isn't even an issue, as finite-order autoregres­
sive processes already are in autoregressive form—but certain condit ions must 
be satisfied for an autoregressive process to be covariance stationary. 

If we begin with the AR(1) process, 

This moving average representation for y is convergent if and only if |<pl < 1; 
thus, |tp| < 1 is the condition for covariance stationarity in the AR( l ) case. 
Equivalently, the condition for covariance stationarity is that the inverse of the 
root of the autoregressive lag operator polynomial be less than 1 in absolute 
value. 

From the moving average representat ion of the covariance stationary 
AR(1) process, we can compute the uncondi t ional mean a n d variance, 

y, = <p>V-i + e , , 

and substitute backward for lagged y's on the right side, we obtain 

y , = E, 4- (f£,_1 4- <p2£,_2 H . 

In lag opera tor form, we write 
1 

y, = r£ i • 
1 — <p£ 

E(y,) 

£(£,) + <?£(£,_!)-»-<p2£(e/-5 >2£(e,_2) + . . . 
0 

and 

var(y,) var(£, -h <p£,_i + cp2£,_2 + • • •) 

o-2 4- tp2o-2 4- <pV 2 + • • • 
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T h e conditional moments , in contrast, are 

E(y, | y,-i) = £(<p)Vi + £/1 

= 9y,_! -f 0 

and 

var(y, I >v i ) = var(9.V/-i + £/1 y,-i) 

= <p2var(y,_, | y,_i) 4- var(E, 1 i) 

= 0 + o-: .2 

Note in particular the simple way in which the conditional mean adapts to the 
changing information set as the process evolves. 

To find the autocovariances, we proceed as follows. T h e process is 

This is called the Yule-Walker equation. It is a recursive equation; that is, given 
7(T ) , for any T, the Yule-Walker equation immediately tells us how to get 
* Y ( T + 1). If we knew-y(0) to start things off (an "initial condit ion"), we could use 
the Yule-Walker equation to de te rmine the entire autocovariance sequence. And 
we do know 7(0) ; i t s just the variance of the process, which we already showed 

to be 7(0) = . Thus, we have 

so that, multiplying both sides of the equat ion by yt-7 we obtain 

For T ^ l , taking expectations of both sides gives 

7(T) = <P7(T - ! ) • 

7(0) 

7 (D 1 — ip: >2 

7(2) ,2 

1 
and so on. In general , then, 

Dividing th rough by 7(0) gives the autocorrelat ions, 

p ( T ) = < p \ T = 0 , 1 , 2 , . . . . 
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Note the gradual autocorrelat ion decay, which is typical of autoregressive 
processes. T h e autocorrelat ions approach 0, but only in the limit as the dis­
placement approaches infinity. In particular, they don ' t cut off to 0, as is the 
case for moving average processes. If <p is positive, the autocorrelat ion decay is 
one-sided. If tp is negative, the decay involves back-and-forth oscillations. T h e 
relevant case in business and economics is <p > 0, but ei ther way, the autocor­
relations d a m p gradually, not abruptly. In Figures 8.7 and 8.8, we show the 
autocorrelat ion functions for AR(1) processes with parameters tp = 0.4 and 
tp = 0.95. T h e persistence is much stronger when <p = 0.95, in contrast to the 
MA(1) case, in which the persistence was weak regardless of the parameter . 
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Finally, the partial autocorrelat ion function for the AR(1) process cuts off 
abruptly; specifically, 

* H o ; : : \ 
It's easy to see why. The partial autocorrelat ions are just the last coefficients in 
a sequence of successively longer populat ion autoregressions. If the t rue 
process is in fact an AR( 1), the first partial autocorrelat ion is just the auto­
regressive coefficient, and coefficients on all longer lags are 0. 

In Figttres 8.9 and 8.10 we show the partial autocorrelat ion functions for 
our two AR(1) processes. At displacement 1, the partial autocorrelat ions are 
simply the parameters of the process (0.4 and 0.95, respectively), and at longer 
displacements, the partial autocorrelat ions are 0. 
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THE AR(p) PROCESS 

T h e general pth o rde r autoregressive process, or XR{p) for short, is 

yt - <PiV,-l + ip2>i-a -\ h Vfjt-f, + £/ 

E, ~ WN(0, o-2) . 

In lag opera tor form, we write 

<P(L)y, = (1 - (p,L - <p,L2 ^flL>')yl = e< • 
As with our discussion of the MA(^) process, in our discussion of the AR(p) 
process, we dispense here with mathematical derivations and instead rely on 
parallels with the AR(1) case to establish intuition for its key properties. 

An AR(p) process is covariance stationary if and only if the inverses of all 
roots of the autoregressive lag opera tor polynomial <t>(L) are inside the unit 
circle. 4 In the covariance stationary case, we can write the process in the con­
vergent infinite moving average form 

1 

T h e autocorrelat ion function for the general AR(p) process, as with that of 
the AR(1) process, decays gradually with displacement. Finally, the AR(p) par­
tial autocorrelat ion function has a sharp cutoff at displacement for the same 
reason that the AR(1) pardal autocorrelat ion function has a sharp cutoff at 
displacement 1. 

Let's discuss the AR(/>) autocorrelation function in a bit greater depth. The 
key insight is that, in spite of the fact that its qualitative behavior (gradual 
damping) matches that of the AR(1) autocorrelation function, it can never­
theless display a richer variety of patterns, depend ing on the order and para­
meters of the process. It can, for example, have damped monotonic decay, as 
in the AR(1) case with a positive coefficient, but it can also have damped oscil­
lation in ways that AR(1) can' t have. In the AR(1) case, the only possible 
oscillation occurs when the coefficient is negative, in which case the autocor­
relations switch signs at each successively longer displacement. In higher-order 
autoregressive models, however, the autocorrelations can oscillate with much 
richer patterns reminiscent of cycles in the more traditional sense. This occurs 
when some roots of the autoregressive lag operator polynomial are complex/ ' 

Consider, for example, the AR(2) process, 

y, = 1.5^_i -0 .9y ,_ L , + E , . 

T h e corresponding lag operator polynomial is 1 — 1.5L 0.9L-, with two com­
plex conjugate roots, 0.83 ± 0,65i. The inverse roots are 0.75 ± 0.58J , both of 

1 A necessary condition for covariance stationarity, which is often useful as a quick check, is 
Yif-i <Pi < 1- ^ t n e condition is satisfied, the process may or mav not be stationary: but if the con­
dition is violated, the process can't be stationary. 
5 Note that complex roots can't occur in the AR( 1) case. 
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which are close to, but inside, the unit circle; thus, the process is covariance 
stationary. It can be shown that die autocorrelat ion function for an AR(2) 
process is 

P(0) = 1 

P ( 1 ) = T - L -1 — tp2 

P ( T ) = <p,p (T - 1) + <p2p(T - 2), T = 2, 3 , . . . . 

Using this formula, wre can evaluate the autocorrelat ion function for the 
process at hand; we plot it in Figure 8.11. Because the roots are complex, the 
autocorrelat ion function oscillates, and because the roots are close to the uni t 
circle, the oscillation damps slowly. 

Finally, let's step back once again to consider in greater detail the precise 
way that finite-order autoregressive processes approximate the Wold repre­
sentation. As always, the Wold representat ion is 

y, = B(L)£,, 

where B(L) is of infinite order. T h e AR(1), as compared to the MA(1), is sim­
ply a different approximation to the Wold representat ion. T h e moving aver­
age representat ion associated with the AR(1) process is 

Thus , when we fit an AR(1) model , we're using yr^y, a rational polynomial 
with degenera te numera tor polynomial (degree 0) and denomina to r polyno­
mial of degree 1, to approximate B(L). T h e moving average representat ion 
associated with the AR< 11 process is of infinite order, as is the Wold represen­
tation, but it does not have infinitely many free coefficients. In fact, only o n e 
parameter, q>, underlies it. 
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T h e AR(p) is an obvious generalization of the AR( 1) strategy for approxi­
mating the Wold representat ion. The moving average representation associ­
ated with the AR{p) process is 

_ 1 

WTien we fit an AR(/>) model to approximate the Wold representation we're 
still using a rational polynomial with degenera te numera tor polynomial 
(degree 0) , but the denomina to r polynomial is of higher degree. 

M I M I I I I I I I ! I I 

3. Autoregressive Moving Average (ARMA) Models 
Autoregressive and moving average models are often combined in attempts to 
obtain better and more parsimonious approximations to the Wold repre­
sentation, yielding the autoregressive moving average process, ARMA(/>, q) 
process for short. As with moving average and autoregressive processes, ARMA 
processes also have direct motivation.*1 First, if the r andom shock that drives an 
autoregressive process is itself a moving average process, then it can be shown 
that we obtain an ARMA process. Second, ARMA processes can arise from ag­
gregation. For example, sums of AR processes, or sums of AR and MA 
processes, can be shown to be .ARMA processes. FinalIv, AR processes observed 
subject to measurement e r ro r also turn out to be ARMA processes. 

T h e simplest ARMA process that 's not a pure autoregression or pu re mov­
ing average is the ARMA(1, 1), given by 

y, = <pv,_i + £, -r-0E,_i 

e, - WA/(0,o- J) , 

or, in lag opera tor form, 

( l -«pL ) j r , = ( l + e L ) e , , 

where |6 | < 1 is required for stationarity and |8 | < 1 is required for invert­
ibility.7 If the covariance stationarity condit ion is satisfied, then we have the 
moving average representat ion 

_ ( 1 + 8 L ) 
y ' ~ ( T ^ Z ) e " 

which is an infinite distributed lag of current and past innovations. Similarly, 
if the invertibility condit ion is satisfied, then we have the infinite autoregres­
sive representat ion, 

(1- tpZ. ) 
( 1 + 8 A ) yf = 

f> For more extensive discussion, see Granger and Newbold (198n) 
7 Both stationaritv' and invertibility need to be checked in the ARMA case, because both auto­
regressive and moving average components are present. 
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T h e ARMA(/>, q) process is a natural generalization of the ARMA(1,1) that 
allows for multiple moving average and autoregressive lags. We write 

y, = <PI TF-| + • • • + Vpjt-p -F E, -R B l 4 - • • • -R- 6,/E,-, 

E, ~ WN(0, a 2 ) , 

or 

<D(L)y, = 0 ( L ) e , , 

where 

cD(L) = l - ( P l L - < p 2 L 2 <p,I> 

and 

G(L) = i + e , l 4 - 4 - • • • + evL*. 
If the inverses of all roots of 4> (L) are inside the unit circle, then the process is co-
variance stationary and has convergent infinite moving average representation 

y< = 

If the inverses of all roots of are inside the unit circle, then the process is 
invertible and has convergent infinite autoregressive representat ion 

Q ( L ) y ' ~ e " 

As with autoregressions and moving averages, ARMA processes have a fixed 
uncondit ional mean but a time-varying conditional mean . In contrast to pure 
moving average or pure autoregressive processes, however, nei ther the auto­
correlation nor partial autocorrelat ion functions of ARMA processes cut off at 
any particular displacement. Instead, each damps gradually, with the precise 
pat tern depend ing on the process. 

ARMA models approximate the Wold representat ion by a ratio of two 
finite-order lag opera tor polynomials, nei ther of which is degenera te . Thus , 
ARMA models use ratios of full-fledged polynomials in the lag opera tor to 
approximate the Wold representat ion, 

0 ( L ) 

ARMA models, by allowing for both moving average and autoregressive com­
ponents , often provide accurate approximations to the Wold representat ion 
that nevertheless have just a few parameters . That is, ARMA models are often 
bodi highly accurate and highlv parsimonious. In a particular situation, for ex­
ample , it might take an AR(5) to get the same approximation accuracy as 
could be obtained with an ARMA(2, 1), but the AR(5) has five parameters to 
be estimated, whereas the ARMA(2, 1) has only three. 
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A. Application: Specifying and Estimating Models 
for Employment Forecasting 
In Chapter 7, we examined the correlogram for the Canadian employment 
series, and we saw that the sample autocorrelat ions d a m p slowly and the sam­
ple pardal autocorrelat ions cut off, just the opposite of what's expected for a 
moving average. Thus , the correlogram indicates that a finite-order moving 
average process would not provide a good approximation to employment dy­
namics. Nevertheless, no th ing stops us from fitdng moving average models, so 
let's fit them and use the AIC and the SIC to guide model selection. 

Moving average models are nonl inear in the parameters; thus, estimation 
proceeds by nonl inear least squares (numerical minimization). The idea is the 
same as when we encounte red nonl inear least squares in our study of non­
linear trends—pick the parameters to minimize the sum of squared residuals— 
but finding an expression for the residual is a little bit trickier. To unders tand 
why moving average models are nonl inear in the parameters , and to get a feel 
for how they're estimated, consider an invertible MA(1) model , with a 
nonzero mean explicitly included for added realism, 

y, = p -f-e, 4-6e,_, . 

Substitute backward m times to obtain the autoregressive approximation 

y, * j ~ r + E J , _ i - E V « + • • • + ( - i r + , e % _ w 4 - e , . 
1 T U 

Thus, an invertible moving average can be approximated as a finite-order 
autoregression. T h e larger is m, the better the approximation. This lets us 
(approximately) express the residual in terms of observed data, after which we 
can use a compute r to solve for the parameters that minimize the sum of 
squared residuals, 

P., 0 = argmin T (y, - (j^ + B j , - I - 9 V * + ' ' • + v - D ^ E " 

& 2 = i E (>' - (jri+ hy"1' §2-V/_2+"'+ < - l r + l ry"m 

The parameter estimates must be found using numerical optimization meth­
ods, because the parameters of the autoregressive approximation are re­
stricted. The coefficient of the second lag of y is the square of the coefficient 
on the first lag ofy, and so on . The parameter restrictions must be imposed in 
estimation, which is why we can ' t simply r u n an ordinary least-squares regres­
sion of y on lags of itself. 

T h e next step would be to estimate MA(q) models, q = 1, 2, 3, 4. Both die 
AIC and the SIC suggest that the MA(4) is best. To save space, we report only 



Modeling Cycles: MA. AR. and ARMA Models 155 

LS / / Dependent variable is CANEMP. T A B L E S . I 
Sample: 1962:1 1993:4 Employment MA(4) 
Included observations: 128 Model 
Convergence achieved after 49 iterations 

Variable Coefficient Std. Error (-Statistic Prob. 

C 100.5438 0.843322 119.2234 0.0000 
MA(1) 1.587641 0.063908 24.84246 0.0000 
MA(2) 0.994369 0.089995 11.04917 0.0000 
MA (3) 0.020305 0.046550 -0.436189 0.6635 
MA(4) 0.298387 0.020489 -14.56311 0.0000 

R2 0.849951 Mean dependent var. 101.0176 
Adjusted ft2 0.845071 SD dependent var. 7.499163 
SE of regression 2.951747 Akaike info criterion 2.203073 
Sum squared resid. 1071.676 Schwarz criterion 2.314481 
Log likelihood -317.6208 f-statistic 174.1826 
Durbin-Watson stat. 1.246600 ProWF-statistic) 0.000000 

Inverted MA roots .41 - .56 4- .72i - . 56 - ,72i - .87 

the results of MA(4) estimation in Table 8.1. The results of the MA(4) estima­
tion, a l though better than lower-order MAs, are nevertheless poor. The R2 of 
0.84 is ra ther low, for example, and the Durbin-Watson statistic indicates that 
the MA(4) model fails to account for all the serial correlation in emplovment . 
The residual plot, which we show in Figure 8.12, clearly indicates a neglected 
cycle, an impression confirmed by the residual correlogram (Table 8.2 and 
Figure 8.13). 

F I S U P E B 12 
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T A B L E B 2 
Employ men I MA (4) 
Model, Residual 
Correlogram 

Sample: 1962:1 1993:4 
Included observations: 128 
Q-staiistic probabilities adjusted for 4 ARMA term(s) 

Acorr. P. Acorr. Std. Error Ljung-Box /rvalue 

1 0.345 0.345 .088 15.614 
2 0.660 0.614 .088 73.089 
3 0.534 0.426 .088 111.01 
4 0.427 -0.042 .088 135.49 
5 0.347 -0.398 .088 151.79 0.000 
6 0.484 0.145 .088 183.70 0.000 
7 0.121 -0.118 .088 185.71 0.000 
8 0.348 -0.048 .088 202.46 0.000 
9 0.148 -0.019 .088 205.50 0.000 

10 0.102 -0.066 .088 206.96 0.000 
11 0.081 -0.098 .088 207.89 0.000 
12 0.029 -0.113 .088 208.01 o.ooo 

If we insist on using a moving average model , we 'd want to explore orders 
greater than 4, but all the results thus far indicate that moving average 
processes don ' t provide good approximations to employment dynamics. Thus , 
let's consider alternative approximations, such as autoregressions. Auto-
regressions can be conveniently estimated by ordinary least-squares regres­
sion. Consider, for example, the AR(1) model , 

( y , - p ) = <p(y,_, - u . ) 4 - e , 

£, ~ WN(0, o- 2 ) . 

We can write it as 

y , = c -|-ipy,_i 4-E,. 

where c — p ( l — <p). T h e least-squares estimators are 
7 

c, <p = argmin ] T ( y , - c - (py,_i) a 

T h e implied estimate of p. is p, = c / ( l — tp). Unlike the moving average case, 
for which the sum-of-squares funcdon is nonl inear in the parameters , 
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requir ing the use of numerical minimization methods , the sum of squares 
function for autoregressive processes is linear in the parameters , so that esti­
mation is particularly stable and easy. In the AR(1) case, we simply run an or­
dinary least-squares regression of y on one lag of y; in the AR(p) case, we 
regress y on p lags of y. 

We estimate AR(p) models, p = 1, 2, 3, 4. Both the AIC and the SIC suggest 
that the AR(2) is best. To save space, we report only the results of AR(2) 
estimation in Table 8.3. The estimation results look good, and the residuals 
(Figure 8.14) look like white noise. T h e residual correlogram (Table 8.4 and 
Figure 8.15) supports that conclusion. 

Finally, we consider ARMA(p, q) approximations to the Wold representa­
tion. ARMA models are estimated in a fashion similar to moving average 
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T A B L E S 3 
Employment AR(2) 
Model 

LS / / Dependent variable is CANEMP. 
Sample: 1962:1 1993:4 
Included observations: 128 
Convergence achieved after 3 iterations 

Variable Coefficient Std. Error (-Statistic Prob. 

c 101.2413 3.399620 29.78017 0.0000 
AR(1) 1.438810 0.078487 18.33188 0.0000 
AR(2) 0.476451 0.077902 - 6.116042 0.0000 

R* 0.963372 Mean dependent var. 101.0176 
Adjusted R2 0.962786 SD dependent var. 7.499163 
SE of regression 1.446663 Akaike info criterion 0.761677 
Sum squared resid. 261.6041 Schwarz criterion 0.828522 
Log likelihood -227.3715 .F-statistic 1643.837 
Durbin-Watson stat. 2.067024 Prob (/--statistic) 0.000000 

Inverted AR roots .92 .52 

models; they have autoregressive approximations with nonl inear restrictions 
on the parameters , which we impose when doing a numerical sum of squares 
minimization. We examine all ARMA(/>, q) models with p and q less than or 
eqvtal to 4; the SIC and AIC values appear in Tables 8.5 and 8.6. T h e SIC se­
lects the AR(2) (an ARMA(2, 0)) , which we've already discussed. The AIC, 
which penalizes degrees of freedom less harshly, selects an ARMA(3, 1) model . 

F I G U R E S I 4 
Employment AR(2) 
Model, Residual 
Plot 
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Sample: 1962:1 1993:4 T A B L E 8 * 
Included observations: 128 Employment AR(2) 
Q-statistic probabilities adjusted for 2 ARMA term(s) Model, Residual 

Acorr. P. Acorr. Std. Error Ljung-Box Rvalue Correlogram 

1 -0.035 -0.035 .088 0.1606 
2 0.044 0.042 .088 0.4115 
3 0.011 0.014 .088 0.4291 0.512 
4 0.051 0.050 .088 0.7786 0.678 
5 0.002 0.004 .088 0.7790 0.854 
6 0.019 0.015 .088 0.8272 0.935 
7 -0.024 -0.024 .088 0.9036 0.970 
8 0.078 0.072 .088 1.7382 0.942 
9 0.080 0.087 .088 2.6236 0.918 

10 0.050 0.050 .088 2.9727 0.936 
11 -0.023 -0.027 .088 3.0504 0.962 
12 -0.129 -0.148 .088 5.4385 0.860 

AR Order 

MA Order 

0 1 2 3 4 
0 2.86 2.32 2.47 2.20 
1 1.01 0.83 0.79 0.80 0.81 
2 0.762 0.77 0.78 0.80 0.80 
3 0.77 0.761 0.77 0.78 0.79 
4 0.79 0.79 0.77 0.79 0.80 

T A B L E B 5 
Employment AIC 
Values, Various 
ARMA Models 

AR Order 

MA Order 

0 1 2 3 4 
0 2.91 2.38 2.56 2.31 
1 1.05 0.90 0.88 0.91 0.94 
2 0.83 0.86 0.89 0.92 0.96 
3 0.86 0.87 0.90 0.94 0.96 
4 0.90 0.92 0.93 0.97 1.00 

T A B L E B E 
Employment SIC 
Values, Various 
ARMA Models 
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T h e ARMA(3,1) model looks good; the estimation results appear in Table 8.7, 
the residual plot in Figure 8.16, and the residual correlogram in Table 8.8 and 
Figure 8.17. 

Although the ARMA(3, 1) looks good, apart from its lower AIC, it looks no 
bet ter than the AR(2), which basically seemed perfect. In fact, there are at least 
th ree reasons to prefer the AR(2). First, for the reasons discussed in Chapter 5, 
when the AIC and the SIC disagree, we r ecommend using the more parsimo­
nious model selected by the SIC. Second, if we consider a model selection strat­
egy involving examination of not jus t the AIC and SIC but also autocorrela­
tions and partial autocorrelations, which we advocate, we're led to the AR(2). 
Finally, and importandy, the impression that the ARMA(3, 1) provides a richer 
approximation to employment dynamics is likely spurious in this case. The 
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LS / / Dependent variable is CANEMP. 
Sample: 1962:1 1993:4 
Included observations: 128 
Convergence achieved after 17 iterations 

Variable Coefficient Std. Error f-Statistic Prob. 

C 101.1378 3.538602 28.58130 0.0000 
AR(1) 0.500493 0.087503 5.719732 0.0000 
AR(2) 0.872194 0.067096 12.99917 0.0000 
AR(3) -0.443355 0.080970 -5.475560 0.0000 
MA(1) 0.970952 0.035015 27.72924 0.0000 

R2 0.964535 Mean dependent var. 101.0176 
Adjusted R2 0.963381 SD dependent var. 7.499163 
SE of regression 1.435043 Akaike info criterion 0.760668 
Sum squared resid. 253.2997 Schwarz criterion 0.872076 
Log likelihood - 225.3069 F-statistic 836.2912 
Durbin-Watson stat. 2.057302 Prob (/^statistic) 0.000000 

Inverted AR roots .93 .51 - . 94 
Inverted MA roots — .97 

ARMA(3, 1) has a inverse autoregressive root of —0.94 and an inverse moving 
average root of —0.97. Those roots are of course just estimates, subject to sam­
pling uncertainty, and are likely to be statistically indistinguishable from o n e 
another, in which case we can cancel them, which brings us down to an 
ARMA(2,0) , or AR(2), model with roots virtually indistinguishable from those 

T A B L E B . 7 
Employment 
ARMA (3, 1) Model 

F I G U R E S I B 
Employment 
ARMA(3, I) Model, 
Residual Plot 
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TABLE B S 
Employment 
ARMA(3, 1) Model, 
Residual 
Correlogram 

Sample: 1962:1 1993:4 
Included observations: 128 

Q-statistic probabilities adjusted for four ARMA term(s) 

Acorr. P. Acorr. Std. Error 
Ljung-Box /•value 

TABLE B S 
Employment 
ARMA(3, 1) Model, 
Residual 
Correlogram 

1 -0.032 -0.032 .09 0.1376 
2 0.041 0.040 .09 0.3643 
3 0.014 0.017 .09 0.3904 
4 0.048 0.047 .09 0.6970 
5 0.006 0.007 .09 0.7013 0.402 
6 0.013 0.009 .09 0.7246 0.696 
7 -0.017 -0.019 .09 0.7650 0.858 
8 0.064 0.060 .09 1.3384 0.855 
9 0.092 0.097 .09 2.5182 0.774 

10 0.039 0.040 .09 2.7276 0.842 
11 -0.016 -0.022 .09 2.7659 0.906 
12 -0.137 -0.153 .09 5.4415 0.710 

F I G U R E B 1 7 
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of our earlier-estimated AR(2) process! We refer to this situation as one of com­
mon factors in an .ARMA model . Be on the lookout for such situations, which 
arise frequently and can lead to substantial model simplification. 

Thus, we arrive at an AR(2) model for employment . In the next chapter, 
we'll learn how to use it to produce point and interval forecasts. 

Exercises, Problems, and Complements 
(ARMA lag inclusion) Review Table 8.1. Why is the MA(3) term included even 
though the //-value indicates that it is not significant? What would be the costs and 
benefits of dropping the insignificant MA(3) term? 

(Shapes of correlograms) Given the following ARMA processes, sketch the 
expected forms of the autocorrelation and partial autocorrelation functions. 
(Hint: Examine the roots of the various autoregressive and moving average lag 
operator polynomials.) 

3 - y ' ~ ( \ - 1.05L - 0 . 0 9 L 2 ) E < 

b. yt = (1 - 0.4 /.)£, 

c- -v' = ( r r W ) £ ' -

3. (The autocovariance function of the MA(1) process, revisited) In the text, we 
wrote 

8<r2, T = 1 
otherwise. 7(T) = E(y, y,_T) = E((et + ee I_,)(E /_ T 4- 8e,_T_,)) = J jj° 

Fill in the missing steps by evaluating explicitly the expectation 
£((e, +ee,_,)(e,_T 4-ee,_T-,)). 

(ARMA algebra) Derive expressions for the autocovariance function, 
autocorrelation function, conditional mean, unconditional mean, conditional 
variance, and unconditional variance of the following processes: 
a. y, = ii + e, + 8iE,_i 4- 828,-2 

b. y, - «py,_i 4- E, 4- 8E,_I 

(Diagnostic checking of model residuals) If a forecasting model has extracted 
all the systematic information from the data, then what's left—the residual— 
should be white noise. More precisely, the true innovations are white noise, 
and if a model is a good approximation to the Wold representation, then its 
1-step-ahead forecast errors should be approximately white noise. The model 
residuals are the in-sample analog of out-of-sample 1-step-ahead forecast 
errors—hence the usefulness of various tests of the hypothesis that residuals 
are white noise. 

The Durbin-Watson test is the most popular. Recall the Durbin-Watson test 
statistic, discussed in Chapter 2, 
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Thus, 

D W ^ 2 ( 1 - p ( l ) ) . 

so that the Durbin-Watson test is effectively based only on the first sample 
autocorrelation and really only tests whether the first autocorrelation is 0 . We 
say therefore that the Durbin-Watson is a test for first-order serial correlation. In 
addition, the Durbin-Watson test is not valid in the presence of lagged dependent 
variables.8 On both counts, we'd like a more general and flexible framework for 
diagnosing serial correlation. The residual correlogram, comprised of the 
residual sample autocorrelations, the sample partial autocorrelations, and the 
associated Qstatistics, delivers the goods. 
a. When we discussed die correlogram in the text, we focused on die case of an 

observed time series, in which case we showed that the Qstatistics are 
distributed as \ m - Now, however, we want to assess whether unobserved model 
disturbances are white noise. To do so, we use the model residuals, which are 
estimates of the unobserved disturbances. Because we fit a model to get the 
residuals, we need to account for the degrees of freedom used. The upshot 
is that the distribution of the Q-statistics under the white noise hypothesis is 
better approximated by a Xm_h random variable, where k is the number of 
parameters estimated. That's why, for example, we don't report (and in fact 
the software doesn't compute) the /lvalues for the Qstatistics associated with 
the residual correlogram of our employment forecasting model until m > k. 

b. Durbin's A-test is an alternative to die Durbin-Watson test. As with the Durbin-
Watson test, it's designed to detect first-order serial correlation, but it's valid 
in the presence of lagged dependent variables. Do some background reading 
on Durbin's /Kest, and report what you learned. 

c. The Breusch-Godfrey test is another alternative to the Durbin-Watson test. It's 
designed to detect pth-order serial correlation, where />is selected by the user, 
and is also valid in the presence of lagged dependent variables. Do some 
background reading on die Breusch-Godfrey procedure, and report what you 
learned. 

d. Which do you think is likely to be most useful to you in assessing the 
properties of residuals from forecasting models: the residual correlogram, 
Durbin's /»-test, or the Breusch-Godfrey test? Why? 

* Following standard, if not stricdy appropriate, practice, in this book we often report and exam­
ine the Durbin-Watson statistic even when lagged dependent variables are included. We always 
supplement the Durbin-Watson statistic, however, with other diagnostics such as the residual cor­
relogram, which remain valid in the presence of lagged dependent variables and which almost 
always produce the same inference as the Durbin-Watson statistic. 
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6. (Mechanics of fitting ARMA models) The hook's web page presents data for daih 
transfers over Bankwire, a financial wire transfer system in a country responsible 
for much of the world's f i n a n c e , over a recent span of 2 0 0 business days. 
a. Is trend or seasonality operative? Defend ytiur answer. 
b. Using the methods developed in Chapters 7 and 8, find a parsimonious 

ARMA(/>, q) model that fits well, and defend its adequacy. 

7. (Modeling cyclical dvnamics) As a research analyst at the U.S. Department of 
Energy, you have been asked to model nonseasonally adjusted U.S. imports of 
crude oil. 
a. Find a suitable time series o n the web. 
b. (Create a model that captures the trend in the series. 
c. Adding to the model from part b, create a model with trend and a full set of 

seasonal dummy variables. 
d. Observe the residuals of the model from part £and their correlogram. Is 

there evidence of neglected dynamics? If so, what to do? 

8. (Aggregation and disaggregation: top-down forecasting model vs. bottom-up 
forecasting model) Related to the issue of methods aitd complexity discussed in 
Chapter 3 is the question of aggregation. Often we want to forecast an aggregate, 
such as total sales of a manufacturing firm, but we can take either an aggregated 
or disaggregated approach. 

Suppose, for example, that total sales is composed of sales o f three products. The 
aggregated, or top-down or macro, approach is simply to model and forecast total 
sales. The disaggregated, or bottom-up or micro, approach is to model and forecast 
separately the sales o f the individual products and then to add them together. 

Perhaps surprisingly, it's impossible to know in advance whether the aggregated 
or disaggregated approach is better. It all depends o n the specifics of the 
situation; the only way to tell is to try both approaches and compare the 
forecasting results. 

However, in teal-world situations characterized by likely model misspecification 
and parameter estimation uncertainty, there are reasons to suspect that the 
aggregated approach may be preferable. First, standard (e.g., linear) models fit to 
aggregated series may be less prone to specification error, because aggregation 
can produce approximately linear relationships even when the underlying 
disaggregated relationships are not linear. Second, if the disaggregated series 
depends in part on a common factor (e.g., general business conditions), then it 
will emerge more clearly in the aggregate data. Finally, modeling and forecasting 
o f one aggregated series, as opposed to many disaggregated scries, rely on far 
fewer parameter estimates. 

Of course, if our interest centers on the disaggregated components, then we 
have no choice but to take a disaggregated approach. 

It is possible that an aggregate forecast may be useful in forecasting 
disaggregated series. Whv? (Hint: See Fildes and Stekler, 2 0 0 0 . ) 

9. (Nonlinear forecasting models: regime switching) In this chapter, we've studied 
dynamic linear models, which are tremendously important in practice. They're 
called linem because A , is a simple linear function of past y's or past £'s. In some 
forecasting situations, however, good statistical characterization of dynamics may 
require some notion of regime switching, as between "good" and "bad" states, 
which is a type o f nonlinear model. 
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Models incorporating regime switching have a long tradition in business cycle 
analysis, in which expansion is the good state, and contraction (recession) is the 
bad state. This idea is also manifest in the great interest in the popular press; for 
example, in identifying and forecasting turning points in economic activity It is 
only within a regime-switching framework that the concept of a turning point has 
intrinsic meaning; turning points are naturally and immediately defined as the 
times separating expansions and contractions. 

Threshold models are squarely in line with the regime-switching tradition. The 
following threshold model, for example, has three regimes, two thresholds, and a 
c/-pcriod delay regulating the switches: 

e < « > 
< y 

Y/ -1 + £ , * e < / > 
< y -rf < o 

• c ( " 

-i + e, , 
e < / > > >/ -4 • 

The superscripts indicate "upper," "middle," and "lower" regimes, and the regime 
operative at any time / depends on the observable past history of y—in particular, 
on the value of >•/-,». 

Although observable threshold models are of interest, models with latent (or 
unobservable) states as opposed to observed states may be more appropriate in 
manv business, economic, and financial contexts. In such a setup, time series 
dynamics are governed by a finite-dimensional parameter vector that switches 
(potentially each period) depending on which of two unobservable states is 
realized, with state transitions governed by a first-order Markov process (meaning 
that the state at any time / depends only on the state at time t — 1, not at time 
t-2, t-?>, etc.). 

To make matters concrete, let's take a simple example. L e t \ s , ) J = l be the 
(latent) sample path of a two-state first-order autoregressive process, taking just 
the two values 0 or 1. with the transition probability matrix given bv 

V I - / t i An / 

The ijih element of M gives the probability of moving from state / (at time / — 1) 
to state j (at time f). Note that there are only two free parameters, the staying 
probabilities, />,o and p ] \ . Let{y,}^., be the sample path of an observed time 
series that depends on [s,)[^ such that die density of y, conditional on s, is 

Thus, y, is Gaussian white noise with a potentially switching mean. The two 
means around which y , moves are of particular interest and may, for example, 
correspond to episodes of differing growth rates ("booms" and "recessions," 
"bull" and "bear" markets, etc.). 

10. (Difficulties with nonlinear optimization) Nonlinear optimization is a tricky 
business, fraught with problems. Some eye-opening reading includes Newbold, 
Agiakloglou, and Miller (1994) and McCullough and Vinod (1999). 
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Some problems are generic. It's relatively easy to find a local optimum, lor 
example, but much harder to be confident that the local optimum is global. 
Simple checks such as trying a variety of startup values and checking the 
optimum to which convergence occurs are used routinely, but the problem 
nevertheless remains. Other problems mav be software specific. For example, 
some software may use highly accurate analytic derivatives, whereas other 
software uses approximate numerical derivatives. Even the same software 
package mav change algorithms or details of implementation across versions, 
leading to different results. Software for ARMA model estimation is unavoidably 
exposed to all such problems, because estimation of any model involving MA 
terms requires numerical optimization of a likelihood or sum-of-squares 
function. 

Bibliographical and Computational Notes 
Characterization of time series by means of autoregressive. moving average, or ARMA 
models was suggested, more or less simultaneously, by the Russian statistician and 
economist E. Slutsky and the British statistician G. L'. Wile. Slutskv (1927) remains a 
classic. The Slutsky-Yule framework was modernized, extended, and made part of an 
innovative and operational modeling and forecasting paradigm in a more recent 
classic, a 1970 book by Box and Jenkins, the latest edition of which is Box, Jenkins, 
and Reinsel (1994). In fact, ARMA and related models are often called Box-Jenkins 
models. 

Granger and Newbold (1986) contains more detailed discussion of a number of 
topics that arose in this chapter, including the idea of moving average processes as 
describing economic equilibrium disturbed by transient shocks, the Yule-Walker 
equation, and the insight that aggregation and measurement error lead naturally to 
ARMA processes. 

The sample autocorrelations and partial autocorrelations, together with related 
diagnostics, provide graphical aids to model selection that complement the Akaike 
and Schwarz information criteria introduced earlier. Not long ago, the sample 
autocorrelation and partial autocorrelation functions were often used alone to guide 
forecast model selection, a tricky business that was more art than science. Use of the 
Akaike and Schwarz criteria results in more systematic and replicable model 
selection, but the sample autocorrelation and partial autocorrelation functions 
nevertheless remain important as basic graphical summaries of dynamics in time 
series data. The two approaches are complements, not substitutes. 

Our discussion of estimation was a bit fragmented; we discussed estimation of 
moving average and ARMA models using nonlinear least squares, whereas we 
discussed estimation of autoregressive models using ordinary least squares. A more 
unified approach proceeds bv writing each model as a regression on an intercept, 
with a serially correlated disturbance. Thus, the moving average model is 

Y , = p. + E, 

E, = ®{L)V, 
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the autoregressive model is 

y, = U, + E, 

<t>(A)E, = v, 

v, - WN(0,o- 2), 

and the ARMA model is 

y, = p, + e, 

4>(/.)e, = «,/.)«, 

v, - H'A'm.o--). 

We can estimate each model in identical fashion using nonlinear least squares. 
Eviews and other forecasting packages proceed in precisely that wav."' 

This framework—regression on a constant with serially correlated disturbances— 
has a number of attractive features. First, the mean of the process is the regression 
constant term. 1 0 Second, it leads us naturally toward regression on more than just a 
constant, as other right-hand-side variables can be added as desired. Finally, it exploits 
the fact that because autoregressive and moving average models are special cases of the 
ARMA model, their estimation is also a special case of estimation of the ARMA model. 

Our description of estimating ARMA models—compute the autoregressive 
representation, truncate it, and estimate the resulting approximate model by 
nonlinear least squares—is conceptually correct but intentionally simplified. The 
actual estimation methods implemented in modern software are more sophisticated, 
and the precise implementations vary across software packages. Beneath it all, 
however, all estimation methods are closely related to our discussion, whether 
implicitly or explicitly. You should consult your software manual for details. 
(Hopefully they're provided!) 

Pesaran, Pierse, and Kumar (1989) and Granger (1990) study the question of top-
down versus bottom-up forecasting. For a comparative analysis in the context of 
forecasting Euro-area macroeconomic activity, see Stock and Watson (2003). 

Our discussion of regime-switching models draws heavily on Diebold and 
Rudebusch (1996). Tong (1983) is a key reference on observable-state threshold 
models, as is Hamilton (1989) for latent-state threshold models. There are a number 
of extensions of those basic regime-switching models of potential interest for 
forecasters, such as allowing for smooth as opposed to abrupt transitions in threshold 
models with observed states (Granger and Terasvirta, 1993) and allowing for time-
varying transition probabilities in threshold models with latent states (Diebold, Lee, 
and Weinbach, 1994). 

Concepts for Review 
Moving Average (MA) model 
Autoregressive (AR) model 
Autoregressive moving average (ARMA) 

model 

Stochastic process 
MA(1) process 
Cutoff in the autocorrelation function 
Invertibility 

t J That's why, for example, information o n the number of iterations required for convergence is 
presented even for estimation of the autoregressive model. 
"' Hence the notation "p." for die intercept. 
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Autoregressive representation 
MA(<7) process 
Complex roots 
Condition for invertibility of the MA(q) 
Yule-Walker equation 
AR(/>) process 
Condition for covariance stationarity 
ARMA(/>, <y) process 
Common factors 
First-order serial correlation 
Durbin's A-test 

Breusch-Godfrey test 
Aggregation 
Disaggregation 
Top-down forecasting model 
Bottom-up forecasting model 
Linear model 
Nonlinear model 
Regime switching 
Threshold model 
Box-Jenkins model 
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By now you've gotten comfortable with the idea of an information set. He re 
we'll use that idea extensively. We deno te the time T information set by Qr- At 
first pass it seems most natural to think of the information set as containing 
the available past history of the series, 

&t = b ' r . yr-\> >r-2» • • • } » 
where, for theoretical purposes, we imagine history as having begun in the in­
finite past. 

So long as y is covariance stationary, however, we can jus t as easily express 
the information available at t ime T in terms of cur ren t and past shocks, 

£iT = {£t> £r-i» £r -2» • • •} • 

Suppose, for example, that the process to be forecast is a covariance stationary 

Forecasting 

1 1 1 1 1 1 1 - 4 - -

I. Optimal Forecasts 

AR(1), 
y , = <45>,_i + 1 , . 

T h e n immediately, 
E r = yT-<f)yT_i 

£r- i = yr-\ — <P^r-2 

Er-2 = yr-2 - 9 > r - 3 , 

171 
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and so on. In o ther words, we can figure ou t the cur ren t and lagged E's from 
the cur ren t and lagged y's. More generally, for any covariance stationary and 
invertible series, we can infer the history of £ from the history of y and the his­
tory of y from the history of e. 

Assembling the discussion thus far, we can view the t ime-Tinformation set 
as containing the cur ren t and past values of y and e, 

fir = b 'r . yr-u yr-z ET, zT-u ET-2, • • •} • 

Based on that information set, we want to find the optimal forecast of y at 
some future time T + h. T h e optimal forecast is the one with the smallest loss 
on average—that is, the forecast that minimizes expected loss. It turns out that 
u n d e r reasonably weak conditions, the optimal forecast is the conditional 
mean, E{yT+h I fir)- the expected value of the future value of the series being 
forecast, conditional on available information. 

In general , the conditional mean need not be a linear function of the 
elements of the information set. Because linear functions are particularly 
tractable, we prefer to work with linear forecasts—forecasts that are linear in 
the e lements of the information set—by finding the best linear approximation 
to the conditional mean, called the linear projection, deno ted P(yr+h I fir)-
This explains the common term "linear least-squares forecast." T h e linear 
projection is often very useful and accurate, because the conditional mean is 
often close to linear. In fact, in the Gaussian case, the conditional expectation 
is exactly linear, so that E(yr+h I fir) = P(yr+h I fir)-

- I -\ +H- I I 

Z. Forecasting Moving Average Processes 

OPTIMAL POINT FORECASTS FOR FINITE-ORDER 
MOVING AVERAGES 

O u r forecasting me thod is always the same: We write out the process for the 
future time per iod of interest, T+ h, and project it on what 's known at time T, 
when the forecast is made . This process is best learned by example. Consider 
an MA(2) process, 

y , = E, + 6iE,_| + 6s}E,_2 

£/ ~ WN(0, o-2). 
Suppose we're standing at t ime T, and we want to forecast yr+i • First we write 
ou t the process for T -I-1, 

>r+i = Er+i + &i£r + 62E7--1 • 

T h e n we project on the t ime-T information set, which simply means that all 
future innovations are replaced by 0. Thus , 

yr+i.r = P(yr+i I fir) = 6 I £ T + ^ E r - i • 
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To forecast two steps ahead, we note that 

\T+'± = £ 7 + 2 + 6 I £ T + I + ^ £ 7 , 

and we project on the t ime-T information set to get 

Vr+2.r = th^T • 

Cont inuing in this fashion, we see that 

yr+h.r = 0, 

for all h > 2. 

Now let's compute the cor responding forecast e r ro r s . 1 We have 

*r+i .r = £ 7 + ] (white noise) 

e T + 2 T = + 61E7-H (MA(1)) 

er+h.T = tT+h + 6 i e r + * - i + ftiEr+A-v (MA(2)), 

for all h > 2. 
Finally, the forecast e r ro r variances a re 

2 o 
<T, = a 

«rJ = «T2(i + e ; ) 

ff4

2 = ff8(n-e; + e j ) . 
for all h > 2. Moreover, the forecast e r ro r variance for h > 2 is jus t the uncon­
ditional variance ofy, . 

Now consider the general MA(^) case. T h e model is 
y, = £, + 6,E,-I H — 67£<-f • 

First, consider the forecasts. If h < q, then the forecast has the form 

> 7 + A , 7 = 0 + "adjustment," 

whereas if h > q, then the forecast is 

yr+h.r — 0. 

Thus , an MA(<jf) process is no t forecastable (apart from the uncondi t ional 
mean) more than q steps ahead. All the dynamics in the M A ( q ) process, which 
we exploit for forecasting, "wash out" by the time we get to horizon q, which 
reflects the autocorrelat ion structure of the MA(^) process. (Recall that, as we 
showed in Chapter 8, it cuts off at displacement q . ) 

Second, consider the corresponding forecast errors . They are 

^ , r = MA(A-l) 
1 Recall that the forecast error is simplv the difference between the actual and forecasted values. 
That is, * 7 + a . 7 = yr+h - yr+i,. 1 
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for h < q and 
eT+h,T = MA(q) 

for h > q. The A-step-ahead forecast e r ror for h > q is just the process itself, 
minus its mean. 

Finally, consider the forecast error variances. For h < q, 

&l < v a r f j , ) ; 

whereas for h > q, 

<*l = v a r ( y , ) . 

In summary, we've thus far studied the MA(2) and then the general MA(^) 
processes, comput ing the optimal /i-step-ahead forecast, the cor responding 
forecast error, and the forecast e r ror variance. As we'll now see, the emerging 
pat terns that we cataloged turn out to be quite general . 

OPTIMAL POINT FORECASTS FOR INFINITE-ORDER 
MOVING AVERAGES 

By now you ' re getting the hang of it, so let's consider the general case of an 
infinite-order MA process. The infinite-order moving average process may 
seem like a theoretical curiosity, but precisely the opposite is t rue. Any covari­
ance stationary process can be written as a (potentially infinite-order) moving 
average process, and moving average processes are easy to unders tand and ma­
nipulate, because they are written in terms of white noise shocks, which have 
very simple statistical propert ies . Thus , if you take the time to unders tand 
the mechanics of constructing optimal forecasts for infinite moving average 
processes, you'll unders tand everything, and you'll have some powerful tech­
nical tools and intuition at your command . 

Recall from Chapter 7 that the general linear process is 

where e, ~ WN(0, cr 2), bo = 1, and CT2 ]T 6J" < oo. We proceed in the usual 
1 = 0 

way. We first write out the process at the future time of interest: 

yT+h = ET+h + M m - i + 1- bhzr + bh+iEr-\ -\ . 

Then we project yr+h on the time-T information set. T h e projection yields Os 
for all of the future E'S (because they are white noise and hence unfore-
castable), leaving 

yr+h.r = bi,Er + bh+\ET-i 
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It follows that the ^-step-ahead forecast e r ro r is serially correlated; it follows an 
M A (h — 1) process, 

*r+h.T — (yr+h — yr+h.r) = ^ b,tr+h-i » 

i=<) 

with mean 0 and variance 

h-\ 

o-; = u- £ b2. 

A n u m b e r of remarks are in order concern ing the optimal forecasts of the 
general linear process and the corresponding forecast errors and forecast 
e r ror variances. First, the 1-step-ahead forecast e r ror is simply £j+i- £7+1 is that 
part of yij-i that can' t be linearly forecast on the basis of ft, (which, again, is 
why it is called the innovation). Second, al though it might at first seem strange 
that an optimal forecast e r ro r would be serially correlated, as is the case when 
h > 1, noth ing is awry. The serial correlation can' t be used to improve fore­
casting performance, because the autocorrelat ions of the M A ( / J — 1) process 
cut off just before the beginning of the t ime-T information set {£7, £ r - i , • • •}• 
This is a general and tremendously impor tant property of the errors associ­
ated with optimal forecasts: Errors from optimal forecasts can't be forecast using in­
formation available when the forecast was made. If you can forecast the forecast 
error, then you can improve the forecast, which means that it couldn ' t have 
been optimal. Finally, note that as h approaches infinity yr+h.r approaches 0, 

the uncondit ional mean of the process, and rjA" approaches o" £ 6,, the 

uncondi t ional variance of the process, which reflects the fact that as h ap­
proaches infinity, the condit ioning information on which the forecast is based 
becomes progressively less useful. In o ther words, the distant future is harder 
to forecast than the near future! 

INTERVAL AND DENSITY FORECASTS 

Now we construct interval and density forecasts. Regardless of whether the 
moving average is finite or infinite, we proceed in the same way, as follows. T h e 
definition of the /»-step-ahead forecast e r ro r is 

?r+h.T = yr+h — yr+h,r • 

Equivalently, the /^step-ahead realized value, yr+h, equals the forecast plus the 
error, 

yr~h — Jr+A.r-r- ^r+A,r • 



Chapter 9 

If the innovations are normally distributed, then the future value of the series 
of interest is also normally distributed, condit ional on the information set 
available at the time the forecast was made , and so we have the 95% h-step-
ahead interval forecast y M . r ± 1.96a*.2 In similar fashion, we construct the 
^step-ahead density forecast as A/(vr+/,.r. T h e mean of the conditional 
distribution of \r+t, is yr+h.r^ which of course must be the case because we con­
structed the point forecast as the conditional mean, and the variance of the 
conditional distribution is of, the variance of the forecast error. 

As an example of interval and density forecasting, consider again the 
MA(2) process, 

yt = £, + e , e , _ j + fyEf-a 

£, ~ WN(0,G') . 

Assuming normality, the 1-step-ahead 9 5 % interval forecast is yr~\.r = 

(9i£r -+• ftjEr-j) +- 1.96a, and the 1-step-ahead density forecast is A^BiEr-H 
02£7-i,o- 2 ) . 

3. Making the Forecasts Operational 
So far we've assumed that the parameters of the process being forecast are 
known. In practice, of course, they must be estimated. To make our forecast­
ing procedures operat ional , we simply replace the unknown parameters in 
our formulas with estimates and the unobservable innovations with residuals. 

Consider, for example, the MA(2) process, 

V, =£/-)- BjE,-! +$22,-2 • 

As you can readily verify using die methods we've int roduced, the 2-step-ahead 
optimal forecast, assuming known parameters , is 

y'T+2,r — ftjE/'' 

with corresponding forecast e r ror 

eT+2.T = E r + 2 O j E r + i 

and forecast e r ro r variance 

a j j = a * ( l + e f ) . 

2 Confidence intervals at any other desired confidence level may be constructed in similar fash­
ion, by using a different critical point of the standard normal distribution. A 90% interval fore­
cast, for example, is yr+h.T^ l-64cr/,. In general, for a Gaussian process, a (1 — a) 100% confi­
dence interval is yr+h.T ± *a/2°7i« where z t , r j is that point on the ,V(0, 1) distribution such that 
prob(z > za/2) — a /2 -
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To make the forecast operational , we replace unknown parameters with esti­
mates and the t ime-T innovation with the t ime-Tresidual , yielding 

Y7+2. T = ®2̂ r 

and forecast e r ro r variance 

^ = cr2(i + e-) . 

T h e n , if desired, we can construct operat ional 2-step-ahead interval and den­
sity forecasts, as yr+».T ± zw/2<J2 and A/(y 7 >2,7, o".]). 

T h e strategy of taking a forecast formula derived unde r the assumption of 
known parameters , and replacing unknown parameters with estimates, is a 
natural way to operationalize the construction of point forecasts. However, 
using the same strategy to produce operat ional interval o r density forecasts in­
volves a subtlety that merits additional discussion. T h e forecast e r ro r variance 
estimate so obtained can be interpreted as one that ignores parameter esti­
mation uncertainty, as follows. Recall once again that the actual future value of 
the series is 

yr+2 = E7+2 + fyEr+i + 

and that the operat ional forecast is 

>7+2,7 = 02̂7 • 

Thus , the exact forecast e r ro r is 

*7+2.7 = yi+l — 5 7+2.7 = £7+2 + 0|E7>1 + ($> — 02)E7 1 

the variance of which is very difficult to evaluate. So we make a convenient 
approximation: We ignore parameter estimation uncertainty by assuming 
that estimated parameters equal t rue parameters . We therefore set — 0j) to 
0, which yields 

£7+2.7 = E7+2 + 0|£7+l 1 

with variance 

o J - a ' U + e f ) . 

which we make operat ional as 

4. The Chain Rule of Forecasting 

POINT FORECASTS OF AUTOREGRESSIVE PROCESSES 

Because any covariance stationary AR(/>) process can be written as an infinite 
moving average, there 's no need for specialized forecasting techniques for 
autoregressions. Instead, we can simply transform the autoregression into a 
moving average and then use the techniques we developed for forecasting 
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moving averages. It turns out, however, that a very simple recursive method for 
comput ing the optimal forecast is available in the autoregressive case. 

T h e recursive method , called the chain ru le of forecasting, is best learned 
by example. Consider the AR(1) process, 

y, = <PV/-I +E, 

e, - WN(0, <r2). 

First we construct the optimal 1-step-ahead forecast, and then we construct the 
optimal 2-step-ahead forecast, which depends on the optimal 1-step-ahead 
forecast, which we've already constructed. Then we construct the optimal 
3-step-ahead forecast, which depends on the already-computed 2-step-ahead 
forecast, which we've already constructed, and so on. 

To construct the 1-step-ahead forecast, we write ou t the process for t ime 
r + 1 , 

yr+i = <PVT + • 

Then , projecting the right-hand side on the t ime-T information set, we obtain 

yr+\j = <PJhr • 

Now let's construct the 2-step-ahead forecast. Write out the process for time 
T + 2 , 

T h e n project direcdy on the time-T information set to get 

>'r+2.r = <P?r+i.r • 

Note that the future innovation is replaced by 0, as always, and that we have 
directly replaced the time T + 1 value of y with its earlier-constructed optimal 
forecast. Now let's construct the 3-step-ahead forecast. Write out the process 
for time T + 3 , 

T h e n project direcdy o n the t ime-T information set, 

yr+xr = <P> 7 + 2 . 7 • 

T h e required 2-step-ahead forecast was already constructed. 
Cont inuing in this way, we can recursively build up forecasts for any and all 

future per iods—hence the n a m e (chain rule of forecasting). Note that for the 
AR(1) process, only the most recent value of y is needed to construct optimal 
forecasts, for any horizon, and for the general AR(/?) process, only the p most 
recent values of y are needed . 

POINT FORECASTS OF A R M A PROCESSES 

Now we consider forecasting covariance-stationary ARMA processes. Just as 
with autoregressive processes, we could always convert an .ARMA process to an 
infinite moving average and then use our earlier-developed methods for 
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forecasting moving averages. But also as with autoregressive processes, a sim­
pler me thod is available for forecasting ARMA processes direcdy, by combining 
our earlier approaches to moving average and autoregressive forecasting. 

As always, we write out the ARMA(/>, q) process for the future per iod of 
interest, 

yr+A = <pij7+A_j -f- f-<P/0?r+*-,» + Cr+h -f ^£r+t,-\ + ••• -f- 6QET+K-I • 

O n the right-hand side we have various future values of y and e, and perhaps 
also past values, depend ing on the forecast horizon. We replace everything on 
the right-hand side with its projection on the t ime-T information set. Tha t is, 
we replace all future values of y with optimal forecasts (built u p recursively 
using the chain rule) and alJ future values of £ with optimal forecasts (0), 
yielding 

yr-h.r = <Pi V T - / t - i . r + • • • + <Pf,yT+h-p,T + E 7 + A . 7 + Q\£r+H-\,T + ••• 

When evaluating this formula, note that the optimal t ime-T "forecast" of any 
value of y o r £ dated time T o r earlier is jus t y or £ itself. 

As an example, consider forecasting the ARMA (1 ,1) process, 

y , = ipy>,_i + E , + BE,_, 

E, ~ WW(0, <r2) . 

Let's find ^ 7 + 1 . 7 . The process at t ime T + 1 is 

Y7+1 = <P.Vr + £ 7 + 1 + 0£r • 
Projecting the right-hand side on Q r yields 

> ' 7 + i , 7 = (p.Tr + OEr • 

Now let 's find yr+a.r. T h e process at time T-i- 2 is 

yr+2 = <P Vr+i + E7+2 + OET-H • 

Projecting the right-hand side on fir yields 

_) '7+2 , 7 = <PV 7 + 1 , 7 • 

Substituting our earlier-computed 1-step-ahead forecast yields 

) ' 7 + 2 , 7 = tpfojrr + G M 

= <p 2y r -(- <p0£r • 

Continuing, it is clear that 

> 7 + A , 7 = <f>yT+h-\.T ' 

for all h > 1. 

INTERVAL AND DENSITY FORECASTS 

T h e chain rule, whether applied to p u r e autoregressive models or to ARMA 
models, is a device for simplifying the computat ion of point forecasts. Interval 
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and density forecasts require the /i-step-ahead forecast e r ro r variance, which 
we get from the moving average representat ion, as discussed earlier. It is 

(=0 
which we operationalize as 

A-1 
* 2 « 2 £2 

<*h = °" 2^ • 
/=<) 

Note that we d o n ' t actually estimate the moving average representat ion; 
rather, we solve backward for as many b's as we need, in terms of the original 
model parameters, which we then replace with estimates. 

Let 's illustrate by constructing a 2-step-ahead 9 5 % interval forecast for the 
ARMA(1, 1) process. We already constructed the 2-step-ahead point forecast, 
yr+i.T\ w e need only compute the 2-step-ahead forecast e r ro r variance. T h e 
process is 

y , = tpy,_i + E , + EE,_ I . 

Substitute backward for y,_i to get 

y , = <p(<p_V/-2 + + 8e,_8) + £/ + 0E,_, 

= e, + (<p + B)e,-i - ( - • • • . 

We need not substitute back any farther, because the 2-step-ahead forecast 
e r ro r variance is o*2" = o " 2 ( l + b\), where b\ is the coefficient on £/_| in the 
moving average representat ion of the ARMA(1, 1) process, which we just 
calculated to be ((p4-0). Thus, the 2-step-ahead interval forecast 
is y7+2,7 ± 1 . 9 6 C J 2 , or ($2yr + <p6e r) ± 1 .96a^1 + (<p -f 6 ) 2 . We make this 

operat ional as ((p"yT + <f>0£r) i 1.96d 

I I I I I I I I I I I M M 

5. Application: Forecasting Employment 
Now we put our forecasting technology to work to p roduce point and interval 
forecasts for Canadian employment . Recall that the best moving average 
model was an MA(4), while the best autoregressive model , as well as the best 
ARMA model and the best model overall, was an AR(2). 

First, consider forecasting with the MA(4) model . In Figure 9.1, we show 
the employment history together with operat ional 4-quarter-ahead point and 
interval extrapolat ion forecasts. T h e 4-quarter-ahead extrapolat ion forecast 
reverts very quicklv to the mean of the employment index. In 1993.4, the last 
quar te r of historical data, employment is well below its mean , but the forecast 
calls for a quick rise. The forecasted quick rise seems unnatural because em­
ployment dynamics are historically very persistent. If employment is well below 
its mean in 1993.4, we'd expect it to stay well below its mean for some time. 
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The MA(4) model is unable to capture such persistence. T h e quick rever­
sion of the MA(4) forecast to the mean is a manifestation of the short memory 
of moving average processes. Recall, in particular, that an MA(4) process has 
a four-period memory—all autocorrelat ions are 0 beyond displacement 4. 
Thus , all forecasts more than four steps ahead are simply equal to the uncon­
ditional mean (100.2), and all 9 5 % interval forecasts more than four steps 
ahead are plus or minus 1.96 uncondit ional s tandard deviations. All of this is 
made clear in Figure 9.2, in which we show the employment history together 
with 12-step-ahead point and interval extrapolation forecasts. 
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In Figure 9.3, we show the 4-quarter-ahead forecast and realization. O u r 
suspicions are confirmed. T h e actual employment series stays well below its 
mean over the forecast period, whereas the forecast rises quickly back to the 
mean . T h e mean squared forecast e r ro r is a large 55.9. 

Now consider forecasting with the AR(2) model . In Figure 9.4, we show 
the 4-quarter-ahead extrapolation forecast, which reverts to the uncondit ional 
mean much less quickly, as seems natural given the high persistence of em­
ployment. The 4-quarter-ahead point forecast, in fact, is still well below the 
mean. Similarly, the 9 5 % er ror bands grow gradually and haven't approached 
their long-horizon values by four quarters out. 

gQ I i i i i i i i i i 1 1 i i i t i i 

90:1 90:3 91:1 91:3 92:1 92:3 93:1 93:3 94:1 94:3 
Time 
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F I G U R E S . S 
Employment 
History and Long-
Horizon Forecast 
AR(2) Model 

Time 

Figures 9.5 and 9.6 make clear the very different na ture of the autoregres­
sive forecasts. Figure 9.5 presents the 12-step-ahead extrapolation forecast, 
and Figure 9.6 presents a much longer-horizon extrapolation forecast. Even­
tually the uncondi t ional mean is approached, and eventually the e r ro r bands 
do go flat, but only for very long-horizon forecasts, due to the high persistence 
in employment, which the AR(2) model captures. 

Figure 9.7 shows the employment history, 4-quarter-ahead AR(2) extrapo­
lation forecast, and the realization. T h e AR(2) forecast appears qui te accu­
rate; the mean squared forecast e r ro r is 1.3, drastically smaller than that of the 
MA(4) forecast. 

F I G U R E a . B 
Employment 
History and Very 
Long-Horizon 
Forecast AR(2) 
Model 
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Exercises, Problems, and Complements 
1. (Forecast accuracy across horizons) You are a consultant to MedTrax, a large 

pharmaceutical company, which released a new ulcer drug .3 months ago and is 
concerned about recovering research and development costs. Accordingly, 
MedTrax has approached yon for drug sales projections at 1- through 12-month-
ahead horizons, which it will use to guide potential sales force realignments. 
In briefing vou, MedTrax indicated that it expects your long-hori/on forecasts 
(e.g., 12-month-ahead) to be just as accurate as vour short-horizon forecasts 
(e.g., 1-month-ahead). Explain to MedTrax why that is not likely to be the case, 
even if you do the best forecasting job possible. 

2. (Mechanics of forecasting with .ARMA models: Bankwire continued) On the 
book's web page, you will find data for daily transfers over Bankwire, a wire 
transfer system in a country responsible for much of the world's finance, over a 
recent span of 200 business days. 
a. In Chapter 8's Exercises, Problems, and Complements, you were asked to find 

a parsimonious ARMA(/X q) model that fits the transfer data well and to 
defend its adequacy. Repeat the exercise, this time using only the first 175 days 
for model selection and fitting. Is it necessarily the case that the selected 
ARMA model will remain the same as when all 200 davs are used? Does yours? 

b. Use your estimated model to produce point and interval forecasts for days 
176 through 200. Plot them and discuss the forecast pattern. 

c. Compare your forecasts with the actual realizations. Do the forecasts perform 
well? Why or why not? 

d. Discuss precisely how your software constructs point and interval forecasts. It 
should certainly match our discussion in spirit, but it may differ in some of 
the details. Are you uncomfortable with any of the assumptions made? How, if 
at all, could the forecasts be improved? 
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3. (Forecasting an AR( 1) process with known and unknown parameters) Use the 
chain rule to forecast the AR(1) process, 

y, = <py,_i + 6 / . 

For now, assume that all parameters are known. 

a. Show that the optimal forecasts are 

Tr+i.r = Vyr 

yr+2,7 = *P2yT 

yr+h.r = <phyr • 

b. Show that me corresponding forecast errors are 
er+\.r = (>'r-»-i - n + i . r ) = £7+1 

^7+2,7 = (yr+2 - )'r-I-2.r) = *P £7+1 + £7+2 

fr+h,r = (vr+* - yr+h.r) = £7+/. + <f>£r+h-i H h<p* _ 1£r+i • 

c. Show that the forecast error variances are 
2 •» 

2 
h o - 2 = a 2 ( l + . p 2 ) 

2 'j '>, <jh = ( T - ^ q 3 - ' . 
I = « I 

d. Show that the limiting forecast error variance is 

' A 
lim ov = 

1 v • 

, ™ - 9" 
the unconditional variance of the AR( 1) process. 

Now assume that the parameters are unknown and so must be estimated, 
e. Make your expressions for both the forecasts and the forecast error variances 

operational, by inserting least-squares estimates where unknown parameters 
appear, and use them to produce an operational point forecast and an 
operational 90% interval forecast for yj+i.r-

(Forecasting an ARMA(2, 2) process) Consider the ARMA(2, 2) process: 

yt = 9l) ' / - l + <P2>"/-2 + + 6i£,_i + 09E/-2 • 

a. Verify that the optimal 1-step-ahead forecast made at time Tis 

yT-T-l.T = <Pl>*7 + «P2?7-1 + 01E7 + 02E7-1 • 

b. Verify that die optimal 2-step-ahead forecast made at time Tis 

V 7 + 2 . 7 = <Pi vr-i.T + Wr + . 

and express it purely in terms of elcmenLs of the time-7*information set. 
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c. Verify that the optimal 3-step-ahead forecast made at time Tis 

V r + s . r = < P O ' r + 2 , r + Vtyr+i.r » 

and express it purely in terms of elements of the time-T information set. 
d. Show that for any forecast horizon h greater than or equal to 3, 

yr+h.r = <P\yr+H-i.r + < P a V r + A - s . r • 

5. (Optimal forecasting under asymmetric loss) One of the conditions required 
for optimality of the conditional mean forecast is symmetric loss. We make 
that assumption for a number of reasons. First, the conditional mean is 
usually easy to compute. In contrast, optimal forecasting tinder asymmetric 
loss is rather involved, and the tools for doing so are still under development. 
(See, e.g., Christoffersen and Diebold. 1997.) Second, and more importantly, 
symmetric loss often provides a good approximation to the loss structure 
relevant in a particular decision environment. 

Symmetric loss is not always appropriate, however. Here we discuss some 
aspects of forecasting under asymmeunc loss. Under asymmetric loss, optimal 
forecasts are biased, whereas die conditional mean forecast is unbiased. 3 Bias 
is optimal under asymmetric loss because we can gain on average by pushing 
the forecasts in the direction such that we make relatively few errors of the 
more costly sign. 

Many asymmetric loss functions are possible. A few, however, have proved 
particularly useful, because of their flexibility and tractability. One is the linex 
loss function, 

L(e) = b{exp(ae)- ae - 1), a ^ 0, b > 0 . 

It's called linex because when a > 0, loss is approximately linear to the left of the 
origin and approximately exponential to the right, and conversely when 
a < 0. Another is the linlin loss function, given by 

a\e\, ife>0 
b\e\, if e < 0 * 

Its name comes from the linearity on each side of the origin. 
a. Discuss three practical forecasting situations in which the loss function might 

be asymmetric. Give detailed reasons for the asymmetry, and discuss how you 
might produce and evaluate forecasts. 

b Explore and graph the linex and linlin loss functions for various values of a 
and b. Discuss the roles played by a and b in each loss function. In particular, 
which parameter or combination of parameters governs the degree of 
asymmetry? What happens to the linex loss function as a gets smaller? What 
happens to die linlin loss function as a/b approaches 1? 

5 A forecast is unbiased if its error has zero mean. The error from the conditional mean forecast 
has zero mean, by construction. 
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6. (Truncation of infinite distributed lags, state space representations, and the 
Kalman filter) This complement concerns practical implementation of formulas 
that involve innovations (e's). Earlier we noted that as long as a process is 
invertible, we can express the e's in terms of die y's. If the process involves a 
moving average component, however, the e's will depend on the infinite past 
history of the y's, so we need to truncate to make it operational. Suppose, for 
example, that we're forecasting the MA(1) process, 

y, = E, + 8e,_i . 

The operational 1-step-ahead forecast is 

>'/+i.r = S E T . 

But what, precisely, do we insert for the residual, £ 7 ? Back substitution yields the 
autoregressive representation, 

£, = y, + By,-\ - d 2 > v -2 H 

Thus, 

Er = yr + Gyr-t ~ 9 2 >'r-2 H > 

which we are forced to truncate at time T = 1, when the data begin. This yields 
the approximation 

£r yr + Byr-i - G 2 yr -2 H 1- 0 T yi • 

Unless die sample size is very small, or 9 is very close to 1, the approximation will 
be very accurate, because 6 is less than 1 in absolute value (by invertibility). and 
we're raising it to higher and higher powers. Finally, we make the expression 
operational by replacing the unknown moving average parameter with an 
estimate, yielding 

£ 7 8 5 yr + Byr-i - 0 2 V 7 - 2 H 1-6Tyi . 

In the engineering literature of the 1960s and then in the statistics and 
econometrics literatures of the 1970s, important tools called state-space 
representations and the Kalman filter were developed. Those tools provide a 
convenient and powerful framework for estimating a wide variety of forecasting 
models and constructing optimal forecasts, and they enable us to tailor the 
forecasts precisely to the sample of data at hand, so that no truncation is 
necessary. 

7. (Point and interval forecasts allowing for serial correlation—Nile.com continued) 
The book's website has data for the Internet retailer Nile.com, giving the number 
of hits at its website each day from January 1, 1998, through September 28, 1998. 
Your marketing firm, CyberMedia, which specializes in developing quick, 
intensive marketing strategies based on short-term projections, is hired to develop 
a forecasting model for hits at the Nile.com website. 
a. In Chapter 6, Problem 6, you estimated a trend 4- seasonal model for 

Nile.com hits, ignoring the possible presence of cyclical dynamics. Now 
generalize vour earlier model to allow for cyclical dynamics, if present, via 
AR(/>) disturbances. Write the full specification of your model in general 
notation (e.g., with p left unspecified). 

http://Nile.com
http://Nile.com
http://Nile.com
http://Nile.com
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b. Estimate three versions of your full model, corresponding to p = 0, 1, 2, 3, 
while leaving the original trend and seasonal specifications intact, and select 
the one that optimizes SIC. 

c. Using the model selected in part b, write theoretical expressions for the 1- and 
2-day-ahead point forecasts and 95% interval forecasts, using estimated 
parameters. 

d. Calculate those point and interval forecasts for Nile.com for 9/29 and 9/30. 

8. (Bootstrapping simulation to acknowledge innovation distribution uncertainty 
and parameter estimation uncertainty) A variety of simulation-based methods fall 
under the general heading of "bootstrap." Their common element, and the 
reason for the name bootstrap, is that they build up an approximation to an object 
of interest directly from the data. Hence, they "pull themselves up by their own 
bootstraps." For example, the object of interest might be the distribution of a 
random disturbance, which has implications for interval and density forecasts, 
and about which we might sometimes feel uncomfortable making a possibly 
erroneous assumption such as normality. 
a. The density and interval forecasts that we've discussed rely crucially on 

normality. In many situations, normality is a perfectly reasonable and useful 
assumption; after all, that's why we call it the "normal" distribution. 
Sometimes, however, such as when we forecast high-frequency financial asset 
returns, normality mav be unrealistic. Using bootstrap methods, we can relax 
the normality assumption. Suppose, for example, that we want a 1-step-ahead 
interval forecast for an AR(1) process. We know that the future observation of 
interest is 

V T + I =<pvr + £ m • 

We know y-r, and we can estimate <p and then proceed as if <p were known, 
using the operational point forecast, yr+i .r = $yr- If we want an operational 
interval forecast, however, we've thus far relied on a normality assumption, in 
which case we use vr-i-i.r ^ 1 a / 2 < T - To relax the normality assumption, we can 
proceed as follows. Imagine that we could sample from the distribution of 
Er+i—whatever that disuibution might be. Take Rdraws, {eT+|}/Lp where R 
is a large number, such as 10,000. For each such draw, construct the 
corresponding forecast of yr+i as 

-U) * , „<<) 
>T+\,T= W + Er+l • 

Then form a histogram of the y - / i | r values, which is the density forecast. And 
given the density forecast, we can of course construct interval forecasts at any 
desired level. If, for example, we want a 90% interval, we can sort the 5y | , r 

values from smallest to largest, find the 5th percentile (call it a) and the 95th 
percentile (call it b), and use the 90% interval forecast [a, b\. 

b. The only missing link in this strategy is how to sample from the distribution of 
Ey+i. It turns out that it's easy to do—we simply assign probability 1/7'to each 
of the observed residuals (which are estimates of the unobserved e's) and 
draw from them R times with replacement. Describe how you might do so. 

c. Note that the interval and density forecasts we've constructed thus far—even 
the one earlier based on bootstrap techniques—make no attempt to account 
for parameter estimation uncertainty. Intuitively, we would expect confidence 

http://Nile.com
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intervals obtained bv ignoring parameter estimation uncertainty to be more 
narrow than thev would be if parameter uncertainty were accounted for, 
thereby producing an artificial appearance of precision. In spite of this defect, 
parameter uncertainty is usually ignored in practice, for a number of reasons. 
The uncertainty associated with estimated parameters vanishes as the sample 
size grows: in fact, it vanishes quickly. Furthermore, the fraction of forecast 
error attributable to the difference between estimated and true parameters is 
likely to be small compared with the fraction of forecast error coming from 
other sources, such as using a model that does a poor job of approximating 
the dynamics of the variable being forecast. 

d. Quite apart from the reasons already given for ignoring parameter estimation 
uncertainty, the biggest reason is probably that, until very recendy, 
madicmatical and computational difficulties made attempts to account for 
parameter uncertainty infeasible in many situations of practical interest. 
Modern computing speed, however, lets us use the bootstrap to approximate 
the effects of parameter estimation uncertainty. To continue with the AR( 1) 
example, suppose that we know that the dismrbances are Gaussian but that we 
want to attempt to account for the effects of parameter estimation uncertainty 
when we produce our 1-step-ahead density forecast. How could we use the 
bootstrap to do so? 

e. The "real sample" of data ends with observation yj, and the optimal point 
forecast depends only on yr- It would therefore seem desirable that all of 
your R "bootstrap samples" of data also end with y-/. Do you agree? How 
might you enforce that property while still respecting the AR(1) dynamics? 
(This is tricky.) 

f. Can you think of a way to assemble the results thus far to produce a density 
forecast that acknowledges both innovation distribution uncertainty and 
parameter estimation uncertainty? (This is very challenging.) 

Bibliographical and Computational Notes 
The methods discussed in this chapter were developed by Wiener, Kolmogorov, and 
Wold more than 50 years ago, and they underlie all modern forecasting software. It's 
important to understand them so that you're the master of your software, not the 
opposite. 

For a proof of our assertion of optimal ity of the conditional mean forecast, as well 
as a precise statement of the conditions under which the result holds, see any good 
advanced text, such as Hamilton (1994). 

Linex loss was introduced by Varian (1974) in the context of real estate assessment 
and was further studied by Zellner (1986). Harvey (1993) gives a lucid exposition of 
state-space representations and the Kalman filter. Efron and Tibshirani (1993) offer a 
good introduction to the bootstrap and its many uses. Stine (1987) and Breidt, Davis, 
and Dunsmuir (1995) show how to use the bootstrap to produce interval and density 
forecasts under weak assumptions. Chatfield (1993, 1995) argues that the fraction of 
forecast error attributable to the difference between estimated and true parameters is 
likely much smaller than the fraction of forecast error coming from other sources, such 
as model misspecification. Clements and Hendry (1994, 1998) provide insightful 
discussion of a variety of advanced topics in applied forecasting. 
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Concepts for Review 
Expected loss 
Linear forecast 
Linear least-squares forecast 
Forecast error variance 
Chain rule of forecasting 

Linex loss function 
Linlin loss function 
Bootstrapping 
Innovation distribution uncertainty 
Parameter estimation uncertainty 
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Putting It All Together: 
A Forecasting Model 
with Trend, Seasonal, 
and Cyclical 
Components 

I. Assembling What We've Learned 
Thus far, we've focused on model ing trend, seasonals, and cycles o n e at a time. 
In Chapter 5, we in t roduced models and forecasts of t rend. We forecasted 
retail sales, and we used a model that included only t rend. The data were sea­
sonally adjusted, so it wasn't necessary to model seasonality, and, a l though cy­
cles were likely present, we simply ignored them. In Chapter 6, we in t roduced 
models and forecasts of seasonality. We forecasted housing starts, and we 
used a model that included only seasonal dummies . We d idn ' t need a trend, 
and again we simply ignored cycles. In Chapters 7-9, we in t roduced models 
and forecasts of cycles. We forecasted employment , and we used autoregres­
sive, moving average, and ARMA models. We d idn ' t need t rends or seasonals, 
because employment had n o t rend and had been seasonally adjusted. 

In many forecasting situations, however, more than one componen t is 
needed to capture the dynamics in a series to be forecast; frequently they're 
all needed. Here we assemble our tools for forecasting trends, seasonals, and 
cycles; we use regression on a t rend and seasonal dummies , and we capture 
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cyclical dynamics by allowing for ARMA effects in the regression disturbances. 
T h e full model is 

y, = 77(6) + £ 7.-A-, + £ o ^ H D V . , + £ e ^ T D V , + e, 

4>(L)e, = 0 (£.)», 

<D(L) = l -<p ,L <ppL» 

0(L) = n -e ,L- i - . . . - f e?L« 

~ WN(0, o - 2 ) . 

7? (8) is a t rend, with underlying parameters 8. For example, l inear t rend has 
6 = Pi and 

77(8) = Pi T I M E , , 

and quadrat ic t r end has 8 = O i , fe) and 

7; (8) = 0,TIME, -f P-/TIME 2 . 

In addit ion to the trend, we include seasonal dummies , holiday dummies , and 
trading-day dummies . 1 The disturbances follow an ARMA(/>, q) process, of 
which pure autoregressions and pure moving averages are special cases. In any 
particular application, of course, various t rend effects, seasonal and o ther cal­
endar effects, and ARMA cyclical effects may not be needed and so could be 
d r o p p e d . 2 Finally, v, is the underlying innovation that drives everything. 

Now consider constructing an /t-step-ahead point forecast at t ime T, yr+h.T-
At t ime T + h, 

yT+k = W 8 ) + £ > Z W + ^ 8 , H I ) H D V l J + A + ^ S T O T D V , , T + h + BT+H . 

i=l i=\ (=1 
Projecting the right-hand-side variables on what's known at t ime T (i.e., the 
t ime-T information set, C2T), yields the point forecast 

> r + * . r = W 8 ) + + £ 5 , H D H D V , i 7 . + / l + ^ 5 T O T D V j m + e r + . . r . 
»=i ,=i ,=i 

As with the pure t rend and seasonal models discussed earlier, the t rend and 
seasonal variables on the right-hand side are perfectly predictable. T h e only 
twist concerns the cyclical behavior that may be lurking in the dis turbance 
term, future values of which don ' t necessarily project to 0, because the distur­
bance is no t necessarily white noise. Instead, we construct r using the 
methods we developed for forecasting cycles. 

1 Note that, because we include a full set of seasonal dummies, the trend does not contain an 
Intercept, and we don't include an intercept in the regression. 
2 If the seasonal dummies were dropped, dten we'd include an intercept in the regression. 
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As always, we make the point forecast operat ional by replacing unknown 
parameters with estimates, yielding 

J m . r = W 0 ) + £ - y , A r + , , + X X D H D V - . ™ + E ^ T D V < . r + A + ^r+h.r . 
1=1 I=I »=i 

To construct Zr+h, r, in addition to replacing the parameters in the formula for 
Er+h,r with estimates, we replace the unobservable disturbances, the E,'s, with 
the observable residuals, the e,'s. 

We use our earlier-developed operational expressions for cycle forecast 
e r ro r variances to produce an ^-step-ahead interval forecast; it's simply 
yr+h.r± za/'2&h> where &h~ is the operat ional estimate of the variance of the 
er ror in forecasting £-/>ft, and zar> is the appropriate critical point of the N{0,1) 
density. For example, a 95% interval forecast is yr+h.r± 1.966v Finally, the 
complete ^-step-ahead density forecast is N(yT+h.r, )• 

O n c e again, we don ' t actually have to do any of the computat ions jus t 
discussed; rather, the compute r does them all for us. So let 's get on with an 
application, now that we know what we're doing. 

2. Application: Forecasting Liquor Sales 

We'll forecast monthly U.S. l iquor sales. We graphed a short span of the 
series in Chapter 6 and noted its p ronounced seasonality—sales skyrocket 
dur ing the Christmas season. In Figure 10.1, we show a longer history of 
liquor sales, 1968.01-1993.12. In Figure 10.2, we show log liquor sales; we 
take logs to stabilize the variance, which grows over t ime . 3 T h e variance of 

F I G U R E ID I 
Liquor Sales, 
1968.01-1993.12 

68 70 T. 74 76 78 80 82 84 86 88 90 92 
Time 

s T h e nature of the logarithmic transformation is such that it "compresses" an increasing variance. 
Make a graph of log(x) as a function of x. and you'll see why. 
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• I G U R E ' D 2 
Log Liquor Sales, 
1968.0J-1993.12 

(J Q I i I l _ J I i _ j I I i l I — I — l — I — i — l — i I I l i ' 

68 70 72 74 76 78 80 82 84 86 88 90 92 
Time 

log liquor sales is more stable, and it's the series for which we'll build fore­
casting models . 4 

Liquor sales dynamics also feature p rominen t t rend and cyclical effects. 
Liquor sales t rend upward, and the t rend appears nonl inear in spite of the fact 
that we're working in logs. To handle the nonl inear trend, we adopt a qua­
dratic t rend model (in logs). T h e estimation results are in Table 10.1. T h e 
residual plot (Figure 10.3) shows that the fitted t rend increases at a decreasing 
rate; both the linear and quadratic terms are highly significant. T h e adjusted 
R2 is 89%, reflecting the fact that t rend is responsible for a large part of the 
variation in liquor sales. T h e s tandard e r ro r of the regression is 0.125; it's an 
estimate of the s tandard deviation of the e r ro r we'd expect to make in fore­
casting liquor sales if we accounted for t rend but ignored seasonality and serial 
correlation. The Durbin-Watson statistic provides n o evidence against the 
hypothesis that the regression disturbance is white noise. 

T h e residual plot, however, shows obvious residual seasonality. T h e Durbin-
Watson statistic missed it, evidendy because it's not designed to have power 
against seasonal dynamics. 5 The residual plot also suggests that there may be a 
cycle in the residual, al though it's hard to tell (hard for the Durbin-Watson sta­
tistic as well), because the pervasive seasonality swamps the picture and makes 
it hard to infer much of anything. 

T h e residual correlogram (Table 10.2) and its graph (Figure 10.4) 
confirm the impor tance of the neglected seasonality. T h e residual sample 
autocorrelation function has large spikes, far exceeding the Bartlett bands, at 

1 From this point onward, for brevity we'll simply refer to "liquor sales," but remember that we've 
taken logs. 
3 Recall dial the Durbin-Watson test is designed to detect simple AR(1) dynamics. It also has the 
ability to detect other sorts of dynamics, but evidently not those relevant to the present applica­
tion, which are very different from a simple AR(1). 
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LS / / Dependent variable is LSALES. 
Sample: 1968:01 1993:12 
Included observations: 312 

Variable Coefficient Std. Error ^Statistic Prob. 

C 6.237356 0.024496 254.6267 0.0000 
TIME 0.007690 0.000336 22.91552 0.0000 
TTME2 -1.14E-05 9.74E-07 -11.72695 0.0000 

0.892394 Mean dependent var. 7.112383 
Adjusted R2 0.891698 SD dependent var. 0.379308 
SE of regression 0.124828 Akaike info criterion -4.152073 
Sum squared resid. 4.814823 Schwarz criterion -4.116083 
Log likelihood 208.0146 /"-statistic 1281.296 
Durbin-Watson stat. 1.752858 Prob (/^statistic) 0.000000 

T A B L E ID.I 
Log Liquor Sales 
Quadratic Trend 
Regression 

the seasonal displacements 12,24, and 36. It indicates some cyclical dynamics as 
well; apart from the seasonal spikes, the residual sample autocorrelation and 
partial autocorrelation functions oscillate, and the Ljung-Box statistic rejects the 
white noise null hypothesis even at very small, nonseasonal, displacements. 

In Table 10.3 we show the results of regression on quadratic t rend and a full 
set of seasonal dummies . The quadrat ic t rend remains highly significant. T h e 
adjusted Rr rises to 99%, and the standard e r ro r of the regression falls to 0.046, 
which is an estimate of the s tandard deviation of the forecast e r ro r we ex­
pect to make if we account for t rend and seasonality but ignore serial correla­
tion. T h e Durbin-Watson statistic, however, has greater ability to detect serial 

8.0 F I G U R E 3 
I Jig Liquor Sales 
Quadratic Trend 
Regression, 
Residual Plot 

68 70 72 74 76 78 80 82 84 86 88 90 92 



196 Chapter 10 

T A B L E ID 2 
Log Liquor Sales 

Acorr. P. Acorr. Std. Error Ljung-Box /rvalue T A B L E ID 2 
Log Liquor Sales 
Quadratic Trend 1 0.117 0.117 .056 4.3158 0.038 
Regression, 
Residual 2 -0.149 -0.165 .056 11.365 0.003 

Correlogram 3 -0.106 -0.069 .056 14.943 0.002 
4 -0.014 -0.017 .056 15.007 0.005 
5 0.142 0.125 .056 21.449 0.001 
6 0.041 -0.004 .056 21.979 0.001 
7 0.134 0.175 .056 27.708 0.000 
8 -0.029 -0.046 .056 27.975 0.000 
9 -0.136 -0.080 .056 33.944 0.000 

10 -0.205 -0.206 .056 47.611 0.000 
11 0.056 0.080 .056 48.632 0.000 
12 0.888 0.879 .056 306.26 0.000 
13 0.055 -0.507 .056 307.25 0.000 
14 -0.187 -0.159 .056 318.79 0.000 
15 -0.159 -0.144 .056 327.17 0.000 
16 -0.059 -0.002 .056 328.32 0.000 
17 0.091 -0.118 .056 331.05 0.000 
18 -0.010 -0.055 .056 331.08 0.000 
19 0.086 -0.032 .056 333.57 0.000 
20 -0.066 0.028 .056 335.03 0.000 
21 -0.170 0.044 .056 344.71 0.000 
22 -0.231 0.180 .056 362.74 0.000 
23 0.028 0.016 .056 363.00 0.000 
24 0.811 -0.014 .056 586.50 0.000 
25 0.013 -0.128 .056 586.56 0.000 
26 -0.221 -0.136 .056 603.26 0.000 
27 -0.196 -0.017 .056 616.51 0.000 
28 -0.092 -0.079 .056 619.42 0.000 
29 0.045 -0.094 .056 620.13 0.000 
30 -0.043 0.045 .056 620.77 0.0(H) 
31 0.057 0.041 .056 621.89 0.000 
32 -0.095 -0.002 .056 625.07 0.000 
33 -0.195 0.026 .056 638.38 0.000 
34 -0.240 0.088 .056 658.74 0.000 
35 0.006 -0.089 .056 658.75 0.000 
36 0.765 0.076 .056 866.34 0.000 
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correlation now that the residual seasonality has been accounted for, and it 
sounds a loud alarm. 

The residual plot of Figure 10.5 shows no seasonality, as that 's now picked 
u p by the model , but it confirms the Durbin-Watson's warning of serial corre­
lation. T h e residuals are highly persistent and hence predictable. We show the 
residual correlogram in tabular and graphical form in Table 10.4 and Fig­
ure 10,6. The residual sample autocorrelat ions oscillate and decay slowly, and 
they exceed the Bartlett standard errors throughout . The Ljung-Box test 
strongly rejects the white noise null at all displacements. Finally, the residual 
sample partial autocorrelat ions cut off at displacement 3. All of this suggests 
that an AR(3) would provide a good approximation to the disturbance's Wold 
representat ion. 
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T A S L E ! • • 
Log Liquor Sales 
Quadratic Trend 
Regression xvith 
Seasonal Dummies 

LS / / Dependent variable is LSALES. 
Sample: 1968:01 1993:12 
Included observations: 312 

Variable Coefficient Std. Error ^Statistic Prob. 

TIME 0.007656 0.000123 62.35882 0.0000 
T1ME2 -1.14E-05 3.56E-07 -32.06823 0.0000 
D\ 6.147456 0.012340 498.1699 0.0000 
02 6.088653 0.012353 492.8890 0.0000 
D3 6.174127 0.012366 499.3008 0.0000 
DA 6.175220 0.012378 498.8970 0.0000 
Db 6.246086 0.012390 504.1398 0.0000 
D6 6.250387 0.012401 504.0194 0.0000 
Dl 6.295979 0.012412 507.2402 0.0000 
D8 6.268043 0.012423 504.5509 0.0000 
09 6.203832 0.012433 498.9630 0.0000 
DU) 6.229197 0.012444 500.5968 0.0000 
Dll 6.259770 0.012453 502.6602 0.0000 
D12 6.580068 0.012463 527.9819 0.0000 

A* 0.986111 Mean dependent var. 7.112383 
Adjusted 0.985505 SD dependent var. 0.379308 
SE of regression 0.045666 Akaike info criterion -6.128963 
Sum squared resid. 0.621448 Schwarz criterion -5.961008 
Log likelihood 527.4094 /^statistic 1627.567 
Durbin-Watson stat. 0.586187 Prob (/--statistic) 0.000000 



Putting It All Together: A Forecasting Model with Trend, Seasonal, and Cyclical Components 199 

Acorr. P. Acorr. Std. Error Ljung-Box /rvalue 

1 0.700 0.700 .056 154.34 0.000 
2 0.686 0.383 .056 302.86 0.000 
3 0.725 0.369 .056 469.36 0.000 
4 0.569 -0.141 .056 572.36 0.000 
5 0.569 0.017 .056 675.58 0.000 
6 0.577 0.093 .056 782.19 0.000 
7 0.460 -0.078 .056 850.06 0.000 
8 0.480 0.043 .056 924.38 0.000 
9 0.466 0.030 .056 994.46 0.000 

10 0.327 -0.188 .056 1029.1 0.000 
11 0.364 0.019 .056 1072.1 0.000 
12 0.355 0.089 .056 1113.3 0.000 
13 0.225 -0.119 .056 1129.9 0.000 
14 0.291 0.065 .056 1157.8 0.000 
15 0.211 -0.119 .056 1172.4 0.000 
16 0.138 -0.031 .056 1178.7 0.000 
17 0.195 0.053 .056 1191.4 0.000 
18 0.114 -0.027 .056 1195.7 0.000 
19 0.055 -0.063 .056 1196.7 0.000 
20 0.134 0.089 .056 1202.7 0.000 
21 0,062 0.018 .056 1204.0 0.000 
22 -0.006 -0.115 .056 1204.0 0.000 
23 0.084 0.086 .056 1206.4 0.000 
24 -0.039 -0.124 .056 1206.9 0.000 
25 -0.063 -0.055 .056 1208.3 0.000 
26 -0.016 -0.022 .056 1208.4 0.000 
27 -0.143 -0.075 .056 1215.4 0.000 
28 -0.135 -0.047 .056 1221.7 0.000 
29 -0.124 -0.048 .056 1227.0 0.000 
30 -0.189 0.086 .056 1239.5 0.000 
31 -0.178 -0.017 .056 1250.5 0.000 
32 -0.139 0.073 .056 1257.3 0.000 
33 -0.226 -0.049 .056 1275.2 0.000 
34 -0.155 0.097 .056 1283.7 0.000 
35 -0.142 0/108 .056 1290.8 0.000 
36 -0.242 -U.074 .056 1311.6 0.000 

TABLE 1D *i 
Log Liquor Sales 
Quadratic Trend 
Regression with 
Seasonal Dummies, 
Residual 
Correlogram 
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F I G U R E m e 
Log Liquor Sales 
Quadratic Trend 
Regression with 
Seasonal Dummies, 
Residual Sample 
Autocorrelation 
and Partial 
A u tocorrelalion 
Functions 
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In Table 10.5, then, we repor t the results of estimating a liquor sales model 
with quadratic t rend, seasonal dummies , and AR(3) disturbances. T h e R2 is 
now 100%, and the Durbin-Watson is fine. O n e inverse root of the AR(3) dis­
turbance process is estimated to be real and close to the unit circle (0.95), and 
the o ther two inverse roots are a complex conjugate pair farther from the unit 
circle. The standard e r ror of this regression is an estimate of the s tandard de­
viation of the forecast e r ror we'd expect to make after model ing the residual 
serial correlation, as we've now done ; that is, it's an estimate of the s tandard 
deviation of v. b It's a very small 0.027, roughly half that obtained when we 
ignored serial correlation. 

6 Recall that v is the innovation that drives the ARMA process tor the regression disturbance, £. 
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LS / / Dependent variable is LSALES. 
Sample: 1968:01 1993:12 
Included observations: 312 
Convergence achieved after 4 iterations 

Variable Coefficient Std. Error ^Statistic Prob. 

TIME 0.008606 0.000981 8.768212 0.0000 
TIME2 -1.41E-05 2.53E-06 -5.556103 0.0000 
Dl 6.073054 0.083922 72.36584 0.0000 
D2 6.013822 0.083942 71.64254 0.0000 
£>3 6.099208 0.083947 72.65524 0.0000 
DA 6.101522 0.083934 72.69393 0.0000 
D5 6.172528 0.083946 73.52962 0.0000 
D6 6.177129 0.083947 73.58364 0.0000 
D7 6.223323 0.083939 74.14071 0.0000 
D8 6.195681 0.083943 73.80857 0.0000 
D9 6.131818 0.083940 73.04993 0.0000 
D10 6.157592 0.083934 73.36197 0.0000 
Dl l 6.188480 0.083932 73.73176 0.0000 
D12 6.509106 0.083928 77.55624 0.0000 
AR<1) 0.268805 0.052909 5.080488 0.0000 
AR(2) 0.239688 0.053697 4.463723 0.0000 
AR(3) 0.395880 0.053109 7.454150 0.0000 

0.995069 Mean dependent var. 7.112383 
Adjusted R2 0.994802 SD dependent var. 0.379308 
SE of regression 0.027347 Akaike info criterion -7.145319 
Sum squared resid. 0.220625 Schwarz criterion -6.941373 
Log likelihood 688.9610 /^statistic 3720.875 
Durbin-Watson stat. 1.886119 PTob(F-statistic) 0.000000 
Inverted AR roots .95 - . 3 4 + ,55i - . 34 - .55i 

T A B L E I D S 
Log Liquor Sales 
Quadratic Trend 
Regression with 
Seasonal Dummies 
andAR(3) 

We show the res idual p l o t i n Figure 10.7 a n d the res idua l c o r r e l o g r a m i n 
Table 10.6 a n d Figure 10.8. The res idual p l o t reveals n o pa t te rns ; instead, the 
residuals l o o k l ike w h i t e noise, as they s h o u l d . T h e res idual sample a u t o c o r r e l a ­
tions a n d par t ia l a u t o c o r r e l a t i o n s display n o p a t t e r n s a n d a re most ly ins ide the 
Bartlett bands . The Ljung-Box statistics also l o o k g o o d for smal l a n d m o d e r a t e 
d isp lacements , a l t h o u g h t h e i r Rva lues decrease f o r l o n g e r d isp lacements . 

All th ings c o n s i d e r e d , the q u a d r a t i c t r e n d , seasonal d u m m y , AR(3) speci ­
fication seems tentat ive ly a d e q t i a t e . We also p e r f o r m a n u m b e r o f a d d i t i o n a l 
checks. In Figure 10.9. we show a h i s t o g r a m a n d n o r m a l i t y test a p p l i e d to t h e 
residuals . The h i s t o g r a m looks s y m m e t r i c , as c o n f i r m e d by t h e skewness 
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F I G U R E I D . 7 
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Quadratic Trend 
Regression with 
Seasonal Dummies 
and AR(3) 
Disturbances, 
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Acorr. P. Acorr. Std. Error Ljung-Box p-value 

1 0.056 0.056 .056 0.9779 0.323 
2 0.037 0.034 .056 1.4194 0.492 
3 0.024 0.020 .056 1.6032 0.659 
4 -0.084 -0.088 .056 3.8256 0.430 
5 -0.007 0.001 .056 3.8415 0.572 
6 0.065 0.072 .056 5.1985 0.519 
7 -0.041 -0.044 .056 5.7288 0.572 
8 0.069 0.063 .056 7.2828 0.506 
9 0.080 0.074 .056 9.3527 0.405 

10 -0.163 -0.169 .056 18.019 0.055 
11 -0.009 -0.005 .056 18.045 0.081 
12 0.145 0.175 .056 24.938 0.015 
13 -0.074 -0.078 .056 26.750 0.013 
14 0.149 0.113 .056 34.034 0.002 
15 -0.039 -0.060 .056 34.532 0.003 
16 -0.089 -0.058 .056 37.126 0.002 
17 0.058 0.048 .056 38.262 0.002 
18 -0.062 -0.050 .056 39.556 0.002 
19 -0.110 -0.074 .056 43.604 0.001 
20 0.100 0.056 .056 46.935 0.001 
21 0.039 0.042 .056 47.440 0.001 
22 -0.122 -0.114 .056 52.501 0.000 
23 0.146 0.130 .056 59.729 0.000 
24 -0.072 -0.040 .056 61.487 0.000 
25 0.006 0.017 .056 61.500 0.000 
26 0.148 0.082 .056 69.024 0.000 
27 -0.109 -0.067 .056 73.145 0.000 
28 -0.029 -0.045 .056 73.436 0.000 
29 -0.046 -0.100 .056 74.153 0.000 
30 -0.084 0.020 .056 76.620 0.000 
31 -0.095 -0.101 .056 79.793 0.000 
32 0.051 0.012 .056 80.710 0.000 
33 -0.114 -0.061 .056 85.266 0.000 
34 0.024 0.002 .056 85.468 0.000 
35 0.043 -0.010 .056 86.116 0.000 
36 -0.229 -0.140 .056 104.75 0.000 

TABLE tD • 
Log Liquor Sales 
Quadratic Trend 
Regression with 
Seasonal Dummies 
and AR(3) 
Disturbances, 
Residual 
Correlogram 
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F I G U R E i n . a 
Log Liquor Sales 
Quadratic Trend 
Regression with 
Seasonal Dummies 
and AR(3) 
Disturbances, 
Residual Histogram 
and Normality Test 
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Series: Residuals 
Sample 1968:01 1993:12 
Observations 312 

Mean 3.77E-16 
Median - 0 . 0 0 0 1 6 0 
Maximum 0.078468 
Minimum - 0 . 1 0 9 8 5 6 
Std. Dev. 0.026635 
Skewness 0.077911 
Kurtosis 3.740378 

Jarque-Bera 7.441714 
Probability 0.024213 

- 0 . 1 0 - 0 . 0 5 0.00 0.05 

near 0. T h e residual kurtosis is a bit h igher than 3 and causes the Jarque-Bera 
test to reject the normality hypothesis with a /rvalue of .02, but the residuals 
nevertheless appear to be fairly well approximated by a normal distribution, 
even if they may have slightly fatter tails. 

Now we use the estimated model to p roduce forecasts. In Figure 10.10 we 
show the history of liquor sales and a 12-month-ahead extrapolation forecast 
for 1994. 7 To aid visual interpretat ion, we show only 2 years of history. The 
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We show the point forecast together widi 95% intervals. 
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F I G U R E Id.I I 
Log Liquor Sales 
History, 12-Month-
Ahead Forecast, 
and Realization 
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forecast looks reasonable. It's visually apparen t that the model has d o n e a 
good j o b of picking up the seasonal pat tern, which dominates the local be­
havior of the series. In Figure 10.11, we show the history, the forecast, and the 
1994 realization. T h e forecast was very good! 

Figure 10.12 shows 4 years of history together with a 60-month-ahead 
(5-year) extrapolation forecast, to provide a bet ter feel for the dynamics in the 
forecast. The figure also makes clear the t rend forecast is slighdy downward. To 
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F I G U R E 1CJ.I3 
Log Liquor Sales 
Long History and 
60-Month-Ahead 
Forecast 
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Time 

put the long-horizon forecast in historical context, we show in Figure 10.13 
the 60-month-ahead forecast together with the complete history. Finally, in 
Figure 10.14, we show the history and point forecast of the level of liquor sales 
(as opposed to log liquor sales), which we obtain by exponent ia t ing the fore­
cast of log liquor sales. 8 
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8 Recal l that exponentiating "undoes" a natural logarithm. 
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3. Recursive Estimation Procedures fur Diagnosing 
and Selecting Forecasting Models 
Recursive estimation means beginning with a small sample of data, estimating 
a model , adding an observation and reestimating the model , and cont inuing in 
that fashion until the sample is exhausted. 9 Recursive estimation and related 
techniques a re useful in a variety of situations of impor tance in forecasting, 
including stability assessment a n d model selection. O n both counts, it's natural 
to in t roduce them now. 

ASSESSING THE STABILITY OF FORECASTING 
MODELS: RECURSIVE PARAMETER ESTIMATION 
AND RECURSIVE RESIDUALS 

Business and economic relationships often vary over time; sometimes para­
meters evolve slowly, and sometimes they break sharply. If a forecasting model 
displays such instability, it's not likely to p roduce good forecasts, so it's impor­
tant that we have tools that he lp us to diagnose the instability. Recursive esti­
mation procedures allow us to assess and track time-varying parameters and 
are therefore useful in the construction and evaluation of a variety of fore­
casting models. 

First we introduce the idea of recursive parameter estimation. We work 
with the s tandard linear regression model . 

k 

iid n 

e ,~A r (0, a 2 ) , 
t = 1 , . . . , T, and we estimate it using least squares. Instead of immediately 
using all the data to estimate the model , however, we begin with a small subset. 
If the model contains k parameters , begin with the first k observations and esti­
mate the model . T h e n we estimate it using the first k + 1 observations and 

•' Strictly speaking, sequential might be a more descriptive adjective than recursive. Recursive updat-
/ngrefers to the tact that an estimate based on / + 1 observations can sometimes be computed sim­
ply by appropriately combining the old estimate based on t observations with the new observation. 
(This is possible, for example, with linear least-squares regression.) Recursive updating achieves a 
drastic reduction in computational requirements relative to complete reestimation of the model 
each time the sample is updated, which we might call "brute force updating." For our purposes, 
it's inconsequential whether we do recursive updating or brute force updating (and the speed of 
modern computers often makes brute force attractive); we use reansive estimation as a blanket 
term for any sequential estimation procedure, whether die computations are done by recursive or 
brute force techniques. 
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so on, until the sample is exhausted. At the end we have a set of recursive pa­
rameter estimates ,,, for / = k 7^and / = 1 k. It often pays to com­
pute and examine recursive estimates, because they convey impor tant infor­
mation about parameter stability'—the) show how the estimated parameters 
move as more and more observations are accumulated. It 's often informative 
to plot the recursive estimates, to help answer the obvious questions of interest: 
Do the coefficient estimates stabilize as the sample size grows? Or d o they wan­
der a round, or drift in a particular direction, or break sharply at one or more 
points? 

Now let's introduce the recursive residuals. At each t, t = k, .. . , T— 1, we 

can compute a 1-step-ahead forecast, y l + \ j = £ (J,-./JC;,,+i. The corresponding 

forecast errors, or recursive residuals, are et+\., = y,+\ — yt+\,i- T h e variance of 
these 1-step-ahead forecast errors changes as the sample size grows, because 
u n d e r the maintained assumptions the model parameters are estimated more 
precisely as the sample size grows. Specifically, 

e,+\,, ~ N(0, a 2 r , ) , 

where r, > 1 for all / and r, is a somewhat complicated function of the da t a . 1 0 

As with recursive parameter estimates, recursive residuals can reveal para­
meter instability in forecasting models. Often we'll examine a plot of the re­
cursive residuals and estimated two standard-error bands (±2rr y/r~,).u This has 
an immediate forecasting interpretat ion and is sometimes called a sequence 
of 1-step forecast tests—we make recursive 1-step-ahead 9 5 % interval forecasts 
and then check where the subsequent realizations fall. If many of them fall 
outside the intervals, one or m o r e parameters may be unstable, and the loca­
tions of the violations of the interval forecasts give some indication as to the 
na ture of the instability. 

Sometimes it's helpful to consider the standardized recursive residuals, 

W , + h l = — — , 

t = k T—\. U n d e r the maintained assumptions, 

iid 

If any of the mainta ined model assumptions are violated, the standardized re­
cursive residuals will fail to be iid normal , so we can learn about various model 

, u Derivation of a formula for r, is beyond the scope of this book. Ordinarily we'd ignore the in­
flation of \Ar(?t+\,i) due to parameter estimation, which vanishes widi sample size so that rt —» 1, 
and simply use the large-sample approximation ~ \ ' (0 , a"). Presendy, however, we're esti­
mating the regression recursively, so the initial regressions will always be performed on very small 
samples, thereby rendering large-sample approximations unpalatable. 
" a is just the usual standard error of the regression, estimated from the full sample of data. 
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inadequacies by examining them. T h e cumulative sum ("CUSUM") of the 
standardized recursive residuals is particularly useful in assessing parameter 

iid 
stability. Because u>,+i.r ~ .V(0, 1), it follows that 

t 
CUSUM, = £ u > T + , . T , / = k T - 1 

is jus t a sum of iid A/(0, 1) r andom variables. 1 ' 2 Probability bounds for die 
CUSUM have been tabulated, and we often examine time series plots of the 
CUSUM and its 9 5 % probability bounds , which grow linearly and are centered 
at 0 . 1 3 If the CUSUM violates the bounds at any point, there is evidence of pa­
rameter instability. Such an analysis is called a CUSUM analysis. 

As an illustration of the use of recursive techniques for detect ing structural 
change, we consider in Figures 10.15 and 10.16 two stylized data-generating 
processes (bivariate regression models, satisfying the classical assumptions 
apart from the possibility of a time-varying parameter ) . The first has a con­
stant parameter, and the second has a sharply breaking parameter. For each 
we show a scatterplot of y versus x, recursive parameter estimates, recursive 
residuals, and a CUSUM plot. 

We show the constant parameter model in Figure 10.15. As expected, the 
scatterplot shows no evidence of instability, the recursive parameter estimate 
stabilizes quickly, its variance decreases quickly, the recursive residuals look 
like zero-mean random noise, and the CUSUM plot shows no evidence of 
instability. 

We show the breaking parameter model in Figure 10.16; the results are dif­
ferent yet again. The t rue relationship between y and x is one of proport ion­
ality, with the constant of proportionality j u m p i n g in midsample. T h e j u m p is 
clearly evident in the scatterplot, in the recursive residuals, and in the recur­
sive parameter estimate. T h e CUSUM remains near 0 until midsample, at 
which time it shoots through the 95% probability limit. 

Model Selection Based on Simulated Forecasting 
Performance 
All the forecast model selection strategies that we've studied amoun t to strate­
gies for finding the model that 's most likely to perform well in terms of out-of-
sample 1-step-ahead mean-squared forecast error. In every case, we effectively 
estimate out-of-sample 1-step-ahead mean-squared forecast e r ro r by adjusting 
the in-sample mean-squared er ror with a degrees-of-freedom penalty. T h e 
impor tant insight is that we estimate out-of-sample forecast accuracy using 

1 2 Sums of zero-mean iid random variables are very important. In fact, they're so important that 
they have their own name, random walks. We'll study them in detail in Chapter 13. 
1 3 T o make the standardized recursive residuals, and hence the CUSL'M statistic, operational, we 
replace a with a. 
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F f G U P E ! • ?S 
Recursive Analysis 
Constant Parameter 
Model 

in-sample residuals. Recursive estimation suggests a different approach, which 
is also more direct and flexible. Recursive estimation lets us estimate out-of-
sample forecast accuracy directly, using out-of-sample forecast errors. 

We first in t roduce a procedure called cross validation, in reference to the 
fact that the predictive ability of the model is evaluated on observations differ­
ent from those on which the model is estimated, thereby incorporat ing an au­
tomatic degrees-of-freedom penalty. It's actually not based on recursive estima­
tion, because we don ' t let the estimation sample expand. Instead, we obtain the 
various estimation samples by sequentially deleting observations. As we'll see, 
however, it provides a natural introduction to a closely related recursive model 
selection procedure that we'll introduce subsequently, which we call recursive 
cross validation. 

Cross validation proceeds as follows. Consider selecting among / fo recas t ­
ing models . Start with model 1, estimate it using all data observations except 
the first, use it to forecast the first observation, and compute the associated 
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squared forecast error. T h e n estimate ii using all observations except the 
second, use it to forecast the second observation, and compute the associated 
squared error. Keep doing this—estimating the model with one observation 
deleted and then using the estimated model to forecast the deleted observa­
t ion—until each observation has been sequentially deleted, and average the 
squared er rors in predict ing each of the T sequentially dele ted observations. 
Repeat the p rocedure for the o ther models, j'< = 2 , . . . . J, and select the 
model with the smallest average squared forecast error. 

As we've described it here , cross validation is mainly of use in cross section, 
as opposed to time series, forecasting environments , because the "leave one 
out" estimations required for cross validation only make sense in the absence 
of dynamics. That is. i t s onlv in the absence of dynamics that we can simply 
pluck out an observation, discard it, and proceed to estimate the model with 
the remaining observations without further adjustment. It's easy to extend the 
basic idea of cross validation to the time series case, however, which leads to 
the idea of recursive cross validation. 
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Recursive cross validation proceeds as follows. Let die initial estimation 
sample run from / = 1, . . . , T*, and let the '"holdout sample" used for com­
paring predictive per formance run from t = T* 4- 1 , . . . , T. For each model , 
p roceed as follows. Estimate the model using observations t = 1 , . . . , T". T h e n 
use it to forecast observation T* 4- 1. and compute the associated squared 
error. Next, update the sample by one observation (observation T* + 1), esti­
mate the model using the upda ted sample t = 1. . . . , T* + 1, forecast obser­
vation T* 4- 2, and compute the associated squared error. Cont inue this re­
cursive reestimation and forecasting until the sample is exhausted, and then 
average the squared errors in predicting observations T* + 1 through T. 
Select the model with the smallest average squared forecast error. 

4. Liquor Sales, Continued 
In Figures 10.17-10.19, we show the results of a recursive analysis. Figure 10.17 
presents the recursive residuals and their two-standard-error bands under the 
jo in t null hypothesis of correct specification and parameter constancy. The re­
cursive residuals rarely violate the 95% bands. Figure 10.18 shows the recursive 
parameter estimates together with recursively computed standard errors. The 
top row shows the 2 t rend parameters, the next three rows show the 12 seasonal 
dummy parameters, and the last row shows the 3 autoregressive parameters. All 
parameter estimates seem to stabilize as the sample size grows. Finally, Fig­
u re 10.19 is a CUSUM chart , which reveals no evidence against the hypothesis 
of correct specification and structural stability; the CUSUM never even ap­
proaches the 5% significance boundary. 
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F I G U R E IO. I9 
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Exercises, Problems, and Complements 
1. (Serially correlated disturbances vs. lagged dependent variables) Estimate the 

quadratic trend model for log liquor sales with seasonal dummies and three lags 
of the dependent variable included directly. Discuss your results and compare 
them with those we obtained when we instead allowed for AR(3) disturbances in 
the regression. 

2. (Assessing the adequacy of die liquor sales forecasting model trend specification) 
Critique the liquor sales forecasting model that we adopted (log liquor sales with 
quadratic trend, seasonal dummies, and AR(3) disturbances). 
a. If the trend is not a good approximation to the actual trend in the series, 

would it greatly affect short-run forecasts? Long-run forecasts? 
b. Fit and assess the adequacy of a model with loglinear trend. 
c. How might you fit and assess the adequacy of a broken linear trend? How-

might you decide on the location of the break point? 

3. (Improving nontrend aspects of the liquor sales forecasting model) 1 4 

a. Recall our earlier argument from Chapter 8 that best practice requires using a 
Xm-f, distribution rather than a x», distribution to assess the significance of 
Q-statistics for model residuals, where m is the number of autocorrelations 
included in the Box-Pierce statistic and k is the number of parameters 
estimated. In several places in this chapter, we failed to heed this advice when 
evaluating the liquor sales model. If we were instead to compare the residual 
Q-statistic p-va\lies with a Xm-k distribution, how. if at all, would our 
assessment of the model's adequacy change? 

I thank Ron Michener, University of Virginia, for suggesting parts a and /. 
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b. Return to the log-quadratic trend model with seasonal dummies, allow tor 
ARMA(/;. (j) disturbances, and do a systematic selection of />and fusing die 
AIC and SIC. Do AIC and SIC select the same model? If not, which do you 
prefer? If vour preferred forecasting model differs from the AR(3) that we 
used, replicate the analysis in the text using vour preferred model, and 
discuss vour results. 

c. Discuss and evaluate another possible model improvement: inclusion of an 
additional dummv variable indicating the number of Fridays and/or 
Saturdays in the month. Does this model have lower AIC or SIC man the final 
model used in the text? Do vou prefer it to the one in the text? Why or why 
not? 

4. (CUSUM analysis of the housing starts model) Consider the housing starts 
forecasting model that we built in Chapter 6. 
a. Peribvtn a CUSUM analysis of a housing starts forecasting model that does 

not account for cycles. (Recall that our model in Chapter 6 did not account 
for cvcles). Discuss your results. 

b. Specify and estimate a model that does account for cycles. 
c. Do a CUSUM analysis of the model that accounts for cycles. Discuss your 

results and compare them with those of part a. 

5 . (Model selection based on simulated forecasting performance) 
a. Return to the retail sales data of Chapter ii, and use recursive cross validation 

to select between the linear trend Ibrecasting model and the quadratic trend 
forecasting model. Which do vou select? How does it compare with the model 
selected bv the AIC and SIC? 

b. How did yon decide on a value of T" when performing the recursive cross 
validation on the retail sales data? What are the relevant considerations? 

c. One virtue of recursive cross validation procedures is their flexibility. Suppose 
that your loss function is not 1-step-ahead mean squared error; instead, 
suppose it's an asymmetric function of the 1-step-ahead error. How would you 
modify the recursive cross validation procedure to enforce the asymmetric 
loss function? How would vou proceed if the loss function were 4-step-ahead 
squared error? How would vou proceed if the loss function were an average of 
1-step-ahead through 4-step-ahead squared error? 

6. (Seasonal models with t ime-vary ing p a r a m e t e r s : forecasting AirSpeed passenger-
miles) You work for a hot new startup airline. AirSpeed. modeling and forecasting 
the miles per person ("passenger-miles") traveled on their flights through the 
four quarters of the year. During the past 15 years for which you have data, it's 
well known in the industry that trend passenger-miles have been flat (i.e., there 
is no trend); similarly, there have been no cyclical effects. Industry experts, 
however, believe that there are strong seasonal effects, which vou think might be 
very important for modeling and forecasting passenger-miles. 
a. Why might airline passenger-miles be seasonal? 
b. Fit a quarterly seasonal model to the AirSpeed data, and assess the 

importance of seasonal effects. Do die t- and F-tests indicate that seasonality 
is important? Do the Akaike and Schwarz criteria indicate that seasonality is 
important? What is the estimated seasonal pattern? 

c. Use recursive procedures to assess whether the seasonal coefficients are 
evolving over time. Discuss vour results. 
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d. If the seasonal coefficients are evolving over time, how might you model that 
evolution and thereby improve your forecasdng model? (Hint: Allow for 
trends in the seasonal coefficients themselves.) 

e. Compare 4-quarter-ahead exuapolation forecasts from your models with and 
without evolving seasonality. 

(Formal models of unobserved components) We've used the idea of unobserved 
components as informal motivation for our models of trends, seasonals, and 
cycles. Although we will not do so, it's possible to work with formal unobserved 
components models, such as 

V , = T, + S, + C, + /,, 

where T is the trend component; 5 is the seasonal component; C is the cyclical 
component; and lis the remainder, or "irregular," component, which is white 
noise. Typically we'd assume that each component is uncorrelated with all other 
components at all leads and lags. Typical models for the various components 
include the following: 

Trend 

7J = Po + PiTIMEi (deterministic) 

Seasonal 

7? = 0i + 7?_i + £ | , 

S, = '£ytD„ 

£-21 

Cycle 

c< = n FT e » ' 
(1 - a | L ) 

Irregular 

l + f t / . + fel2 

' (1 - a , A ) ( l -ct«L) 

I, =£41 

(stochastic) 

(deterministic) 

(stochastic) 

(AR(1)) 

(ARMA(2,2)) 

(The restrictions associated widi unobserved-components structures) The 
restrictions associated with formal unobserved-components models are surely 
false, in the sense that real-world dynamics are not likelv to be decomposable in 
such a sharp and tidv way. Rather, the decomposition is effectively an accounting 
framework that we use simply because it's helpful to do so. Trend, seasonal, and 
cyclical variation are so different—and so important in business, economic, and 
financial series—mat it's often helpful to model them separately to help ensure 
that we model each adequately. A consensus has not yet emerged as to whether 
it's more effective to exploit the unobserved components perspective for intuitive 
motivation, as we do throughout this book, or to enforce formal unobserved 
components decompositions in hopes of benefitting from considerations related 
to the shrinkage principle. 
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Bibliographical and Computational Notes 
Nerlove, Grether, and Carvalho (1979) discuss unobserved components models and 
their relationship to ARMA models. Thev also provide an insightful history of the use 
of unobserved components decompositions for data description and forecasting. 

Harvey (1990) derives and presents the formula for r,, the key element of the vari­
ance of the recursive residual. We suggested using the standard error of the regression to 
estimate cr. the standard deviation of the nonrecursive regression dismrbance. as sug­
gested in the original work bv Blown. Durbin, and Evans (1975). Since then, a number 
of authors have used an alternative estimator of o~ based on the recursive residuals, which 
may lead to CUSUM tests with better small-sample power. For a discussion in the context 
of the dynamic models useful for forecasting, see Kramer, Ploberger, and Alt (1988). 

Efron and Tibshirani (1993) give an insightful discussion of forecasting model se­
lection criteria as estimates ot out-of-sample MSE, and the natural attractiveness in that 
regard of numerical methods such as cross validation and its relatives. 

9. (Addi t ive u n o b s e r v e d - c o m p o n e n t s d e c o m p o s i t i o n and mu l t ip l i ca t ive u n o b s e r v e d -
c o m p o n e n t s d e c o m p o s i t i o n ) We introduced the formal unobserved components 
decomposition, 

y,= T, + S, + C, + /, . 

where Vis the trend component, .Vis die seasonal component, Cis die cyclical 
component, and / is die remainder, or "irregular," component. Alternatively, we 
could have introduced a multiplicative decomposition, 

yt = T, S, C, I, . 

a. Begin with the multiplicative decomposition and take logs. Howr does your 
result relate to our original additive decomposition? 

b. Does the exponential (loglinear) trend fit more naturally in the additive or 
multiplicative decomposition framework? Why? 

10. (S ignal , n o i s e , a n d overf i t t ing) Using our unobserved-components perspective, 
we've discussed trends, seasonals, cycles, and noise. We've modeled and 
forecasted each, with the exception of noise. Clearly we can't model or forecast 
die noise; by construction, it's unforecastable. Instead, the noise is what remains 
alter accounting for die other components. We call me other components signals, 
and the signals are buried in noise. Good models fit signals, not noise. Data-
mining expeditions, in contrast, lead to models that often fit verv well over the 
historical sample but that fail miserably for out-of-sample forecasting. That's 
because such data mining effectively tailors the model to fit the idiosyncracies of 
the in-sample noise, which improves the in-sample fit but is of no help in out-of-
sample forecasting. 
a. Choose vour favorite trending (but not seasonal) series, and select a sample 

path of length 100. Graph i t 
b. Regress the first 20 observations on a fifth-order polynomial time trend, and 

allow for five autoregressive lags as well. Graph the actual and fitted values 
from the regression. Discuss. 

c. Use vour estimated model to produce an 80-step-ahead extrapolation forecast. 
Graphically compare your forecast with the actual realization. Discuss. 
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Recursive cross validation is often called predicth>e stochastic complexity; the basic the­
ory was developed by Rissanen (1989). Kuan and Liu (1995) make good use of recur­
sive cross validation to select models for forecasting exchange rates, and they provide 
additional references to the literature on the subject. 

Recursive estimation and related techniques are implemented in a number of 
modern software packages. 

Concepts far Review 
Recursive estimation 
Recursive residuals 
Parameter instability 
Standardized recursive residuals 
CUSUM 
CUSUM plot 
Random walk 
Cross validation 
Recursive cross validation 

Time-varying parameters 
Formal model of unobserved 

components 
Additive unobserved-components 

decomposition 
Multiplicative unobserved-components 

decomposition 
Signal, noise, and overrating 
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Forecasting with 
Regression Models 

T h e regression model is an explicidy multivariate model , in which variables 
are explained and forecast on the basis of their own history and the histories 
of other, related variables. Exploiting such cross-variable linkages may lead to 
good and intuitive forecasting models and to bet ter forecasts than those 
obtained from univariate models. 

Regression models are often called causal or explanatory models. For 
example, in the linear regression model , 

y, = 0o + Pi x, + 8, 
e, ~ VVW(0,o-2), 

the presumption is that x helps de te rmine , or cause, y, not the o ther way 
a round . For this reason, the left-hand-side variable is sometimes called the 
endogenous variable, and the right-hand-side variables are called exogenous or 
explanatory variables. 

But ultimately regression models, like all statistical models, are models of 
correlation, not causation. Except in special cases, all variables are endoge­
nous , and it's best to admit as much from the outset. Toward the end of this 
chapter we'll explicitly do so; we'll work with systems of regression equat ions 
called vector autoregressions (VARs). For now, however, we'll work with the stan­
dard single-equation linear regression model , a great workhorse of forecast­
ing, which we can interpret as one equat ion of a larger system. 
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1. Conditional Forecasting Models 
and Scenario Analysis 
A conditional forecasting model is one that can be used to p roduce forecasts 
for a variable of interest, conditional on assumptions about o ther variables. 
With the regression model , for example, we can forecast \ condit ional on an 
assumed future value of .v.1 This sort of conditional forecasting is often called 
scenario analysis or contingency analysis, because a conditional forecasting 
model helps us answer the "what if" questions that often arise. If we condit ion 
on the assumption, for example, that the /^step-ahead value of x is xT+h, then 
our fc-step-ahead conditional forecast for y is 

Tr+A. r l -4+h = 0n + P i * T + f c • 

Assuming normality, we use the conditional density forecast Niyr+h.rl *7+/,» ( T')> 
and conditional interval forecasts follow immediately from the conditional 
density forecast. As always, we make the p rocedure operational by replacing 
unknown parameters witii estimates. 

I I I I I I 

2. Accounting for Parameter Uncertainty 
in Confidence Intervals for Conditional Forecasts 
Forecasts are of course subject to error, and scenario forecasts are n o excep­
tion. The re are at least three sources of such error. O n e impor tant source of 
forecast e r ror is specification uncertainty. All our models are intentional sim­
plifications, which hopefully capture the salient propert ies of the data for fore­
casting purposes. By using m o d e r n tools such as information criteria, residual 
correlograms, and so on, in conjunction with intuition and theory, we a t tempt 
to minimize specification uncertainty. 

A second source of forecast e r ror is innovation uncertainty, which reflects 
the fact that future innovations are not known when the forecast is made. This 
is the source of forecast e r ror that we've explicidy acknowledged in our com­
putations of interval and density forecasts. We've seen, for example, that the cu­
mulative effect of innovation uncertainty tends to grow with the forecast hori­
zon, resulting in interval and density forecasts that widen with the horizon. 

A diird source of forecast e r ror is parameter uncertainty. T h e coefficients 
that we use to p roduce forecasts are of course just estimates, and the estimates 
are subject to sampling variability. Specification and innovation uncertainty 

1 To enhance pedagogical claritv. we work throughout this chapter widi regression models con­
taining only one right-hand-side variable. Extensions to models with more than one right-hand-
side variable are straightforward. 
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are likely more important than parameter uncertainty (which vanishes as the 
sample size grows); in addit ion, the effect of parameter uncertainty on fore­
cast uncertainty is difficult to quantify in many situations. For both these rea­
sons, parameter uncertainty is often ignored, as we have d o n e thus far. 

When using a conditional forecasting model , however, simple calculations 
allow us to quantifv both innovation and parameter uncertainty. Consider, for 
example, the very simple case in which x h a s a zero mean and 

y, = 0 x , + e , . 

Suppose we want to predict yT+h at xr+h = xT+h. If xr+b — xT+hf t hen 

Thus , 

with corresponding er ror 

h+h.r = yr+h - $r+*,rI * 5 v a = 0 ~ P )*T-* + Er+* • 
Therefore, 

var(f r+*.r) = x'T\h var({3) + a1 . 

We won' t do so here , but it can be shown tha t 2 

var(P) = — 

Thus , we arrive at the final formula. 

var(£7-+ A . R ) = 
*2 . s 

In this expression, the first term accounts for parameter uncertainty, while 
the second accounts for the usual innovation uncertainty. Taken together, the 
results suggest an operat ional density forecast that accounts for parameter 
uncertainty, 

N 
2 

2 , * 2 

V 
from which interval forecasts mav be constructed as well. 

2 See any of the elementary statistics or econometrics texts cited in Chapter 1. 
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F I G U R E II.I 
Point and Interval 
Forecasts 

Note: Top panel interval forecasts don 7 acknowledge parameter uncertainty; bottom panel inter­
val forecasts do acknowledge parameter uncertainty. To produce the figure, we set {1 = 0, a'2 = 1, 
and xr" — 50. 

Note that when parameter uncertainty exists, the closer xT+h is to its mean 
(0), the smaller is the prediction-error variance. T h e idea can be shown to 
carry over to more complicated situations when y and x don ' t necessarily have 
zero means and to models with more than one regressor: T h e closer x is to its 
mean, the tighter is the predict ion interval. We illustrate the situation in Fig­
ure 11.1; the top panel shows constant intervals (±1 .96CJ ) that fail to account 
for parameter uncertainty, and the bot tom panel shows the intervals of vary­
ing width that account for parameter uncertainty. Finally, note that as the 

sample size gets large, £ x"t gets large as well, so the adjustment for parameter 
t = i 

uncertainty vanishes, and the formula collapses to our old one. 
T h e discussion of this section depends on the future value of x being 

known with certainty, which is acceptable in the case of conditional forecasts, 
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in which case we're simply condit ioning on an assumption about future x 3 If 
we don ' t want to condit ion on an assumption about future x, or if we're using 
certain more complicated models (e.g., those with dynamics), the formula 
does not apply. We now turn to such situations and models. 

I I ] ) I I f I - -

3. Unconditional Forecasting Models 
Notwithstanding the usefulness of scenario analyses, often we don ' t want to 
make forecasts of y conditional on assumptions about x; rather, we just want 
the best possible forecast of y—an unconditional forecast. To get an uncondi­
tional forecast from a regression model , we often encoun te r the forecasting 
the right-hand-side variables problem. That is, to get an optimal uncondi t ional 
point forecast for y, we can' t insert an arbitrary value for future x; rather, we 
need to insert the optimal point forecast, x r+A , r» which yields the uncondi­
tional forecast 

yr-h.r = PII + Pi*r-»-A . r • 

Of course, we usually don ' t have such a forecast for x, and the model at h a n d 
doesn ' t help us. (It's a model for y—we don ' t have a model for x.) 

O n e thing we might do is fit a univariate model to x (e.g.. an autoregres­
sive mode l ) , forecast x (i.e., form XT+LT), and then use that forecast of x to 
forecast y. But just as easily—in fact, preferably—we can estimate all the para­
meters simultaneously by regressing y on 1 If we want to forecast 
only one step ahead, we could use the model 

y, = Bo + 6x,_, + e , . 

The right-hand-side variable is lagged by one period, so the model is immedi­
ately useful for 1-step-ahead uncondit ional forecasting. More lags of x c a n of 
course be included: the key is that all variables on the right are lagged by at 
least one period. Forecasting more than one step ahead, however, again leads 
to the problem of forecasting the right-hand-side variables—if we want to 
forecast h steps ahead, all variables on the right must be lagged by at least 
h periods. 

In a few important special cases, the problem of forecasting the right-
hand-side variables doesn ' t arise, because the regressors are perfectly deter­
ministic, so we know exactly what they'll be at any future time. T h e t rend and 
seasonal models discussed in Chapters 5 and 6 are leading examples. Such 
cases are atypical, however. 

5 The discussion also applies to forecasting in cross-sectional environments, in which forecasts are 
almost always conditional. Suppose, for example, that we estimate a regression model relating ex­
penditure on restaurant meals to income, using cross-section data on 1000 households for 1997. 
Then, if we get 1997 income data tor an additional set of people, we can use it to forecast their 
restaurant expenditures. 
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4. Distributed Lags, Polynomial Distributed Lags, 
and Rational Distributed Lags 

We say that y d e p e n d s on a dis t r ibuted lag of past x's. T h e coefficients on 
the lagged x's are called lag weights, a n d their pa t te rn is called the lag 
distribution. 

O n e way to estimate a distributed lag model is simply to include all Nx lags 
of xin the regression, which can be estimated by least squares in the usual way. 
In many situations, however, Nx might be quite a large number, in which case 
we 'd have to use many degrees of freedom to estimate the model , violating the 
parsimony principle. Often we can recover many of those degrees of freedom 
without seriously worsening the model 's fit by constraining the lag weights 
to lie on a low-order polynomial. Such polynomial distributed lags p romote 
smoothness in the lag distribution and may lead to sophisticatedly simple 
models with improved forecasting per formance . 

Polynomial distributed lag models are estimated by minimizing the sum of 
squared residuals in the usual way, subject to the constraint that the lag 
weights follow a low-order polynomial whose degree must be specified. Sup­
pose, for example, that we constrain the lag weights to follow a second-degree 
polynomial. T h e n we find the parameter estimates by solving the problem 

This converts the estimation problem from o n e of estimating 1 + Nx parame­
ters, Bo, S i , . . . , S.v,, to one of estimating four parameters, 0o, a, b, and c. Some­
times additional constraints are imposed on the shape of the polynomial, 
such as 

which enforces the idea that the dynamics have been exhausted by lag Nx. 
Polynomial distributed lags produce aesthetically appealing, but basically 

ad hoc , lag distributions. After all, why should the lag weights necessarily fol­
low a low-order polynomial? An alternative and often preferable approach 

An uncondi t ional forecasting model like 

V| = Po + Sx,_i +£, 

can be immediately generalized to the distributed lag model, 

yt — Po + J^fii-x,-; + E< . 
1 = 1 

subject to 

8, = P(i) = a + bi + c i 2 , i = 1 , . . . , Nx. 

P(Nx) = 0, 
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makes use of the rational distributed lags that we in t roduced in Chapter 7 in 
the context of univariate ARMA modeling. Rational distributed lags p romote 
parsimony, and hence smoothness in the lag distribution, but they d o so in a 
way that 's potentially much less restrictive than requir ing die lag weights to fol­
low a low-order polynomial. We might, for example, use a model like 

y i = m * + t " 

where A(L) and B(L) are low-order polynomials in the lag operator. Equiva-
lently, we can write 

B(L)y, = A(L)xt + B(L)e, , 

which emphasizes that the rational distributed lag of x actually brings both 
lags of x and lags of y into the model . O n e way or another, it's crucial to allow 
for lags of y, and we now study such models in greater depth . 

5. Regressions with Lagged Dependent Variables, 
Regressions with ARMA Disturbances, and Transfer 
Function Models 
There ' s something missing in distributed lag models of the form 

•V, 
>/ = 0u + ^ o , x , _ i + E , . 

1=1 

A multivariate model (in this case, a regression model) should relate the cur­
rent value y to its own past and to the past of x. But as the model is presently 
written, we've left out the past ofy! Even in distributed lag models, we always 
want to allow for the presence of the usual univariate dynamics. Put differ-
endy, the included regressors may not capture all the dynamics in y\ which we 
need to model one way or another . Thus , for example, a preferable model in­
cludes lags of the d e p e n d e n t variable, 

y, = ft, -1- a, y,_, 4- 8, x,_ ,- + £ , . 

This model , a distributed lag regression model with lagged dependent vari­
ables, is closely related to. but not exactly the same as, the rational distributed 
lag model in t roduced earlier. (Why?) You can think of it as arising by begin­
ning with a univariate autoregressive model for y and then introducing addi­
tional explanatory variables. If the lagged y's don ' t play a role, as assessed with 
the usual tests, we can always delete them, but we never want to eliminate from 
the outset the possibility that lagged d e p e n d e n t variables play a role. Lagged 
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d e p e n d e n t variables absorb residual serial correlat ion and can dramatically 
enhance forecasting performance. 

Alternatively, we can capture own-variable dynamics in distributed lag re­
gression models by using a distributed lag regression model with ARMA dis­
turbances. Recall that our ARMA(/>, q) models are equivalent to regression 
models, with onlv a constant regressor and with ARMA(p, q) disturbances: 

y, = Bo + E, 

B ( L ) 

* = *(L)V' 
v, - WN{0,cj~) . 

We want to begin with the univariate model as a baseline and then generalize 
it to allow for multivariate interaction, resulting in models such as 

A'* 
>'' = P<>+ ^ 0 ; X , _ , + £ , 

e < D 

WW(0 ,<r 2). 

Regressions with ARMA disturbances make clear that regression (a statistical 
and econometr ic tool with a long tradition) and the ARMA model of time 
series dynamics (a more recent innovation) are not at all competitors; rather, 
when used appropriately, they can be highly complementary. 

It turns out that the distributed lag regression model with autoregressive 
disturbances—a great workhorse in econometrics—is a special case of the 
more general model with lags of both y and x a n d white noise disturbances. To 
see this, let's take the simple example of an uncondi t ional (1-step-ahead) 
regression forecasting model with AR(1) disturbances: 

yt = Bo + p,x,_, + e , 

£, = <pe,_, + v, 

v, - W.V(0, a 2 ) . 

In lag opera tor notat ion, we write the AR( 1) regression disturbance as 

(1 - (pL)E/ = V, , 

or 

Thus , we can rewrite the regression model as 

y, = B„ 4- pix , - , -I- 1 v,. 
(1 — tpL) 
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Now multiply both sides bv (1 — <pL) to get 

(1 - ipDv, = (l-<p)Po + Pt(l-<P 
or 

y, = ipy,-i -f (1 - <p)P<» + pi*/-i - tppix^ + v,. 

Thus , a model with one lag of x on the right and AR(1) disturbances is equiv­
alent to a model with y,_ (, x,_i, and x,_2 on the right-hand side and white 
noise errors, subject to the restriction that the coefficient on the second lag of 
x,_2 is the negative of the product of the coefficients on y,_i and x,_i. 

Distributed lag regressions with lagged d e p e n d e n t variables are more 
general than distributed lag regressions with dynamic disturbances. Transfer 
function models are more general still and include both as special cases. 4 T h e 
basic idea is to exploit the power and parsimony of rational distributed lags in 
model ing both own-variable and cross-variable dynamics. Imagine beginning 
with a univariate ARMA model , 

_ C(L) 
y' ~ DiL)£'' 

Name Model Restrictions 

Transfer function 

Standard distributed lag 

Rational distributed lag 

Univariate AR 

Univariate MA 

Univariate ARMA 

Distributed lag with 
lagged dependent variables 

Distributed lag with 
ARMA disturbances 

Disuibuted lag with 
AR disturbances 

yt = B(L) D{L) 
y, = A(L)x, +£, 

A(L) 
B(L) 

1 
D(L) 

y, = C(/,)e, 
C(L) 

x, + £, 

D(i.) 
B(L)y, = A(L)x, +E,.or 

ML) 1 
yt = - 7 T 7 T 7 * ' + " 7 7 7 7 7 £ < B(L) B(L) 

C(L) 
> • = M L ) X ' + m > E i 

None 

B(L) = C(L) = D(L) = 1 

C(L) = D(L) = 1 

A(L) = 0, C(L) = 1 

A(L) = 0, D(L) = 1 

A(L) = 0 

C(L) = 1, D(L) = B(L) 

B(L) = 1 

y, = A(L)xt + -^j-f, B(L) = C(L) = 1 

4 Table 11.1 displays a varietv of important forecasting models, all of which are special cases of the 
transfer function model. 

T A B L E |l ' The 
Transfer Fu nction 
Model and Various 
Special Cases 
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which captures own-variable dynamics using a rational distributed lag. Now ex­
tend the model to capture cross-variable dynamics using a rational distributed 
lag of the o ther variable, which yields the general transfer function model , 

_ A(L) C(L) 
y'~ W)x' DiT) '' 

Distributed lag regression with lagged d e p e n d e n t variables is a potentially re­
strictive special case, which emerges when C(L) = 1 and B(L) = D(L). (Verify 
this for yourself.) Distributed lag regression with ARMA disturbances is also a 
special case, which emerges when B(L) = 1. (Verify this, too.) 

In practice, the impor tant thing is to allow for own-variable dvnamics some­
how, in o rder to account for dvnamics in y not explained by the right-hand-side 
variables. Whether we d o so by including lagged d e p e n d e n t variables, or by 
allowing for ARMA disturbances, or by estimating general transfer function 
models , can occasionally be important , but usually it's a comparatively minor 
issue. 

6. Vector Auteregressicns 
A univariate autoregression involves one variable. In a univariate autoregres-
sion of order p, we regress a variable on p lags of itself. In contrast, a multi­
variate autoregression—that is, a vector autoregression, or VAR—involves N 
variables. In an A-variable vector autoregression of order p, or VAR(/>), we 
estimate Ndifferent equations. In each equat ion, we regress the relevant left-
hand-side variable on p lags of itself and p lags of every other variable.5 Thus , the 
right-hand-side variables are the same in every equation—p lags of every 
variable. 

T h e key point is that, in contrast to the univariate case, vector autoregres-
sions allow for cross-variable dynamics. Each variable is related not only to its 
own past but also to the past of all the o ther variables in the system. In a two-
variable VAR(l) , for example, we have two equations, one for each variable 
(y) and yg). We write 

Ju = <Pn yu-i + <Pia V2./-1 + Eu 

Each variable depends on one lag of the o the r variable in addition to one lag of 
itself; that 's o n e obvious source of multivariate interaction captured by the VAR 
diat may be useful for forecasting. In addition, the disturbances may be corre­
lated, so that when one equat ion is shocked, the o ther will typically be shocked 

* Trends, seasonals. and other exogenous variables may also be included, as long as they're all 
included in every equation. 
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as well, which is ano ther type of multivariate interaction that univariate models 
miss. We summarize the disturbance variance-covariance structure as 

6i.i - WN(0,crf) 

£2<, - WN(0, of) 

cov(ei.,,e 2 . f) = 0-12 • 

T h e innovations could be uncorrelated, which occurs when o*ia = 0, bu t they 
needn ' t be. 

You might guess that VARs would be hard to estimate. After all, they're 
fairly complicated models, with potentially many equat ions and many right-
hand-side variables in each equat ion. In fact, precisely the opposite is t rue. 
VARs are very easy to estimate, because we need only run N l inear regressions. 
That ' s one reason why VARs are so popular—OLS estimation of autoregressive 
models is simple and stable, in contrast to the numerical estimation required 
for models with moving average componen t s . 6 Equation-by-equation OLS 
estimation also turns out to have very good statistical propert ies when each 
equat ion has the same regressors, as is the case in s tandard VARs. Otherwise, 
a more complicated estimation procedure called seemingly unrelated regression, 
which explicitly accounts for correlation across equat ion disturbances, would 
be required to obtain estimates with good statistical proper t ies . 7 

When fitting VARs to data, we use the Schwarz and Akaike criteria, just as 
in the univariate case. T h e formulas differ, however, because we're now work­
ing with a multivariate system of equations ra ther than a single equat ion. To 
get an AIC or SIC value for a VAR system, we could add u p the equation-by-
equation AICs or SICs, but, unfortunately, doing so is appropr ia te only if the 
innovations are uncorre la ted across equations, which is a very special and un­
usual situation. Instead, explicitly multivariate versions of the AIC and SIC— 
and more advanced formulas—are required that account for cross-equation 
innovation correlation. It's beyond the scope of this book to derive and pre­
sent those formulas, because the)' involve unavoidable use of matrix algebra, 
but fortunately we don ' t need to. They ' re p r ep rog rammed in many computer 
packages, and we interpret the AIC and SIC values computed for VARs of var­
ious orders in exactly the same way as in the univariate case: We select that 
o rder p such that the AIC or SIC is minimized. 

We construct VAR forecasts in a way that precisely parallels the univariate 
case. We can construct 1-step-ahead point forecasts immediately, because all 
variables on the right-hand side are lagged by one period. Armed with the 
1-step-ahead forecasts, we can construct the 2-step-ahead forecasts, from which 

fi Estimation of MA and AR.\L\ models is stable enough in the univariate case but rapidly becomes 
unwieldy in multivariate situations. Hence, multivariate ARMA models are used infrequently in 
practice, in spite of the potential thev hold for providing parsimonious approximations to the 
Wold representation, 
7 For an exposition of seeminglv unrelated regression, see Pindyckand Rubinfeld (1991). 
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we can construct the 3-step-ahead forecasts, and so on in the usual way, follow­
ing the chain rule of forecasting. We construct interval and density forecasts in 
ways that also parallel the univariate case. The multivariate nature of VARs 
makes the derivations more tedious, however, so we bypass them. As always, to 
construct practical forecasts we replace unknown parameters bv estimates. 

I I I I I I J M I M I I 

7. Predictive Causality 
There ' s an important statistical not ion of causality that 's intimately related to 
forecasting and naturally introduced in the context of VARs. It is based on nvo 
key principles: First, cause should occur before effect; second, a causal series 
should contain information useful for forecasting that is not available in the 
o ther series (including the past history of the variable being forecast). In 
the unrestricted VARs that we've studied thus far, everything causes everything 
else, because lags of every variable appear on the right of every equation. 
Cause precedes effect because the right-hand-side variables are lagged, and 
each variable is useful in forecasting every o ther variable. 

We stress from the outset that the notion of predictive causality contains 
little if any information about causality in the philosophical sense. Rather, 
the s tatement "y, causes y," is just shor thand for the more precise but long-
winded statement "y, contains useful information for predicting y, (in the 
linear least-squares sense), over and above the past histories of die o ther 
variables in the system." To save space, we simply say dial y, causes yy. 

To unders tand what predictive causality means in the context of a VAR(/>), 
consider the jlh equation of the Adequation system, which has yyon the left 
and p lags of each of the A' variables on the right. If y, causes yy, then at least 
one of the lags of y, that appear on the right side of the \y equation must have 
a nonzero coefficient. 

It's also useful to consider the opposite situation, in which y, does not cause 
yy. In that case, all of the lags of that y, that appear on the right side of the yy 
equation must have zero coefficients.* Statistical causality tests are based on 
this formulation of noncausaliry. We use an F-test to assess whether all coeffi­
cients on lags of y, are jointly 0. 

Note that we've defined noncausaliry in terms of 1-step-ahead prediction 
errors. In the bivariate VAR, this implies noncausality in terms of /?-step-ahead 
prediction errors, for all h. (Why?) In higher dimensional cases, things are 
trickier; 1-step-ahead noncausality does not necessarily imply noncausaliry at 
o ther horizons. For example, variable i may 1-step-cause variable /', and vari­
able j may 1-step-cause variable k. Thus, variable / 2-step-causes variable k but 
does not 1-step-cause variable k. 

* Note that in such a situation the error variance in forecasting y, using lags of all variables in 
the svstem will be the same as the error variance in forecasting y, using lags of all variables in the 
system except y„ 
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Causality tests .ue iter, uvni v.iit*n building and assessing forecasting 
models, because rhe\ can ir.t«:«rm u> about those parts of the workings of com­
plicated multivariate models that are particularly relevant for forecasting. Just 
staring at the coefficients of an estimated YAR (and in complicated systems 
there are mam coefficients) rarelv yields insights into its workings. Thus, we 
need tools that help us to see through to the practical forecasting propert ies 
of the model that concern us. And we often have keen interest in the answers 
to questions such as "Does \ contr ibute toward improving forecasts of _)•/?" and 
"Does yj contr ibute toward improving forecasts of y,?" If the results violate 
intuition or theory, then we might scrutinize the model more closely. In a sit­
uation in which we can' t reject a certain noncausality hypothesis, and nei ther 
intuition nor theory makes us uncomfortable widi it, we might want to impose 
it, by omitt ing certain lags of certain variables from certain equations. 

Various types of causality hypotheses are sometimes enter ta ined. In any 
equation (the /th, say), we've already discussed testing the simple noncausality 
hypothesis that 

a. No lags of variable / aid in 1-step-ahead prediction of variable j . 

We can broaden the idea, however. Sometimes we test stronger noncausaliry 
hypotheses such as 

b . No lags of a set of o ther variables aid in 1-step-ahead prediction of vari­
ab le ; . 

c. No lags of any other variables aid in 1-step-ahead prediction of variable j . 

All of hypotheses a, b, and c amount to assertions that various coefficients are 0. 
Finally, sometimes we test noncausality hypotheses that involve more than o n e 
equat ion, such as 

d. No variable in a set A causes any variable in a set Bh in which case we say 
that the variables in A are block noncausal for those in B. 

This particular noncausality hypothesis corresponds to exclusion restrictions 
that hold simultaneously in a number of equations. Again, however, s tandard 
test procedures are applicable. 

I I I I I I I I 

8. Impulse-Response Functions and Variance 
Decompositions 
T h e impulse-response function is ano ther device that helps us to learn about 
the dynamic propert ies of vector autoregressions of interest to forecasters. 
We'll in t roduce it first in the univariate context, and then we'll move to VARs. 
T h e question of interest is simple and direct: How does a unit innovation to a 
series affect it, now and in the future? To answer the question, we simplv read 
off the coefficients in the moving average representat ion of the process. 
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We're used to normalizing the coefficient on e, to unity in moving average 
representat ions, but we don ' t have to d o so; more generally, we can write 

y, = b»E, 4 4- M I - A ~\ 

e, - WW(0, a - ) . 

T h e additional generality introduces ambiguity, however, because we can al­
ways multiply and divide every E, by an arbitrary constant m, yielding an equiv­
alent model but with different parameters and innovations, 

y, = (Km)(J^E^ + (6,m) ( ^ e ' - i ) + ( M ) ( ~ e ' - ' - ' ) + " ' 

£, ~ WN(0,a2) 
or 

_ >/ = b'(t'l + 6 l E ' / - l + 6 2 e l - 2 ^ 

* ~ H W ( ° ' S ) ' 

where b'- = b, m and e' = ^ . 

To remove the ambiguity, we must set a value of m. Typically we set m = 1, 
which yields the standard form of the moving average representat ion. For 
impulse-response analysis, however, a different normalization turns out to be 
particularly convenient; we choose m = o\ which yields 

y, = (b0a) (^E^j 4 (6,cr) ( ^ / - i ) + ( M ) ( j ; 6 ' - ? ) + •' • 

E, - W A T ( 0 , o 2 ) , 

or 

y, = b'nE', + ^ e ; _ , + 2>;e;_2 4 • • • 

e; - w a / ( o , i ) , 

where b\ = £,cj and E', = 7̂ . Taking m = rr converts shocks to "standard devia­
tion units," because a unit shock to £', corresponds to a one-standard-deviation 
shock to £/. 

To make matters concrete , consider the univariate AR( 1) process, 

y, = <py,_, + e , 

E, ~ WN(Q, a 2 ) . 

T h e standard moving average form is 

yt - E, 4- <pE,-1 4 <p2£,-* 4 • - • 

E, ~ WN(0, o-2), 
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a n d the equivalent representat ion in s tandard deviation units is 

y, = 6„e; + + + • • • 

e; ~ WN(0,1), 

where b, = <p'rj and E | = The impulse-response function is {b0, b\,...}. T h e 
parameter bi) is die con temporaneous effect of a unit shock to E) or, equiva-
lently, a one-standard-deviation shock to £,; as must be the case, then, b() = o \ 
Note well that bo gives the immediate effect of the shock at time /, when it hits. 
T h e parameter b\, which multiplies £)_,, gives the effect of the shock one pe­
riod later, and so on. The full set of impulse-response coefficients, {bo, b\, .. .}, 
tracks the complete dynamic response of v to the shock. 

Now we consider the multivariate case. T h e idea is the same, but there are 
more shocks to track. T h e key question is, "How does a unit shock to £, affect 
yr now and in the future, for all the various combinat ions of i and p n 

Consider, for example , the bivariate VAR( 1), 

JVw = «Pu>i./-i *Pi23'2 . /-i + E n 

fit = *P-.'l yUl- I + < P 2 2 > 2 . f - l + £ 2 / 

£ 1 . / ~ WN(0, of) 

£ 2 . , - WN(0, 0 - 2 ) 

cov(£i ,E 2 ) = c r 1 2 . 

The s tandard moving average representat ion, obtained by back substitution, is 

yn = £ 1 / + <Pn e u- i -I- <f ia£2.<-i H 

y?, = E 2, + <P2l£|,/-l + ^22^2,1-1 H 

£,., - WN(0, of) 

E 2 . , ~ WA'(0, 0 -2 ) 

cov(£i, E 2 ) = 0-12 . 

Just as in the univariate case, it proves fruitful to adopt a different normaliza­
tion of the moving average representat ion for impulse-response analysis. T h e 
multivariate analog of our univariate normalization by rr is called normalization 
l/y the Cholesky factory The resulting VAR moving average representat ion has a 
n u m b e r of useful propert ies that parallel the univariate case precisely. First, 
the innovations of the transformed system are in standard deviation units. 
Second, a l though the cur ren t innovations in the s tandard representat ion have 
unit coefficients, the current innovations in the normalized representat ion 
have nonuni t coefficients. In fact, the first equat ion has only one cur ren t 

9 For detailed discussion and derivation of this advanced topic, see Hamilton (1994). 
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innovation, (The o ther has a 0 coefficient.) T h e second equation has bo th 
cur ren t innovations. Thus , the order ing of the variables can mat te r . 1 0 

If yi is o rdered first, the normalized representat ion is 

>i,f = * N E I . / +
 b\i^\,,-\ + * i 2 e z / - i 

J2 . I = * 2 l £ U + * 2 2 E 2 . / + * 2 1 E U - 1 + * 2 2 E L - I 

e ; , - WN(0,1) 

~ WN(0,1) 

covfe',, e 2 ) = 0 . 

Alternatively, if y? o rdered first, the normalized representat ion is 

^ 2 , / = ^ 2 2 E 2 . » "f" ^21E'l./-l "f" ^ 2 2 E 2 , / - I + ' ' ' 

yu = * V I E I . R + fti2e2./ + * n e u - i + b\^i,i-\ H — 
, ~ W A / (0 ,1 ) 

eg., - WN(0,1) 

covfe ' , ,^) = 0 . 

Finally, the normalization adopted yields a 0 covariance between the distur­
bances of the transformed system. This is crucial, because it lets us perform 
the exper iment of interest—shocking o n e variable in isolation of the others, 
which we can do if the innovations are uncorre la ted but can' t d o if they're cor­
related, as in the original unnormal ized representat ion. 

After normalizing the system, for a given ordering—say, y\ first—we com­
pute four sets of impulse-response functions for the bivariate model : response 
of yi to a unit normalized innovation to yi, \bu, b u , b"u,...}, response of y\ to 
a unit normalized innovation to y>, (bV2, b]2,...}, response of y* to a unit 
normalized innovation to y% \b\\2, b!22, bf22>...), and response of y> to a uni t 

normalized innovation to y\, (b^, bl]t b2V ...}. Typically we examine the set of 
impulse-response functions graphically. Often it turns out that impulse-
response functions aren ' t sensitive to order ing, but the only way to be sure is to 
check . 1 1 

In practical applications of impulse-response analysis, we simply replace 
unknown parameters by estimates, which immediately yields point estimates 
of the impulse-response functions. Getting confidence intervals for impulse-
response functions is trickier, however, and adequate procedures are still 
unde r development . 

1 0 In higher-dimensional VARs, the equation that's first in the ordering has only one current in­
novation, e ' J r The equation that's second has only current innovations and e , , ; the equation 
that's third has only current innovations e ' , r el, (, and €.' f̂; and so on. 
1 1 Note well that the issues of normalization and ordering only affect impulse-response analysis; 
for forecasting, we only need die unnormalized model. 



Forecasting with Regression Models 

Another way of characterizing the dynamics associated with VARs, 
closely related to impulse-response functions, is the variance decomposition. 
Variance decomposit ions have an immediate link to forecasting—they answer 
the question "How much of the fi-step-ahead forecast e r ror variance of vari­
able i is explained by innovations to variable /, for h = 1, 2 , . . . ?" As with 
impulse-response functions, we typically make a separate graph for every (i.j) 
pair. Impulse-response functions and the variance decomposit ions present the 
same information (al though they do so in different ways). For that reason, it's 
no t strictly necessary to present both , and impulse-response analysis has 
gained greater popularity. Hence , we offer only this brief discussion of vari­
ance decomposit ion. In the application to housing starts and complet ions that 
follows, however, wre examine both impulse-response functions and variance 
decomposit ions. T h e two are highly complementary, as with information cri­
teria and correlograms for model selection, and the variance decomposit ions 
have a nice forecasting motivation. 

3. Application: Housing Starts and Completions 
We estimate a bivariate VAR for U.S. seasonally adjusted housing starts and 
completions, two widely watched business cycle indicators, 1968.01-1996.06. 
We use the VAR to produce point extrapolation forecasts. We show housing 
starts and complet ions in Figure 11.2. Both are highly cyclical, increasing dur­
ing business cycle expansions and decreasing dur ing contractions. Moreover, 
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complet ions tend to lag beh ind starts, which makes sense because a house 
takes time to complete. 

We split the data into an estimation sample, 1968.01-1991.12, and a holdout 
sample, 1992.01-1996.06, for forecasting. We therefore perform all model 
specification analysis and estimation, to which we now turn, on the 
1968.01-1991.12 data. We show the starts correlogram in Table 11.2 and Fig­
u re 11.3. T h e sample autocorrelat ion function decays slowly, whereas the sam­
ple partial autocorrelat ion function appears to cut off at displacement 2. T h e 
pat terns in the sample autocorrelat ions and partial autocorrelat ions are 
highly statistically significant, as evidenced by both the Bardett s tandard errors 
and the Ljung-Box Q-statistics. The complet ions correlogram, in Table 11.3 
and Figure 11.4, behaves similarly. 

T A B L E 112 Sample: 1968:01 1991:12 
Starts Correlogram Included observations: 288 

Acorr. P. Acorr. Std. Error Ljung-Box /rvalue 

1 0.937 0.937 0.059 255.24 0.000 
2 0.907 0.244 0.059 495.53 0.000 
3 0.877 0.054 0.059 720.95 0.000 
4 0.838 -0.077 0.059 927.39 0.000 
5 0.795 -0.096 0.059 1113.7 0.000 
6 0.751 -0.058 0.059 1280.9 0.000 
7 0.704 -0.067 0.059 1428.2 0.000 
8 0.650 -0.098 0.059 1554.4 0.000 
9 0.604 0.004 0.059 1663.8 0.000 

10 0.544 -0.129 0.059 1752.6 0.000 
11 0.496 0.029 0.059 1826.7 0.000 
12 0.446 -0.008 0.059 1886.8 0.000 
13 0.405 0.076 0.059 1936.8 0.000 
14 0.346 -0.144 0.059 1973.3 0.000 
15 0.292 -0.079 0.059 1999.4 0.000 
16 0.233 -0.111 0.059 2016.1 0.000 
17 0.175 -0.050 0.059 2025.6 0.000 
18 0.122 -0.018 0.059 2030.2 0.000 
19 0.070 0.002 0.059 2031.7 0.000 
20 0.019 -0.025 0.059 2031.8 0.000 
21 -0.034 -0.032 0.059 2032.2 0.000 
22 -0.074 0.036 0.059 2033.9 0.000 
23 -0.123 -0.028 0.059 2038.7 0.000 
24 -0.167 -0.048 0.059 2047.4 0.000 
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We've not yet in t roduced the cross-correlation function. There ' s been n o 
need, because it's not relevant for univariate model ing. It provides impor tant 
information, however, in the multivariate environments that now concern us. 
Recall that the autocorrelat ion function is the correlation between a variable 
and lags of itself. T h e cross-correlation function is a natural multivariate ana­
log; it's simply the correlation between a variable and lags of another variable. 
We estimate those correlations using the usual estimator and graph them as a 
function of displacement along with the Bartlett two-standard-error bands, 
which apply jus t as in the univariate case. 

T h e cross-correlation function (Figure 11.5) for housing starts and com­
pletions is very revealing. Starts and complet ions are highly correlated at all 
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T A B L E n.3 Sample: 1968:01 1991:12 
Completions Included observations: 288 

Acorr. P. Acorr. Std. Error Ljung-Box /rvalue 

1 0.939 0.939 0.059 256.61 0.000 
2 0.920 0.328 0.059 504.05 0.000 
3 0.896 0.066 0.059 739.19 0.000 
4 0.874 0.023 0.059 963.73 0.000 
5 0.834 -0.165 0.059 1168.9 0.000 
6 0.802 -0.067 0.059 1359.2 0.000 
7 0.761 -0.100 0.059 1531.2 0.000 
8 0.721 -0.070 0.059 1686.1 0.000 
9 0.677 -0.055 0.059 1823.2 0.000 

10 0.633 -0.047 0.059 1943.7 0.000 
11 0.583 -0.080 0.059 2046.3 O.(KK) 
12 0.533 -0.073 0.059 2132.2 0.000 
13 0.483 -0.038 0.059 2203.2 0.000 
14 0.434 -0.020 0.059 2260.6 0.000 
15 0.390 0.041 0.059 2307.0 0.000 
16 0.337 -0.057 0.059 2341.9 0.000 
17 0.290 -0.008 0.059 2367.9 0.000 
18 0.234 -0.109 0.059 2384.8 0.000 
19 0.181 -0.082 0.059 2395.0 0.000 
20 0.128 -0.047 0.059 2400.1 0.000 
21 0.068 -0.133 0.059 2401.6 0.000 
22 0.020 0.037 0.059 2401.7 0.000 
23 -0.038 -0.092 0.059 2402.2 0.000 
24 -0.087 -0.003 0.059 2404.6 0.000 

displacements, and a clear pat tern emerges as well: Al though the contempo­
raneous correlation is high (0.78), completions are maximally correlated widi 
starts lagged by roughly 6-12 months (a round 0.90). Again, this makes good 
sense in light of the time it takes to build a house. 

Now we proceed to model starts and completions. We need to select the 
order, p, of our VAR(p). Based on explorat ion using multivariate versions of 
SIC and AIC, we adopt a VAR(4). 

First consider the starts equation (Table 11.4), residual plot (Figure 11.6). 
and residual correlogram (Table 11.5 and Figure 11.7). The explanatory power 
of the model is good, as judged by the R2 as well as the plots of actual and fitted 
values, and the residuals appear white, as judged by the residual sample auto­
correlations, partial autocorrelations, and Ljung-Box statistics. Note as well that 
no lag of completions has a significant effect on starts, which makes sense— 
we obviously expect starts to cause completions, but not conversely. The 
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completions equation (Table 11.6), residual plot (Figure 11.8), and residual 
correlogram (Table 11.7 and Figure 11.9) appear similarly good. Lagged starts, 
moreover, most definitely have a significant effect on completions. 

Table 11.8 shows the results of formal causality tests. The hypothesis that 
starts don ' t cause complet ions is simply that the coefficients on the four lags 
of starts in the completions equation are all 0. T h e /"-statistic is overwhelmingly 
significant, which is not surprising in light of the previously noticed highly 
significant /-statistics. Thus, we reject noncausality from starts to completions 
at any reasonable level. Perhaps more surprising is the fact that we also reject 
noncausality from complet ions to starts at roughly the 5% level. T h e causality 
appears bidirectional, in which case we say there is feedback. 

To get a feel for the dynamics of the estimated VAR before producing fore­
casts, we compute impulse-response functions and variance decomposit ions. 
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F I G U R E 11.5 
Starts and 
Completions, 
Sample Cross-
Correlations 
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Note: We graph the sample correlation between completions at time / and starts at time 
/ - » , » = 1 ,2 24. 

T A B L E i u US// Dependent variable is STARTS. 
VAR Starts Sample(adjusted): 1968:05 1991:12 
Equation Included observations: 284 after adjusting endpoints 

Variable Coefficient Std. Error f-Statistic Prob. 

C 0.146871 0.044235 3.320264 0.0010 
STARTS ( -1 ) 0.659939 0.061242 10.77587 0.0000 
STARTS ( -2) 0.229632 0.072724 3.157587 0.0018 
STARTS ( -3) 0.142859 0.072655 1.966281 0.0503 
STARTS ( -4) 0.007806 0.066032 0.118217 0.9060 
COMPS(--1) 0.031611 0.102712 0.307759 0.7585 
COMPS(--2) -0.120781 0.103847 -1.163069 0.2458 
COMPS(--3) -0.020601 0.100946 -0.204078 0.8384 
COMPS(--4) -0.027404 0.094569 -0.289779 0.7722 

R2 0.895566 
Adjusted F? 0.892528 
SE of regression 0.125350 
Sum squared resid. 4.320952 
Log likelihood 191.3622 
Durbin-Watson stat. 1.991908 

Mean dependent var. 
SD dependent var. 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob(F-statisuc) 

1.574771 
0.382362 

-4.122118 
-4.006482 

294.7796 
0.000000 
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Sample: 1968:01 1991:12 
Included observations: 284 

Acorr. P. Acorr. Std. Error Ljung-Box /••value 

1 0.001 0.001 0.059 0.0004 0.985 
2 0.003 0.003 0.059 0.0029 0.999 
3 0.006 0.006 0.059 0.0119 1.000 
4 0.023 0.023 0.059 0.1650 0.997 
5 -0.013 -0.013 0.059 0.2108 0.999 
6 0.022 0.021 0.059 0.3463 0.999 
7 0.038 0.038 0.059 0.7646 0.998 
8 -0.048 -0.048 0.059 1.4362 0.994 
9 0.056 0.056 0.059 2.3528 0.985 

10 -0.114 -0.116 0.059 6.1868 0.799 
11 -0.038 -0.038 0.059 6.6096 0.830 
12 -0.030 -0.028 0.059 6.8763 0.866 
13 0.192 0.193 0.059 17.947 0.160 
14 0.014 0.021 0.059 18.010 0.206 
15 0.063 0.067 0.059 19.199 0.205 
16 -0.006 -0.015 0.059 19.208 0.258 
17 -0.039 -0.035 0.059 19.664 0.292 
18 -0.029 -0.043 0.059 19.927 0.337 
19 -0.010 -0.009 0.059 19.959 0.397 
20 0.010 -0.014 0.059 19.993 0.458 
21 -0.057 -0.047 0.059 21.003 0.459 
22 0.045 11.018 0.059 21.644 0.481 
23 -0.038 0.011 0.059 22.088 0.515 
24 -0.149 -0.141 0.059 29.064 0.218 

T A B L E II 5 
VAR Starts 
Equation, Residual 
Correlogram 
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We present results for starts first in the order ing, so that a cur ren t innovation 
to starts affects only cur ren t starts, but the results are robust to reversal of the 
order ing. 

Figure 11.10 displays the impulse-response functions. First let 's consider 
the own-variable impulse responses—that is, the effects of a starts innovation 
on subsequent starts or a completions innovation on subsequent completions. 
T h e effects are similar. In each case, the impulse response is large and decays 
in a slow, approximately monotonic fashion. In contrast, the cross-variable im­
pulse responses are very different. An innovation to starts produces no move­
men t in complet ions at first, but the effect gradually builds and becomes 
large, peaking at about 14 months . (It takes time to build houses.) An innova­
tion to completions, however, produces little movement in starts at any time. 
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LS / / Dependent variable is COMPS. 
Sample (adjusted 1: 1968:05 1991:12 
Included observations: 2S4 after adjusting endpoints 

T A B L E 11.6 
VAR (Completions 
Equation 

Variable Coefficient Std. Error /•Statistic Prob. 

C (1.045347 0.025794 1.758045 0.0799 
STARTS(-l) 0.074724 0.035711 2.092461 0.0373 
STARTS (-2) 0.040047 0.042406 0.944377 0.3458 
STARTS(-3) 0.047145 0.042366 1.112805 0.2668 
STARTS (-4) 0.082331 0.038504 2.138238 0.0334 
COMPS(-l) 0.236774 0.059893 3.953313 0.0001 
COMPS(-2) 0.206172 0.060554 3.404742 0.0008 
COMPS (—3) 0.120998 0.058863 2.055593 0.0408 
COMPS(-4) 0.156729 0.055144 2.842160 0.0048 

R* 0.936835 Mean dependent var. 1.547958 
Adjusted R2 0.934998 SD dependent var. 0.286689 
SE of regression 0.073093 Akaike info criterion -5.200872 
Sum squared resid. 1.469205 Schwarz criterion -5.085236 
Log likelihood 344.5453 /•-statistic 509.8375 
Durbin-Watson stat. 2.013370 Prob (/"-statistic) 0.000000 

F I G U R E II a 
VAR Completions 
Equation, Residual 
Plot 

70 72 74 76 78 80 82 84 86 88 90 
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T A B L E II -? 
VAR Completions 
Equation, Residual 
Correlogram 

Sample: 1968:01 1991:12 
Included observations: 284 

Acorr. P. Acorr. Std. Error Ljung-Box /rvalue 

1 -0.009 -0.009 0.059 0.0238 0.877 
2 -0.035 -0.035 0.059 0.3744 0.829 
3 -0.037 -0.037 0.059 0.7640 0.858 
4 -0.088 -0.090 0.059 3.0059 0.557 
5 -0.105 -0.111 0.059 6.1873 0.288 
6 0.012 0.000 0.059 6.2291 0.398 
7 -0.024 -0.041 0.059 6.4047 0.493 
8 0.041 0.024 0.059 6.9026 0.547 
9 0.048 0.029 0.059 7.5927 0.576 

10 0.045 0.037 0.059 8.1918 0.610 
11 -0.009 -0.005 0.059 8.2160 0.694 
12 -0.050 -0.046 0.059 8.9767 0.705 
13 -0.038 -0.024 0.059 9.4057 0.742 
14 -0.055 -0.049 0.059 10.318 0.739 
15 0.027 0.028 0.059 10.545 0.784 
16 -0.005 -0.020 0.059 10.553 0.836 
17 0.096 0.082 0.059 13.369 0.711 
18 0.011 -0.002 0.059 13.405 0.767 
19 0.041 0.040 0.059 13.929 0.788 
20 0.046 0.061 0.059 14.569 0.801 
21 -0.096 -0.079 0.059 17.402 0.686 
22 0.039 0.077 0.059 17.875 0.713 
23 -0.113 -0.114 0.059 21.824 0.531 
24 -0.136 -0.125 0.059 27.622 0.276 

Figure 11.11 shows the variance decomposit ions. The fraction of the e r ror 
variance in forecasting starts due to innovations in starts is close to 100% at 
all horizons. In contrast, the fraction of the e r ror variance in forecasting com­
pletions due to innovations in starts is near 0 at short horizons, but it rises 
steadily and is near 100% at long horizons, again reflecting time-to-build 
effects. 

Finally, we construct forecasts for the out-of-sample period, 1992.01-1996.06. 
T h e starts forecast appears in Figure 11.12. Starts begin their recovery before 
1992.01, and the VAR projects continuat ion of the recovery. T h e VAR fore­
casts captures the general pat tern quite well, but it forecasts quicker mean 
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F I G U R E II a 
1,4/? Completions 
Equation, Residual 
Sample 
Autocorrelations 
and Partial 
A u tocorrelations 

Sample: 1968:01 1991:12 T A B L E II 8 
Lags: 4 Housing Starts and 
Obs: 284 Completions, 

Causality Tests 
Null Hypothesis: F-Statistic Probability 

STARTS does not cause COMPS 26.2658 0.00000 
COMPS does not cause STARTS 2.23876 0.06511 
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F I G U R E II.ID 
Housing Starts and 
Completions, VAR 
Impu he-Response 
Functions 
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reversion than actually occurs, as is clear when compar ing the forecast and 
realization in Figure 11.13. T h e figure also makes clear that the recovery of 
housing starts from the recession of 1990 was slower than the previous recov­
eries in the sample, which naturally makes for difficult forecasting. T h e com­
pletions forecast suffers the same fate, as shown in Figures 11.14 and 11.15. 
Interestingly, however, complet ions had not yet t u rned by 1991.12, but the 
forecast nevertheless correctly predicts the turning point. (Why?) 
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Exercises, Problems, and Complements 
1. (Econometrics, time series analysis, and forecasting) As recently as the early 

1970s, time series analysis was mostly univariate and made little use of economic 
theory. Econometrics, in contrast, stressed the cross-variable dynamics associated 
with economic theorv. with equations estimated using multiple regression. 
Econometrics, moreover, made use of simultaneous systems of such equations, 
requiring complicated estimation methods. Thus, the econometric and time 
series approaches to forecasting were very different.1 2 

As Klein (1981) notes, however, the complicated econometric system 
estimation methods had little pavoff for practical forecasting and were therefore 
largely abandoned, whereas the rational distributed lag patterns associated with 
time series models led to large improvements in practical forecast accuracy.1 3 

Thus, in more recent times, the distinction between econometrics and time series 
analysis has largely vanished, with the union incorporating the best of both. In 
many respects, the VAR is a modern embodiment of both econometric and time 
series traditions. VARs use economic considerations to determine which variables 
to include and which (if any) restrictions should be imposed, allow for rich 
multivariate dvnamics. typically require only simple estimation techniques, and 
are explicit forecasting models. 

2. (Forecasting crop yields) Consider the following dilemma in agricultural crop 
yield forecasting: 

The possibility offorecasting crop yields several years in advance would, of course, be of 
great value in the planning of agricultural production. However, the success of long-
range nop forecasts is contingent not only on our knoioledge of the weather factors de­
termining yield, but also on our ability to predict the weather. Despite an abundant 
literature in this field, no firm basis for reliable long-range weather forecasts has yet been 
found. (Sanderson, 1953, p. 3) 

a. How is the situation related to our concerns in this chapter and, specifically, 
to the issue of conditional versus unconditional forecasting? 

b. What variables other than weather might be useful for predicting crop vield? 
c. How would you stiggest that the forecaster should proceed? 

3. (Regression forecasting models with expectations, or anticipatory, data) A 
number of surveys exist of anticipated market conditions, investment intentions, 
buying plans, advance commitments, consumer sentiment, and so on. 
a. Search die Internet for such series, and report your results. A good place to 

start is the Resources for Economists page mentioned in Chapter 1. 

Klein and Young (1980) and Klein (1983) provide good discussions of the traditional econo­
metric simultaneous equations paradigm, as well as the link between structural simultaneous 
equations models and reduced-form time scries models. W'allis {1995) provides a good summary 
of modern large-scale macroeconometric modeling and forecasting, and Pagan and Robertson 
(2002) provide an intriguing discussion of the variety of macroeconomic forecasting approaches 
currently employed in central hanks around the world. 
1 3 For an acerbic assessment circa the mid-1970s, see Jenkins (1979). 
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b. How might you use the series you found in an unconditional regression 
forecasting model of GDP? Are the implicit forecast horizons known for all 
the anticipatory series you found? If not, how might you decide how to lag 
them in your regression forecasting model? 

c. How would you test whether the anticipatory series you found provide 
incremental forecast enhancement, relative to the own past history of GDP? 

4. (Business cycle analysis and forecasting: expansions, contractions, turning points, 
and leading indicators 1 4) The use of anticipatory data is linked to business cycle 
analysis in general and to leading indicators in particular. During the first half 
of the 20th century, much research was devoted to obtaining an empirical 
characterization of the business cycle. The most prominent example of this work 
is Burns and Mitchell (1946), whose summary empirical definition is as follows: 

Business cycles are a type offluctuation found in the aggregate economic activity of na­
tions that organize their work mainly in business enterprises: a cycU> consists of expan­
sions occurring at about the same time in many economic activities, followed by similarly 
general recessions, contractions, and revivals which merge into the expansion phase of 
the next cycle, (p. 3) 

The comovement among individual economic variables is a key feature of Burns 
and Mitchell's definition of business cycles. Indeed, the comovement among 
series, taking into account possible leads and lags in timing, is the centerpiece of 
Burns and Mitchell's methodology. In their analysis, Burns and Mitchell consider 
the historical concordance of hundreds of series, including those measuring 
commodity' output, income, prices, interest rates, banking transactions, and 
transportation services, and they classify- series as leading, lagging, or coincident. 
One way to define a leading indicator is to say that a series x is a leading indicator 
for a series y if x causes y in the predictive sense. According to that definition, for 
example, our analysis of housing starts and completions indicates that starts are a 
leading indicator for completions. 

Leading indicators have the potential to be used in forecasting equations 
in the same way as anticipatory variables. Inclusion of a leading indicator, 
appropriately lagged, can improve forecasts. Zellner and Hong (1989) and 
Zellner, Hong, and Min (1991), for example, make good use of that idea in their 
ARLI (autoregressive leading-indicator) models for forecasting aggregate output 
growth. In those models. Zellner et al. build forecasting models by regressing 
output on lagged output and lagged leading indicators; they also use shrinkage 
techniques to coax the forecasted growth rates toward the international average, 
which improves forecast performance. 

Burns and Mitchell use the clusters of turning points in individual series to 
determine the monthly dates of the turning points in the overall business cycle 
and to construct composite indexes of leading, coincident, and lagging 
indicators. Such indexes have been produced by the National Bureau of 
Economic Research (a think tank in Cambridge, Massachusetts), the Department 
of Commerce (a U.S. government agency in Washington, D.C.), and the 
Conference Board (a business membership organization based in New York). , n 

1 4 This complement draws in part on Diebold and Rudebusch {1996). 
1 ' T h e indexes build on very early work, such as the Harvard "Index of General Business Condi­
dons." For a fascinating discussion of the early work, see Hardy (1923). Chapter 7, 
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Composite indexes ot leading indicators are often used to gauge likely future 
economic developments, but their usefulness is by no means uncontroversial 
and remains the subject of ongoing research. For example, leading indexes 
apparently cause aggregate output in analyses of ex post historical data 
(Auerhach, 1982). but thev appear much less useful in real-time forecasting, 
which is what's relevant (Diebold and Rudebusch, 1991). 

5. (Subjective informaiion, Bayesian VARs, and the Minnesota prior) When building 
and using forecasting models, we frequently have hard-to-quantify subjective 
information, such as a reasonable range in which we expect a parameter to be. 
We can incorporate such subjective information in a number of ways. One way is 
informal judgmental adjustment of estimates. Based on a variety of factors, for 
example, we might feel diat an estimate of a certain parameter in a forecasting 
model is too high, so we might reduce it a bit. 

Bayesian analysis allows us to incorporate subjective information in a 
rigorous and replicable way. We summarize subjective information about 
parameters with a probability disuibution called the prior distribution, and as 
always we summarize the information in the data with the likelihood function. 
The centerpiece of Bayesian analysis is a mathematical formula called Bayes'mle, 
which tells us how to combine the information in the prior and the likelihood to 
form the posterior distribution of model parameters, which then feed their way 
into forecasts. 

The Minnesota prior (introduced and popularized by Robert Litterman and 
Christopher Sims at the University of Minnesota) is commonlv used for Bayesian 
estimation of VAR forecasting models, called Bayesian VARs, or BVARs. The 
Minnesota prior is centered on a parameterization called a random walk, in which 
the current value of each variable is equal to its lagged value plus a white noise 
error term. Thus, the parameter estimates in BVARs are coaxed, but not forced, 
in the direction of univariate random walks. This sort of stochastic restriction has 
an immediate shrinkage interpretation, which suggests that it's likely to improve 
forecast accuracy.1 6 This hunch is verified by Doan, Litterman, and Sims (1984), 
who study forecasting with standard and Bayesian VARs. Ingram and Whiteman 
(1994) replace the Minnesota prior with a prior derived from macroeconomic 
theory, and they obtain even belter forecasting performance. 

6. (Housing starts and completions, continued) Our VAR analysis of housing starts 
and completions, as always, involved many judgment calls. Using die starts and 
completions data, assess the adequacy of our models and forecasts. Among other 
things, you may want to consider the following questions: 
a. Should we allow for a trend in the forecasting model? 
b. How do the results change if, in light of the results of the causality tests, we 

exclude lags of completions from the starts equation, reestimate by seemingly 
unrelated regression, and forecast? 

c. Are the VAR forecasts of starts and completions more accurate than univariate 
forecasts? 

7. (Nonlinear regression models 1: functional form and Ramsey's test) The idea of 
using powers of a right-hand-side variable to pick up nonlinearity in a regression 
can also be used to test for linearity of functional form, following Ramsey (1969). 

Effectively, die shrinkage allows us to recover a large number of degrees of freedom. 
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If we were concerned that we'd missed some important nonlinearity, an obvious 
strategy' to capture it, based on the idea of a Taylor series expansion of a function, 
would be to include powers and cross products of the various x variables in the 
regression. Such a strategy would be wasteful of degrees of freedom, however, 
particularly if there were more than just one or two right-hand-side variables in 
the regression and/or if the nonlinearity were severe, so that fairly high powers 
and interactions would be necessary to capture it. In light of this, Ramsey suggests 
first fitting a linear regression and obtaining the fitted values, V/, / = 1,. . . , 7". 
Then, to test for nonlinearity, we run the regression again with powers of y t 

included. There is no need to include the first power of y , , because that would be 
redundant with the included x variables. Instead, we include powers y,~, y , , ... , 
y"', where m is a maximum power determined in advance. Note that the powers 
of yt are linear combinations of powers and cross products of the x variables—just 
what the doctor ordered. Significance of the included set of" powers of y t can be 
checked using an F-test or an asymptotic likelihood ratio test. 

8. (Nonlinear regression models 2: logarithmic regression models) We've already 
seen the use of logarithms in our studies of trend and seasonality. In those setups, 
however, we had occasion only to take logs of the left-hand-side variable. In more 
general regression models, such as those that we're studying now, with variables 
other than trend or seasonals on the right-hand side, it's sometimes useful to take 
logs of both the left- and right-hand-side variables. Doing so allows us to pick up 
multiplicative nonlinearity. To see this, consider the regression model, 

This model is clearly nonlinear due to the multiplicative interactions. Direct 
estimation of its parameters would require special techniques. Taking natural 
logs, however, yields the model 

This transformed model can be immediately estimated by ordinary least squares, 
by regressing log y on an intercept and log x. Such "log-log regressions" often 
capture nonlinearities relevant for forecasting, while maintaining the convenience 
of ordinary least squares. 

9. (Nonlinear regression models 3: neural networks) Neural networks amount to a 
particular nonlinear functional form associated with repeatedly running linear 
combinations of inputs through nonlinear "squashing" functions. The 0-1 
squashing function is useful in classification, and the logistic function is useful 
for regression. 

The neural net literature is full of biological jargon, which serves to 
obfuscate rather than clarify. We speak, for example, of a "single-output feed­
forward neural nenvork with n inputs and 1 hidden layer with q neurons." But the 
idea is simple. If the output is y and the inputs are x's, we write 

y, = B o * ! V ' 

lny, — In Bo + Pi In x, + E, . 

where 
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are the "neurons" ("hidden units"), and the "activation functions" * and 4> are 
arbitrary, except that * (the squashing function) is generally restricted to be 
bounded. (Commonly <P(x) = x . ) Assembling it all, we write 

y , = d> ^ + £ ^y ,o + y>jxj^j j = / ( * « • e ) -

which makes clear that a neural net is just a particular nonlinear functional form 
for a regression model. 

To incorporate dynamics, we can allow for autoregressive effects in the 
hidden units. A dynamic ("recurrent") neural nenvork is 

y, = <t> 

where 

hn = * I 7/o + > .7/;*/, + > !°»>A,,/-i | . i = 1, 

Compacdy, 

Recursive back substitution reveals that y is a nonlinear function of the history of 
the x's. 

yt = /?(*': e) , 
where x' = (x, x\) and x, = (xi, x„,) . 

The Matlab Neural Network Toolbox implements a variety of networks. The 
toolbox manual is itself a useful guide to the literature on the practical aspects 
of constructing and forecasting with neural nets. Kuan and Liu (1995) use a 
dynamic neural network to predict foreign exchange rates, and Faraway and 
Chatfield (1995) provide an insightful case study of the efficaq- of neural 
networks in applied forecasting. Ripley (1996) provides a fine and statistically 
informed (in contrast to much of the neural net literature) survey of the use of 
neural nets in a variety of fields. 

10. (Spurious regression) Consider two variables y and x, both of which are highly 
serially correlated, as are most series in business, finance, and economics. Sup­
pose in addition that v and v are completely unrelated but that we don't know 
they're unrelated, and we regress y on x using ordinary least squares. 
a. If the usual regression diagnostics (e.g., R 2 , ^-statistics, F-statistic) were reliable, 

we'd expect to see small values of all of them. Why? 
b. In fact the opposite occurs; we tend to see large R 2 , tr, and F-statistics, and 

a very loxv Durbin-Watson statistic. Why the low Durbin-Watson? Why, given the 
low Durbin-Watson. might vou expect misleading R 2 , t-, and F-statistics? 

c. This situation, in which highly persistent series that are in fact unrelated 
nevertheless appear highlv related, is called spurious regression. Study of the 
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phenomenon dates to the early 20th century, and a kev study by Granger and 
Newbold (1974) drove home the prevalence and potential severity of the 
problem. How might you insure yourself against the spurious regression 
problem? {Hint: Consider allowing for lagged dependent variables, or 
dynamics in the regression disturbances, as we've advocated repeatedly.) 

11. (Comparative forecasting performance of VAR and univariate models) Using the 
housing starts and completions data on the book's web page, compare the 
forecasting performance of the VAR used in this chapter with that of the obvious 
competitor: univariate autoregressions. Use the same in-sample and out-of-sample 
periods as in the chapter. Why might the forecasting performance of the VAR and 
univariate methods differ? Why might vou expect the VAR completions forecast 
to outperform the univariate autoregression, but the VAR starts forecast to be no 
better than the univariate autoregression? Do your results support your 
conjectures? 

Bibliographical and Computational Notes 
Some software, such as EViews. automatically accounts for parameter uncertainty 
when forming conditional regression forecast intervals by using variants of the 
techniques we introduced in Section 2. Similar but advanced techniques are 
sometimes used to produce unconditional forecast intervals for dynamic models, 
such as autoregressions (see Liitkepohl, 1991), but bootstrap simulation techniques 
are becoming increasingly popular (Efron and Tibshirani, 1993). 

Chatfield (1993) argues that innovation uncertainty and parameter estimation 
uncertainty are likely of minor importance compared to specification uncertainty. 
We rarely acknowledge specification uncertainty, because we don't know how to 
quantify' "what we don't know we don't know." Quantifying it is a major challenge 
for future research, and useful recent work in that direction includes Chatfield 
(1995). 

The idea diat regression models with serially correlated disturbances are more 
restrictive than other sorts of transfer function models has a long history in 
econometrics and engineering and is highlighted in a memorably titled paper, "Serial 
Correlation as a Convenient Simplification, Not a Nuisance," by Hendry and Mi/on 
(1978). Engineers have scolded econometricians for not using more general transfer 
function models, as, for example, in Jenkins (1979). But the fact is, as we've seen 
repeatedly, that generality for generality's sake in business and economic forecasting 
is not necessarily helpful and can be positively harmful. The shrinkage principle 
asserts that the imposition of restrictions—even false restrictions—can be helpful in 
forecasting. 

Sims (1980) is an influential paper arguing the virtues of VARs. The idea of 
predictive causality and associated tests in VARs is due to Granger (1969) and Sims 
(1972), who build on earlier work by the mathematician Norbert Weiner. Liitkepohl 
(1991) is a good reference on VAR analysis and forecasting. 

Gershenfeld and Weigend (1993) provide a perspective on time series forecasting 
from the computer science/engineering/nonlinear/neural net perspective, and 
Swanson and White (1995) compare and contrast a variety of linear and nonlinear 
forecasting methods. 
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Concepts far Review 
Conditional forecasting model 
Scenario analysis 
Contingency analysis 
Specification uncertainty 
Innovation uncertainty 
Parameter uncertainty 
Unconditional forecast model 
Forecasting the right-hand-side variables 

problem 
Distributed lag model 
Polynomial distributed lags 
Rational distributed lags 
Distributed lag regression model with 

lagged dependent variables 
Distributed lag regression model widi 

ARMA disturbances 

Transfer function model 
Vector autoregression of order p 
Cross-variable dynamics 
Predictive causality 
Impulse-response function 
Variance decomposition 
Cross-correlation function 
Feedback 
Bayesian analysts 
Random walk 
Functional form 
Logarithmic regression models 
Spurious regression 
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Evaluating and 
Combining Forecasts 

As we've stressed repeatedly, good forecasts lead to good decisions. The im­
por tance of forecast evaluation and combinat ion techniques follows immedi­
ately. Given a track record of forecasts, >,+>,,/, and corresponding realizations, 
y,+A» we naturally want to moni tor and improve forecast per formance . In this 
chapter we show how to do so. First we discuss evaluation of a single forecast. 
Second, we discuss the evaluation and comparison of forecast accuracy. Third , 
we discuss whether and how a set of forecasts may be combined to produce a 
superior composite forecast. 

I I I I I I I I 

I. Evaluating a Single Forecast 
Evaluating a single forecast amounts to checking whether it has the propert ies 
expected of an optimal forecast. Denote by y, the covariance stationary time 
series to be forecast. The Wold representat ion is 

y, = p, -(- £ , + + k>E / -2 H 

e, ~ WN(0,cj2) . 
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Thus , the /f-step-ahead linear least-squares forecast is 

= M- + bht, + bMEt-i H . 

and the corresponding /i-step-ahead forecast e r ro r is 

ft+h,i = yi+t, — yi+h,i = Ef+* + + ' — h £ * - I E , + I , 

with variance 

= * '( i+ §»?). 
Four kev propert ies of optimal forecasts, which we can easily check, are as 
follows: 

a. Optimal forecasts are unbiased. 
b . Optimal forecasts have 1-step-ahead errors that are white noise. 
c. Optimal forecasts have /j-step-ahead errors that are at most MA(h — 1 ) . 
d. Optimal forecasts have ^-step-ahead errors with variances that are 

nondecreas ing in h and that converge to the uncondi t ional variance of 
the process. 

TESTING PROPERTIES OF OPTIMAL FORECASTS 

Optimal Forecasts Are Unbiased 
If the forecast is unbiased, then the forecast e r ro r has a zero mean. A variety 
of tests of the zero-mean hypothesis can be per formed, depend ing on the as­
sumptions we're willing to maintain. For example , if e,+h.i is Gaussian white 
noise (as might be reasonably the case for 1-step-ahead errors) , then the stan­
dard /-test is the obvious choice. We would simply regress the forecast e r ro r se­
ries on a constant and use the repor ted /-statistic to test the hypothesis that 
the populat ion mean is 0. If the errors are non-Gaussian but remain inde­
penden t and identically distributed (iid), then the /-test is still applicable in 
large samples. 

If die forecast errors are dependen t , then more sophisticated procedures 
are required. Serial correlation in forecast errors can arise for many reasons. 
Multi-step-ahead forecast errors will be serially correlated, even if the forecasts 
are optimal, because of the forecast period overlap associated with multi-step-
ahead forecasts. More generally, serial correlation in forecast errors may indi­
cate that the forecasts are suboptimal. The upshot is simply that when regress­
ing forecast errors on an intercept, we need to be sure that any serial 
correlation in the disturbance is appropriately modeled. A reasonable starting 
point for a regression involving /*-step-ahead forecast errors is MA(h — I ) dis­
turbances, which w e d expect if the forecast were optimal. The forecast may, of 
course, not be optimal, so we don ' t adopt MA(h — 1) disturbances uncritically; 
instead, we try a variety of models using the AIC and SIC to guide selection in 
the usual way. 
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Optimal Forecasts Have 1-Step-Ahead Errors That Are 
White Noise 
Under various sets of maintained assumptions, we can use standard tests of the 
white noise hypothesis. For example, the sample autocorrelat ion and partial 
autocorrelat ion functions, together with Bardett asymptotic s tandard errors, 
are often useful in that regard. Tests based on the first autocorrelat ion (e.g., 
the Durbin-Watson test), as well as more general tests, such as the Box-Pierce 
and Ljung-Box statistics, are useful as well. We implement all of these tests by 
regression on a constant term. 

Optimal Forecasts Have /i-Step-Ahead Errors That Are at 
Most MA(/i - 1 ) 
The MA(/t — 1) s tructure implies a cutoff in the forecast e r ror ' s autocorrela­
tion function beyond displacement h — 1. This immediately suggests examin­
ing the statistical significance of the sample autocorrelat ions beyond displace­
men t h — 1 using the Bardett s tandard errors . In addit ion, we can regress the 
errors on a constant, allowing for MA(^) disturbances with q > (h — 1), and 
test whether the moving-average parameters beyond lag h — 1 are 0. 

Optimal Forecasts Have /i-Step-Ahead Errors with 
Variances That Are Non-Decreasing in h 
It's often useful to examine the sample /i-step-ahead forecast e r ror variances as 
a function of h, both to be sure they're nondecreas ing in h and to see their 
pattern, which often conveys useful information. 

ASSESSING OPTIMALITY WITH RESPECT 
TO AN INFORMATION SET 

T h e key property of optimal forecast errors, from which all others follow (in­
cluding those cataloged earl ier) , is that they should be unforecastable on the 
basis of information available at the time the forecast was made. This unfore-
castability principle is valid in great generality; it holds, for example, regard­
less of whether linear-projection optimality or conditional-mean optimality is 
of interest, regardless of whether the relevant loss function is quadratic, and 
regardless of whether the series being forecast is stationary. 

Many of the tests of propert ies of optimal forecasts in t roduced above are 
based on the unforecastability principle. For example, 1-step-ahead errors had 
better be white noise, because otherwise we could forecast the errors using 
information readily available when the forecast is made. Those tests, however, 
make incomplete use of the unforecastability principle, insofar as they assess 
only the univariate propert ies of the errors. 

We can make a more complete assessment by broadening the information 
set and assessing oprimalirv with respect to various sets of information, by 
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estimating regressions of the form 

,x„ + u, . 

T h e hypothesis of interest is that all the a ' s are 0, which is a necessary condi­
tion for forecast optimality with respect to the information contained in the 
x's. T h e particular case of testing optimality with respect to yt+hj is very im­
por tan t in practice. The relevant regression is 

and optimality corresponds to (oto, a i ) = (0, 0). Keep in mind that the distur­
bances may be serially correlated, especially if the forecast errors are multi-
step-ahead, in which case they should be modeled accordingly. 

If this regression seems a litde strange to you, consider what may seem like 
a more natural approach to testing optimality, regression of the realization on 
the forecast: 

This is called a Mincer-Zarnowitz regression. If the forecast is optimal with respect 
to the information used to construct it, then we'd expect (Bo, Bj) = (0, 1), in 
which case 

yi+h = yl+hj + "< • 

Note, however, that if we start with the regression 

y , + A = B,, + B,y, + A./ + u, , 

and then subtract y t + h J from each side, we obtain 

e,+h,t = -j- aiy,+y»./ + u, , 

where (ao, oti) = (0,0) when (0o, Bi) = (0, 1). Thus , the two approaches are 
identical. 

In practice, it is unlikely that we'll ever stumble upon a fully optimal forecast; 
instead, situations often arise in which a n u m b e r of forecasts (all of them sub-
optimal) are compared and possibly combined. Even for very good forecasts, 
the actual and forecasted values may be very different. To take an ext reme ex­
ample, note that the linear least-squares forecast for a zero-mean white noise 
process is simply 0—the paths of forecasts and realizations will look very dif­
ferent, yet there does not exist a bet ter l inear forecast unde r quadrat ic loss. 
This highlights the inheren t limits to forecastability, which depends on the 
process being forecast; some processes are inherently easv to forecast, while 

e l + h J — a o + a.\yt+h.i + u, , 

yi+k = B(i + Pi y,+h.i + u,. 

Z. Evaluating Two or 
Comparing Forecast 

More Forecasts: 
Accuracy 

MEASURES OF FORECAST ACCURACY 
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others are hard to forecast. In o ther words, somedmes the information on 
which the forecaster conditions is very valuable, and sometimes it isn't. 

T h e crucial object in measuring forecast accuracy is the loss function, 
L(yl+h, yl+i,,). often restricted to L(et+h,,), which charts the "loss," "cost," o r 
"disutility" associated with various pairs of forecasts and realizations. 1 In addi­
tion to the shape of the loss function, the forecast horizon h is of crucial im­
por tance. Rankings of forecast accuracy may of course be very different across 
different loss functions and different horizons. 

Let's discuss a few accuracy measures that are important and popular. Accu­
racy measures are usuallv defined on the forecast errors, et+hi, = y,+h — yt+h,i, or 
percent errors, p,+hJ = (y,_rA — V/-/,./)/yi+h- Mean error, 

ME = j . e , + h - ' ' T 
1=1 measures bias, which is one componen t of accuracy. O the r things the same, we 

prefer a forecast with a small bias. Error variance, 
1 T 

E V = - Y > , + , , , , - M E ) 2 , 

measures dispersion of the forecast errors. O the r things the same, we prefer a 
forecast whose errors have small variance. Although the mean er ror and the 
e r ror variance are componen t s of accuracy, nei ther provides an overall accu­
racy measure. For example, one forecast might have a small ME but a large EV, 
and anodie r might have a large ME and a small EV. Hence , we would like an 
accuracy measure that somehow incorporates both ME and EV. T h e mean 
squared error, to which we now turn, does just that. 

The most common overall accuracy measures, by far, are mean squared 
error, 

1 1 

M S E = 7 . 

and mean squared percent error, 

M S P E = 4 E / W 

Often the square roots of these measures are used to preserve units, yielding 
the root mean squared error, 

RAISE = 

N 
and the root mean squared percent error, 

i f , 

RMSPE = 

N 

-p Pt+k.l 

1 Because in many applications the loss Junction will be a direct function of the forecast error, 
L(yi, \ f + h , t ) = L(et+i,j), we write from this point on to economize on notation, while 
recognizing diat certain loss functions (such as direction of change) don't collapse to the 
L ( e , + t u ) form. 
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To unders tand the meaning of "preserving units," and why it's sometimes 
helpful to d o so, suppose that the forecast errors are measured in dollars. 
T h e n the mean squared error, which is built up from squared errors, is mea­
sured in dollars squared. Taking square roots—that is, moving from MSE to 
RMSE—brings the units back to dollars. 

MSE can be decomposed into bias and variance components , reflecting 
the trade-off between bias (ME) and variance (EV) in forecast accuracy under 
quadratic loss. In particular, MSE can be decomposed into the sum of variance 
and squared bias (you should verify this), 

MSE = EV 4- ME 2 . 

Somewhat less popular, but nevertheless common, accuracy measures are 
mean absolute error, 

M A E = - ^ | ^ , ( | , 

and mean absolute percent error, 

MAPE = - J2 I pt+h.i I • 

When using MAE or MAPE, we don ' t have to take square roots to preserve 
units . WTiy? 

STATISTICAL COMPARISON OF FORECAST ACCURACY 

All the accuracy measures we've discussed are actually sample estimates of popu­
lation accuracy. Population MSE, for example, is defined as the expected 
squared error, 

MSE,,u„ = E(eU,) . 

which we estimate by replacing the expectation with a sample average, 

1 ^ , 

yielding the sample MSE. 
Once we've decided on a loss function, it is often of interest to know 

whether one forecast is more accurate than another . In hypothesis-testing 
terms, we might want to test the equal accuracy hypothesis, 

against the alternative hypothesis that one or the other is better. Equivalendy, 

we might want to test the hypothesis that the expected loss differential is 0, 

E(d,) = E(L(ellil))-E(L(e';+lll))=0. 

T h e hypothesis concerns populat ion expected loss; we test it using sample 
average loss. 
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In fact, we can show that if d, is a covariance stationary series, then the 
large-sample distribution of the sample mean loss differential is 2 

y ? ( r f - p ) - A(0, / ) , 
1 / 

where d = — ]T (L (e't'^li,) — (e'l'^h,)) is the sample mean loss differential. / is 
the variance of the sample mean loss differential, and p. is the population 
mean loss differential. This implies that in large samples, u n d e r the null hy­
pothesis of a zero populat ion mean loss differential, the standardized sample 
mean loss differential has a s tandard normal distribution, 

B = -jL - A r (0 ,1 ) , 

where / is a consistent estimator of f. In practice, using / = £ "?./(T)< where 
T=-.U 

Ai = T , / : i and "9,/(T) denotes the sample autocovariance of the loss differential 
at displacement T , provides an adequate estimator in many cases. 

Note that the statistic B is just a /-statistic for the hypothesis of a zero pop­
ulation mean loss differential, adjusted to reflect the fact that the loss differ­
ential series is not necessarily white noise. We can compute it by regressing the 
loss differential series on an intercept, taking care to correct the equat ion for 
serial correlation. T h e procedure outlined here amounts to a "nonparametr ic" 
way of doing so. It's called nonparametric because instead of assuming a partic­
ular model for the serial correlation, we use the sample autocorrelat ions of 
the loss differential directly. 

The nonparametr ic serial correlation correction is a bit tedious, however, 
and it involves the rather arbitrary selection of the t runcat ion lag, A/. Alterna­
tively, and perhaps preferably, we can proceed by regressing the loss differential 
on an intercept, allowing for ARMA(/>, q) disturbances, and using information 
criteria to select p and q. This model-based parametric serial correlation cor­
rection is easy to do , economizes on degrees of freedom, and makes use of 
convenient model selection procedures . 

3. Forecast Encompassing and Forecast Combination 
In forecast accuracy comparison, we ask which forecast is best with respect to 
a particular loss function. Such "horse races" arise constantly in practical work. 
Regardless of whether one forecast is significantly better than the others, how­
ever, the question arises as to whether compet ing forecasts may be fruitfully 
combined to p roduce a composite forecast superior to all the original fore­
casts. Thus, forecast combinat ion, al though obviously related to forecast accu­
racy' comparison, is logically distinct and of independen t interest. 

~ We simply assert the result, a proof of which is beyond the scope of this book. 
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FORECAST ENCOMPASSING 

We use forecast encompassing tests to de te rmine whether one forecast incor­
porates (or encompasses) all the relevant information in compet ing forecasts. 
If one forecast incorporates all the relevant information, noth ing can be 
gained by combining forecasts. For simplicity, let's focus on the case of two 
forecasts, y"+hl and y^hJ. Consider the regression 

If (P„, PA) = (1, 0), we'll say that model a forecast-encompasses model br, and if 
(P«, P/J = (0, 1), we'll say that model b forecast-encompasses model a. For 
o ther (P,„ P/,) values, nei ther model encompasses the other, and both forecasts 
contain useful information about y,-*- In covariance stationary environments , 
encompassing hypotheses can be tested using standard me thods . 3 If nei ther 
forecast encompasses die other, forecast combinat ion is potentially desirable. 

FORECAST COMRINATION 

Failure of each model ' s forecasts to encompass o ther model ' s forecasts indi­
cates that both models are misspecified and that there may be gains from fore­
cast combination. It should come as no surprise that such situations are typical 
in practice, because forecasting models are likely to be misspecified—they are 
intentional abstractions of a much more complex reality. 

Many combining methods have been proposed, and they fall roughly into 
two groups, "variance-covariance" methods and "regression" methods. As we'll 
see, the variance-covariance forecast combination method is in fact a special 
case of the regression-based forecast combination method, so there 's really 
only one method . However, for historical reasons—and, more important , to 
build valuable intuition—it 's impor tant to unders tand the variance-covariance 
forecast combinat ion, so let's begin with iL Suppose we have two unbiased 
forecasts from which we form a composite as 

yUhj = (i>y'U, + (l-<i>s>ylia • 

Because the weights sum to unity, the composite forecast will necessarily be 
unbiased. Moreover, the combined forecast e r ror will satisfy the same relation 
as the combined forecast; that is, 

with variance 0 7 = <*>2ov7(l + (1 — < D ) 2 O M 4- 2u>(l — 0))<T~b, where cri, and tslh a re 
the forecast e r ro r variances and is their covariance. We find the optimal 
combining weight by minimizing the variance of the combined forecast e r ror 
with respect to u>, which yields 

H Note that may be serially correlated, particularly if h >1. and any such serial correlation 
should be accounted for. 
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'1 M 

, <TM - Bob 
w = — 5 — T • 

v h h + crfll1 - 2a H i 

T h e optimal combining weight is a simple function of the variances and co-
variances of the underlying forecast errors . The forecast e r ro r variance associ­
ated with the optimally combined forecast is less than or equal to the smaller 
of rr,7„ and crA~/,'> thus, in populat ion, we have nothing to lose by combining fore­
casts and potentially much to gain. In practical applications, the unknown 
variances and covariances that underl ie the optimal combining weights are 
unknown, so we replace them widi consistent estimates. That is, we estimate 

1 7 . 
to* by replacing o*~ with d* = — £ e',+h,ieLh.i> yielding the combining weight 
estimates, ' = l 

°4A + OV' - I®ah 

To gain intuition for the formula that defines the opt imal combining 
weight, consider the special case in which the forecast errors are uncorrela ted, 
so that (j~fl = 0. T h e n 

w = — . 

As do,, approaches 0, forecast a becomes progressively more accurate. The for­
mula for to* indicates that as oC, approaches 0, to* approaches 1, so that all 
weight is put on forecast a, which is desirable. Similarly, as aj)h approaches 0, 
forecast b becomes progressively more accurate. The formula for to* indicates 
diat as r j ^ approaches 0, to* approaches 0. so diat all weight is put on forecast 
b, which is also desirable. In general, the forecast with the smaller e r ro r vari­
ance receives the higher weight, with the precise size of the weight depend ing 
on the disparity between variances. 

T h e full formula for the optimal combining weight indicates that the vari­
ances and the covariance are relevant, but the basic intuition remains valid. 
Effectively, we're forming a portfolio of forecasts, and as we know from stan­
dard results in finance, the optimal shares in a portfolio depend on the 
variances and covariances of the underlying assets. 

Now consider die regression method of forecast combinat ion. The form of 
forecast-encompassing regressions immediately suggests combining forecasts 
by simply regressing realizations on forecasts. This intuition proves accurate, 
and in fact the optimal variance-covariance combining weights have a regres­
sion interpretation as the coefficients of a linear projection of yvwi on to the 
forecasts, subject to two constraints: the weights sum to unity, and the inter­
cept is excluded. 

In practice, of course, populat ion linear projection is impossible, so we sim­
ply run the regression on the available data. Moreover, it's usually preferable 
not to force the weights to add to unity, or to exclude an intercept. Inclusion of 
an intercept, for example, facilitates bias correction and allows biased forecasts 
to be combined. Tvpicallv. then, we simply estimate the regression, 
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yt+h = ft, + p u C , + P,y,.,,, 4- e,_,„ . 

Extension to the fully general case of more than two forecasts is immediate . 
In general , the regression me thod is simple and flexible. There are many 

variations and extensions, because any regression tool is potentially applica­
ble. The key is to use generalizations with sound motivation. We'll give four ex­
amples in an a t tempt to build an intuitive feel for the sorts of extensions that 
are possible: time-varying combining weights, dynamic combining regres­
sions, shrinkage of combining weights toward equality, and nonl inear com­
bining regressions. 

Time-Varying Combining Weights 
Relative accuracies of different forecasts may change, and if they do, we natu­
rally want to weight the improving forecasts progressively more heavily and the 
worsening forecasts less heavily. Relative accuracies can change for a number of 
reasons. For example, the design of a particular forecasting model may make it 
likely to perform well in some situations, but poorly in others. Alternative!), 
people 's decision rules and firms' strategies may change over time, and certain 
forecasting techniques may be relatively more vulnerable to such change. 

We allow for time-varying combining weights in the regression framework 
by using weighted or rolling estimation of combining regressions, or by allow­
ing for explicitly time-varying parameters . If, for example, we suspect that the 
combining weights are evolving over time in a trendlike fashion, we might use 
the combining regression 

y,.„ = (Po 4- PoTIME) + (Pl» + &TIME) y,;,,, 4- (0? + P^TIME)y ' U , 4- , 

which we estimate by regressing the realization on an intercept, t ime, each of 
the two forecasts, the product of time and the first forecast, and the product of 
t ime and the second forecast. We assess the impor tance of time variation bv ex-

i l l 

amining the size and statistical significance of the estimates of P„. p r t , and P / (. 

Serial Correlation 
It's a good idea to allow for serial correlat ion in combining regressions, for two 
reasons. First, as always, even in the best of condit ions we need to allow for the 
usual serial correlation induced by overlap when forecasts are more than 1-step-
ahead. This suggests that instead of treating the disturbance in the combining 
regression as white noise, we should allow for MA(/i — 1) serial correlation, 

y^h = ft, + PAJ?,° + A I / 4- PAV'U. ( 4- E , + A I , 
E < + a . , ~ M A ( A - 1 ) . 

Second, and very important , the MA(A — 1) e r ro r structure is associated 
with forecasts that are optimal with respect to their information sets, of which 
there 's no guarantee . Tha t is, a l though the primary forecasts were designed to 
capture the dynamics in y, there 's n o guarantee that they d o so. Thus , just as 
in s tandard regressions, it's important in combining regressions that we allow 
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either for serially correlated disturbances or for lagged d e p e n d e n t variables, 
to capttire any dynamics in y no t captured by the various forecasts. A combin­
ing regression with ARMA(/>, q) disturbances, 

with p and q selected using information criteria in conjunction with o ther di­
agnostics, is usually adequate . 

Shrinkage of Combining Weights toward Equality 
Simple ari thmetic averages of forecasts—that is, combinat ions in which the 
weights are constrained to be equal—sometimes perform very well in out-of-
sample forecast competit ions, even relative to "optimal" combinat ions. T h e 
equal-weights constraint eliminates sampling variation in the combining 
weights at the cost of possibly introducing bias. Sometimes the benefits of im­
posing equal weights exceed the cost, so that the MSE of the combined fore­
cast is reduced. 

T h e equal-weights constraint associated with the arithmetic average is an 
example of ext reme shrinkage; regardless of die information contained in the 
data, the weights are forced into equality. We've seen before that shrinkage 
can produce forecast improvements , but tvpically we want to coax estimates in 
a particular direction, ra ther than to force diem. In that way we guide our 
parameter estimates toward reasonable values when the data are uninforma-
tive, while nevertheless paying a great deal of at tention to die data when they 
are informative. 

Thus , instead of imposing a deterministic equal-weights constraint, we might 
like to impose a stochastic constraint. With this in mind, we sometimes coax the 
combining weights toward equality without forcing equality. A simple way to 
do so is to take a weighted average of the simple average combinat ion and the 
least-squares combinat ion. Let the shrinkage parameter y be the weight put 
on the simple average combinat ion, and let (1 — *y) be the weight put on the 
least-squares combinat ion, where *y is chosen by the user. The larger is *y, the 
more the combining weights are shrunken toward equality. Thus , the com­
bining weights are coaxed toward the arithmetic mean , but the data are still 
allowed to speak, when thev have something impor tant to say. 

Nonlinear Combining Regressions 
There is n o reason to force linearity of combining regressions, and various of 
the nonl inear techniques that we've already introduced may be used. We 
might, for example, regress realizations not only on forecasts but also on 
squares and cross products of the various forecasts, to capture quadrat ic devi­
ations from linearitv. 

ylHl = ft, + B„y,lA i , 4- B,,y,^., 4-

e / + A , , - ARMA(/>, q), 

yt+h = B,, + P„y;. / l 
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We assess the impor tance of nonlinearity by examining the size and statistical 
significance of estimates of P„„, {3Wj, and (3,,/,: if the linear combining regression 
is adequate , those estimates should differ significantly from 0. If, on the other 
hand, the nonl inear terms are found to be important , then the full nonlinear 
combining regression should be used. 

I I I I f M M M I f 

4. Application: OverSea Shipping Volume 
on the Atlantic East Trade Lane 
OverSea Services, Inc., is a major international cargo shipper. To he lp guide 
fleet allocation decisions, each week OverSea makes forecasts of volume 
shipped over each of its major trade lanes, at horizons ranging from 1 week 
ahead through 16 weeks ahead. In fact, OverSea produces two sets of forecasts: 
a quantitative forecast is p roduced using mo d e rn quantitative techniques, and 
a judgmenta l forecast is p roduced by soliciting the opinion of the sales repre­
sentatives, many of whom have years of valuable experience. 

Here we'll examine the realizations and 2-week-ahead forecasts of volume 
on the Atlantic East trade lane (North America to Europe) . We have nearly 
10 years of data on weekly realized volume (VOL) and weekly 2-week-ahead 
forecasts (the quantitative forecast VOLQ, and the judgmenta l forecast 
VOLJ), from January 1988 through mid-July 1997, for a total of 499 weeks. 

In Figure 12.1, we plot realized volume versus the quantitative forecast; in 
Figure 12.2, we show realized volume versus the judgmenta l forecast. T h e two 

F I G U R E 12.1 
Shipping Volume, 
Quantitative 
Forecast and 
Realization 

1 / 0 1 / 8 8 1 2 / 0 1 / 8 9 11 /01 /91 1 0 / 0 1 / 9 3 9 / 0 1 / 9 5 
Time 
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F I G U R E 12 Z 
Shipping Volume, 
Judgmental Forecast 
and Realization 

1 / 0 1 / 8 8 1 2 / 0 1 / 8 9 1 1 / 0 1 / 9 1 1 0 / 0 1 / 9 3 
Time 

9 / 0 1 / 9 5 

plots look similar, and both forecasts appear quite accurate; it's no t too hard 
to forecast shipping volume just two weeks ahead. 

In Figures 12.3 and 12.4, we plot the errors from the quantitative and judg­
mental forecasts, which are more revealing. The quantitative error, in particular, 
appears roughly centered on 0, whereas the judgmenta l e r ro r seems to be a bit 
h igher than 0 on average. That is, the judgmenta l forecast appears biased in a 

F I G U P E 12.3 
Quantitative 
Forecast Error 

1 / 0 1 / 8 8 1 2 / 0 1 / 8 9 1 1 / 0 1 / 9 1 1 0 / 0 1 / 9 3 
Time 

9 / 0 1 / 9 5 
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F I G U R E 12 A 
Judgmental Forecast 
Error 

1 / 0 1 / 8 8 1 2 / 0 1 / 8 9 1 1 / 0 1 / 9 1 1 0 / 0 1 / 9 3 9 / 0 1 / 9 5 
Time 

pessimistic way—on average, actual realized volume is a bit higher than fore­
casted volume. 

Figures 12.5 and 12.6 present histograms and related statistics for the 
quantitative and judgmenta l forecast errors . The histograms confirm our ear­
lier suspicions based on the e r ro r plots; the histogram for the quantitative 
e r ro r is centered on a mean of -0 .03 , w rhereas that for the judgmenta l e r ror is 
centered on 1.02. The e r ro r s tandard deviations, however, reveal that the 

F I G U R E 12.5 Histogram and Related Statistics, Quantitative Forecast Error 
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30 -

20 

10 h 

Series: EQ 
Sample 1 / 0 1 / 1 9 8 8 7 / 1 8 / 1 9 9 7 
Observations 499 

Mean - 0 . 0 2 6 5 7 2 
Median 0.002625 
Maximum 3.681641 
Minimum - 4 . 6 6 3 3 8 7 
Std. Dev. 1.262817 
Skewness - 0 . 1 9 9 9 0 2 
Kurtosis 3.187625 

Jarque-Bera 4.055331 
Probability 0.131642 

- 4 - 3 - 2 - 1 
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F l G U P t 11: Histogram and Related Statistics, Judgmental Forecast Error 
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Series: EJ 
Sample 1 / 0 1 / 1 9 8 8 7 / 1 8 / 1 9 9 7 
Observations 499 

Mean 1.023744 
Median 1.060523 
Maximum 4.100623 
Minimum - 2 . 4 8 1 0 3 0 
Std. Dev. 1.063681 
Skewness - 0 . 1 0 6 1 4 8 
Kurtosis 3.078680 

|arque-Bera 1.065789 
Probability 0.586904 

j udgmenta l forecast er rors vary a bit less a round their mean than d o the quan­
titative errors. Finally, the Jarque-Bera test can ' t reject the hypothesis that the 
errors are normally distributed. 

In Tables 12.1 and 12.2 and Figures 12.7 and 12.8, we show the correlo-
grams of the quantitative and judgmenta l forecast errors. In each case, the er­
rors appear to have MA(1) structure; the sample autocorrelat ions cut off at 
displacement 1, whereas the sample partial autocorrelat ions display d a m p e d 
oscillation, which is reasonable for 2-step-ahead forecast errors. 

To test for the statistical significance of bias, we need to account for the 
MA(1) serial correlation. To d o so, we regress the forecast errors on a con­
stant, allowing for MA(1) disturbances. We show the results for the quantita­
tive forecast errors in Table 12.3 and those for the judgmenta l forecast er rors 

Sample: 1/01/1988 7/18/1997 T A B L E 1 2 • 
Included observations: 499 Coirelogram, 

Acorr. P. Acorr. Std. Error Ljung-Box / K V A L U E QuanhtaUve 
— . _———. £ Forecast Error 
1 0.518 0.518 .045 134.62 0.000 
2 0.010 -0.353 .045 134.67 0.000 
3 -0.044 0.205 .045 135.65 0.000 
4 - 0.039 -0.172 .045 136.40 0.000 
5 0.025 0.195 .045 136.73 0.000 
6 0.057 -0.117 .045 138.36 0.000 
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T A B L E ) 2 2 
Correlogram, 

Judgmental 
Forecast Error 

Sample: 1/01/1988 7/18/1997 
Included observations: 499 

Acorr. P. Acorr. Std. Error Ljung-Box p-value 

1 0.495 0.495 .045 122.90 0.000 
2 -0.027 -0.360 .045 123.26 0.000 
3 -0.045 0.229 .045 124.30 0.000 
4 -0.056 -0.238 .045 125.87 0.000 
5 -0.033 0.191 .045 126.41 0.000 
6 0.087 -0.011 .045 130.22 0.000 

F I G U R E 1 2 7 
Sample 
Autocorrelations 
and Partial 
A n tocor relations, 
Quantitative 
Forecast Error 
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in Table 12.4. T h e /-statistic indicates n o bias in the quantitative forecasts bu t 
sizeable and highly statistically significant bias in the judgmenta l forecasts. 

In Tables 12.5 and 12.6, we show the results of Mincer-Zarnowitz regres­
sions; both forecasts fail miserably. We expected the judgmenta l forecast to 
fail, because it's biased, but until now n o defects were found in the quantita­
tive forecast. 

Now let's compare forecast accuracy. We show the histogram and de­
scriptive statistics for the squared quantitative and j u d g m e n t a l e r ro rs in Fig­
ures 12.9 and 12.10. The histogram for the squared j u d g m e n t a l e r ro r is 
pushed rightward relative to that of the quantitat ive error , due to bias. T h e 
RMSE of the quantitative forecast is 1.26, while that of the j u d g m e n t a l fore­
cast is 1.48. 
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T A B L E 12 3 
Quantitative 
Forecast Error, 
Regression on 
Intercept, MA(I) 
Disturbances 

LS / / Dependent variable is EQ. 
Sample: 1/01/1988 7/18/1997 
Included observations: 499 
Convergence achieved after 6 iterations 

Variable Coefficient Std. Error f-Statistic Prob. 

C -0.024770 0.079851 -0.310200 0.7565 
MA(1) 0.935393 0.015850 59.01554 0.0000 

0.468347 Mean dependent van -0.026572 
Adjusted R2 0.467277 SD dependent van 1.262817 
SE of regression 0.921703 Akaike info criterion -0.159064 
Sum squared resid. 422.2198 Schwarz criterion -0.142180 
Log likelihood - 666.3639 /^•statistic 437.8201 
Durbin-VVatson stat. 1.988237 Prob (/•-statistic) 0.000000 

Inverted MA roots - .94 

Figure 12.11 shows the (quadratic) loss differential; it's fairly small but 
looks a little negative. Figure 12.12 shows the histogram of the loss differential; 
the mean is -0 .58 , which is small relative to the standard deviation of the loss 
differential, but r emember that we have not yet corrected for serial correla­
tion. In Table 12.7 we show the correlogram of the loss differential, which 
strongly suggests MA(1) structure. The sample autocorrelat ions and partial 

T t B L E 12 ̂  LS / / Dependent variable is EJ. 
Judgmental Forecast Sample: 1/01/1988 7/18/1997 
Error, Regression on Included observations: 499 
Intercept, A1A(1) Convergence achieved after 7 iterations 
Disturbances Variable Coefficient Std. Error /-Statistic Prob. 

C 1.026372 0.067191 15.27535 0.0000 
MA(1) 0.961524 0.012470 77.10450 0.0000 

0.483514 Mean dependent van 1.023744 
Adjusted R* 0.482475 SD dependent van 1.063681 
SE of regression 0.765204 Akaike info criterion -0.531226 
Sum squared resid. 291.0118 Schwarz criterion -0.514342 
Log likelihood -573.5094 F-statistic 465.2721 
Durbin-Watson stat 1.968750 Prob(/r-statistic) 0.000000 

Inverted MA roots - . 96 
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LS / / Dependent variable is VOL. 
Sample: 1/01 1988 7/18/1997 
Included observations: 499 
Convergence achieved alter 10 iterations 

Variable Coefficient Std. Error f-Statistic Prob. 

C 2.958191 0.341841 8.653696 0.0000 
VOLQ 0.849559 0.016839 50.45317 0.0000 
MA(1) 0.912559 0.018638 48.96181 0.0000 

/? 0.936972 Mean dependent var. 19.80609 
Adjusted R2 0.936718 SD dependent var. 3.403283 
SE of regression 0.856125 Akaike info criterion -0.304685 
Sum squared resid. 363.5429 Schwarz criterion -0.279358 
Log likelihood - 629.0315 ^-statistic 3686.790 
Durbin-Watson stat. 1.815577 Prob(F-sunistic) 0.000000 

Inverted MA roots - .91 

Wald test: 
Null hypothesis: 
F-statistic 
Chi-square 

C(l) = 0 C(2) = 1 
39.96862 Probability 0.000000 
79.93723 Probability 0.000000 

T A G L E ' 7 5 

Mi n cer- 7M rnounlz 
Regression, 
Quantitative 
Forecast Error 

LS / / Dependent variable is VOL. 
Sample: 1/01/1988 7/18/1997 
Included observations: 499 
Convergence achieved after 11 iterations 

Variable Coefficient Std. Error ^-Statistic 

Wald test: 
Null hypothesis: C.{\) = 
F-statistic 143.832: 
Chi-square 287.664" 

0 C(2) = 1 
Probability 0.000000 
Probability 0.000000 

Prob. 

c 2.592648 0.271740 9.540928 0.0000 
VOLJ 0.916576 0.014058 65.20021 0.0000 
MA(1) 0.949690 0.014621 64.95242 0.0000 

0.952896 Mean dependent var. 19.80609 
Adjusted R* 0.952706 SD dependent var. 3.403283 
SE of regression 0.740114 Akaike info criterion -0.595907 
Sum squared resid. 271.6936 Schwarz criterion -0.570581 
Log likelihood -556.3715 /^•statistic 5016.993 
Durbin-Watson stat. 1.917179 Prob (F-statistic) 0.000000 

Inverted MA roots - .95 

IABLE 1 2 G 
A L L n cer-Zarnowitz 
Regression, 

Judgmental Forecast 
Error 
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F I G U R E 12.9 Histogram and Related Statistics, Squared Quantitative Forecast Error 
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Series: EQSQ 
Sample 1 / 0 1 / 1 9 8 8 7 / 1 8 / 1 9 9 7 
Observations 499 

Mean 1.592217 
Median 0.763750 
Maximum 21.74718 
Minimum 5.61E-06 
Std. Dev. 2.369751 
Skewness 3.293315 
Kurtosis 18.88079 

Jarque-Bera 6145.666 
Probability 0.000000 

autocorrelat ions, presented in Figure 12.13, confirm that impression. Thus , to 
test for significance of the loss differential, we regress it on a constant and 
allow for MA(1) disturbances; the results appear in Table 12.8. The mean loss 
differential is highly statistically significant, with a /•value less than 0.01; we 
conclude that the quantitative forecast is more accurate than the judgmenta l 
forecast unde r quadrat ic loss. 

Now let's combine the forecasts. Both failed Mincer-Zarnowitz tests, which 
suggests that there may be scope for combining. T h e correlat ion between the 

F I G U R E ! 2.1 • Histogram and Related Statistics, Squared JudgmenUd Forecast Error 

160 r 
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Series: EJSQ 
Sample 1 / 0 1 / 1 9 8 8 7 / 1 8 / 1 9 9 7 
Obseivations 499 

Mean 2.177201 
Median 1.308296 
Maximum 16.81511 
Minimum 4.63E-05 
Std. Dev. 2.623644 
Skewness 2.134551 
Kurtosis 8.646748 

Jarque-Bera 1041.891 
Probability 0.000000 
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F I G U R E 12.11 
Iu>ss Differential 

- 1 0 

1 / 0 1 / 8 8 1 2 / 0 1 / 8 9 1 1 / 0 1 / 9 1 1 0 / 0 1 / 9 3 

Time 

9 / 0 1 / 9 5 

two forecast errors is 0.54, positive but not too high. In Table 12.9, we show the 
results of estimating the unrestricted combining regression with MA(1) errors 
(equivalently, a forecast encompassing test). Neither forecast encompasses the 
other; both combining weights, as well as the intercept, are highly statistically 
significantly different from 0. Interestingly, the judgmenta l forecast actually 
gets won? weight than the quantitative forecast in the combinat ion, in spite of 
the fact that its RMSE was higher. That ' s because, after correct ing for bias, the 
judgmenta l forecast appears a bit more accurate. 

F i G U [ 7 i £ i - tTi Histogram and Related Statistics, Loss Differential 

l>f>^-
- 1 5 10 10 15 20 

Series: DD 
Sample 1 / 0 1 / 1 9 8 8 7 / 1 8 / 1 9 9 7 
Observations 499 

Mean - 0 . 5 8 4 9 8 4 
Median - 0 . 3 9 5 6 4 6 
Maximum 21.65003 
Minimum - 1 6 . 5 0 0 1 0 
Std. Dev. 3.416190 
Skewness 0.421513 
Kurtosis 9.472586 

Jarque-Bera 885.8303 
Probability 0.000000 
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T A B L E 12.7 
Loss Differential 
Correlogram 

Sample: 1/01/1988 7/18/1997 
Included observations: 499 

Acorr. P. Acorr. Std. Error Ljung-Box /•value 

1 0.357 0.357 .045 64.113 0.000 
2 -0.069 -0.226 .045 66.519 0.000 
3 -0.050 0.074 .045 67.761 0.000 
4 -0.044 -0.080 .045 68.746 0.000 
5 -0.078 -0.043 .045 71.840 0.000 
6 0.017 0.070 .045 71.989 0.000 

F I G U R E 12.13 
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A u tocorrelations, 
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LS /./ Dependent variable is DD. 
Sample: 1 /O1 1988 7/18/1997 
Included observations: 499 
Convergence achieved after 4 iterations 

Variable Coefficient Std. Error /-Statistic Prob. 

C -0.585333 0.204737 -2.858945 0.0044 
MA(1) 0.472901 0.039526 11.96433 0.0000 

0.174750 Mean dependent var. -0.584984 
Adjusted 0.173089 SD dependent var. 3.416190 
SE of regression 3.106500 Akaike info criterion 2.270994 
Sum squared resid. 4796.222 Schwarz criterion 2.287878 
Log likelihood -1272.663 /•"-statistic 105.2414 
Dm bin-Watson stat. 2.023606 Prob (/--statistic) 0.000000 

Inverted MA roots - .47 

T A B L E 12 B 
Loss Differential, 
Regression on 
Intercept with 
MA(1) 
Disturbances 

It's interesting to track the RMSEs as we progress from the original 
forecasts to the combined forecast. The RMSE of the quantitative forecast is 
1.26 and that of the judgmenta l forecast is 1.48. T h e RMSE associated with 
using the modified quantitative forecast that we obtain using the weights 

LS / / Dependent variable is VOL. 
Sample: 1/01/1988 7/18/1997 
Included observations: 499 
Convergence achieved after 11 iterations 
Variable Coefficient Std. Error f-Statistic Prob. 

c 2.181977 0.259774 8.399524 0.0000 
VOLQ 0.291577 0.038346 7.603919 0.0000 
VOLj 0.630551 0.039935 15.78944 0.0000 
MA(1) 0.951107 0.014174 67.10327 0.0000 

/r' 0.957823 Mean dependent var. 19.80609 
Adjusted R2 0.957567 SD dependent var. 3.403283 
SE of regression 0.701049 Akaike info criterion -0.702371 
Sum squared resid. 243.2776 Schwarz criterion -0.668603 
Log likelihood -528.8088 /•-statistic 3747.077 
Durbin-Watson stat. 1.925091 Prob (/^-statistic) 0.000000 

Inverted MA roots - . 95 

T A B L E 12 B 
Shipping \blume 
Combining 
Regression 

file:///blume
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estimated in the Mincer-Zarnowitz regression is 0.85, and that of the modi­
fied judgmen ta l forecast is 0.74. Finally, the RMSE of the combined forecast 
is 0.70. In this case, we get a big improvement in forecast accuracy from using 
the modifications associated with the Mincer-Zarnowit7 regressions and a 
smaller, but nonnegligible, addit ional improvement from using the full com­
bining regression. 4 

Exercises, Problems, and Complements 
1. (Forecast evaluation in action) Discuss in detail how you would use forecast 

evaluation techniques to address each of the following questions. 
a. Are asset returns (e.g., slocks, bonds, exchange rates) forecastable over long 

horizons? 
b. Do forward exchange rates provide unbiased forecasts of future spot 

exchange rates at all horizons? 
c. Are government budget projections systematically too optimistic, perhaps for 

strategic reasons? 
d. Can interest rates be used to provide good forecasts of future inflation? 

2. (Forecast error analysis) You are working for a London-based hedge fund, 
Thompson Energy Investors, and your boss has assigned you to assess a model 
used to forecast U.S. crude oil imports. On the last day of each quarter, the model 
is used to forecast oil imports at 1-quarter-ahead through 4-quarter-ahead 
horizons. Thompson has done this for each of the past HO quarters and has kept 
the corresponding four forecast error series, which appear on the book's web 
page. 
a. Based on a correlogram analysis, assess whether the 1-quarter-ahead forecast 

errors are white noise. (Be sure to discuss all parts of the correlogram: sample 
autocorrelations, sample partial autocorrelations, Bai tlett standard errors, 
and Ljung-Box statistics.) Why care? 

b. Regress each of the four forecast error series on constants, in each case 
allowing for a MA(3) disturbances. Comment on the significance of the MA 
coefficients in each of the four cases, and use the results to assess the 
optimality of the forecasts at each of the four horizons. Does your 1 -step-
ahead MA (5)—based assessment match the correlogram-based assessment 
obtained in part a? Do the multistep forecasts appear optimal? 

c. Overall, what do your results suggest about the model's ability to predict L'.S. 
crude oil imports? 

3. (Combining forecasts) You are a managing director at Paramex, a boutique 
investment bank in Paris. Each day during the summer your two interns, Alex and 
Betsy; give you a 1-dav-ahead forecast of the euro/dollar exchange rate. At the 

4 The RMSEs associated with forecasts from the partial optimalitv regressions as well as from the 
full combining regression are of course in-sample RMSEs. It remains to be seen how they'll per­
form out of sample, but all indications look good. 
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end of the summer, vou calculate each intern's series of daily forecast errors. You 
find that the mean errors are zero, and die error variances and covariances are 
rrlA = 1 5 3 . 7 6 . v \ u = 9 2 . 1 6 and <jJB = 0 . 2 . 
a. If you were forced to choose between Alex's forecast and Betsy's forecast, 

which would vou choose? Why? 
b. If instead you had the opportunity to combine the two forecasts by forming a 

weighted average, what would be the optimal weights according to the 
variance-covariance method? Why? 

c. Is it guaranteed that a combined forecast formed using the "optimal" weights 
calculated in part b will have lower mean squared prediction error? Why or 
why not? 

4. (Quantitative forecasting, judgmental forecasting, forecast combination, and 
shrinkage) Interpretation of the modern quantitative approach to forecasting as 
eschewing judgment is most definitely misguided. How is judgment used 
routinely and informally to modify' quantitative forecasts? How can judgment be 
formally used to modify quantitative forecasts via forecast combination? How can 
judgment be formally used to modify quantitative forecasts via shrinkage? Discuss 
the comparative merits of each approach. Klein ( 1 9 8 1 ) provides insightful 
discussion of the interaction between judgment and models, as well as the 
comparative track record of judgmental versus model-based forecasts. 

5. (The algebra of forecast combination) Consider the combined forecast, 

yWhj = <*yUh.i + d - <•>>?*+*./ • 
Verify die following claims made in the text: 
a. The combined forecast error will satisfy the same relation as the combined 

forecast; that is, 

' / + A . 1 = <**Uh., + 0 " » > ' f + A . r • 

b. Because the weights sum to unity, if the primary forecasts are unbiased, then 
so, too, is the combined forecast. 

c. The variance of the combined forecast error is 

07 = o,2oi + (1 - ( i i ) 2 o-^ + 2o) ( l - o>)a^ , 

where o*j", and aT2 are unconditional forecast error variances and un is their 
covariance. 

d. The combining weight that minimizes die combined forecast error variance 
(and hence the combined forecast error MSE, by unbiasedness) is 

2 2 
1 0 = — 2 7TT • 

abb + o„„ - 2cr a 6 

e. If neither forecast encompasses the other, then 

f. If one forecast encompasses die other, then 

0 7 = min (oi,o£) 
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(The mechanics of practical forecast evaluation and combination) On the book's 
web page, you'll find the time series of shipping volume, quantitative forecasts, 
and judgmental forecasts vised in this chapter. 
a. Replicate the empirical results reported in this chapter. Explore and discuss 

any variations or extensions that you find interesting. 
b. Using the first 250 weeks of shipping volume data, specify' and estimate a 

univariate autoregressive model of shipping volume (with trend and 
seasonality if necessary), and provide evidence to support the adequacy of 
your chosen specification. 

c. Use your model each week to forecast 2 weeks ahead, each week estimating the 
model using all available data, producing forecasts for observations 252 
through 499, made using information available at times 250 through 497. 
Calculate the corresponding series of 248 2-step-ahead recursive forecast 
errors. 

d. Using the methods of this chapter, evaluate the quality of your forecasts, both 
in isolation and relative to the original quantitative and judgmental 
forecasts. Discuss. 

e. Using the methods of this chapter, assess whether your forecasting model can 
usefully be combined with the original quantitative and judgmental models. 
Discuss. 

(What are we forecasting? Preliminary series, revised series, and the limits to 
forecast accuracy) Many economic series are revised as underlying source data 
increase in quantity and quality. For example, a typical quarterly series might be 
issued as follows. First, shortly after the end of the relevant quarter, a 
"preliminary" value for the current quarter is issued. A few months later, a 
"revised" value is issued, and a year or so later the "final revised" value is issued. 
For extensive discussion, see Croushore and Stark (2001). 
a. If you're evaluating the accuracy of a forecast or forecasting technique, you've 

got to decide on what to use for the "actual" values, or realizations, to which 
die forecasts will be compared. Should you use the preliminary value? The 
final revised value? Something else? Be sure to weigh as many relevant issues 
as possible in defending your answer. 

b. Morgenstern (1963) assesses the accuracy of economic data and reports that 
the great mathematician Norbert Wiener, after reading an early version of 
Morgenstern's book, remarked that "economics is a one- or twodigit science." 
What might Wiener have meant? 

c. Theil (1966) is well aware of the measurement error in economic data; he 
speaks of "predicting the future and estimating the past." Klein (1981) notes 
that, in addition to the usual innovation uncertainty, measurement error in 
economic data—even "final revised" data—provides additional limits to 
measured forecast accuracy. That is, even if a forecast were perfect, so that 
forecast errors were consistently 0, measured forecast errors would be nonzero 
due to measurement error. The larger the measurement error, the more 
severe the inflation of measured forecast error. Evaluate. 

d. When assessing improvements (or lack thereof) in forecast accuracy over 
time, how might you guard against the possibility of spurious assessed 
improvements due not to true forecast improvement but rather to structural 
change toward a more "forcastable" process? (On forecastability, see Diebold 
and Kilian, 2001). 
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8. (Ex post versus real-time forecast evaluation) If vou're evaluating a forecasting 
model, you've also got to take a stand on precisely what information is available to 
the forecaster, and when. Suppose, for example, that you're evaluating the 
forecasting accuracy of a particular regression model. 
a. Do you prefer to estimate and forecast recursively or to simply estimate once 

using the full sample of data? 
b. Do you prefer to estimate using final-revised values of the left- and right-hand-

side variables, or do you prefer to use the preliminary, revised, and final-
revised data as it became available in real time? 

c. If the model is explanatory ratiier than causal, do you prefer to substitute 
the true realized values of right-hand-side variables or to substitute forecasts 
of the right-hand-side variables that could actually be constructed in real 
time? 

These sorts of timing issues can make large differences in conclusions. For an 
application to using the composite index of leading indicators to forecast 
industrial production, see Diebold and Rudebusch (1991). 

9. (What do we know about the accuracy of macroeconomic forecasts?) Zarnowitz 
and Braun (1993) provide a fine assessment of the track record of economic 
forecasts since the late 1960s. Read their article, and rry to assess just what we 
really know about 
a. comparative forecast accuracy at business cycle turning points versus other 

times; 
b. comparative accuracy of judgmental versus model-based forecasts; 
c. improvements in forecast accuracy over time; 
d. the comparative forecastabilitv of various series; 
e. the comparative accuracy of linear versus nonlinear forecasting models. 

Other well-known and useful comparative assessments of U.S. macroeconomic 
forecasts have been published over the vears by Stephen K. McNees, a private 
consultant formerly with the Federal Reserve Bank of Boston. McNees (1988) is a 
good example. Similarly useful studies for the U.K., with particular attention to 
decomposing forecast error into its various possible sources, have recently been 
produced by Kenneth F. Wallis and his coworkers at the ESRC Macroeconomic 
Modelling Bureau at the University of Warwick. Wallis and W/hitley (1991) is a 
good example. Finally, the Model Comparison Seminar, founded by Lawrence R. 
Klein of the University of Pennsylvania and now led by Michael Donihue of Colby 
College, is dedicated to the ongoing comparative assessment of macroeconomic 
forecasting models. Klein 11991) provides a good survey of some of the group's 
recent work, and more recent information can be found at 
http://www.colby.edu economics faculty/rnrdonihu/mcs/. 

10. (Forecast evaluation when realizations are unobserved) Sometimes we never see 
the realization of the variable being forecast. Pesaran and Samiei (1995), for 
example, develop models for forecasting ultimate resource recovery, such as the 
total amount of oil in an underground reserve. The actual value, however, won't 
be known until the resei ve is depleted, which may be decades away. Such 
situations obviottsh nuke for difficult accuracy evaluation! How would you 
evaluate such forecasting models? 

11. (Forecast error variance" in models with estimated parameters) As we've seen, 
computing forecast error variances that acknowledge parameter estimation 

http://www.colby.edu
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uncertainty is very difficult; that's one reason why we've ignored it. We've learned 
a number of lessons about optimal forecasts while ignoring parameter estimation 
uncertainty, such as that 
a. forecast error variance grows as the forecast horizon lengthens, and 
b. in covariance stationary environments, the forecast error variance approaches 

the (finite) unconditional variance as the horizon grows. 
Such lessons provide valuable insight and intuition regarding the workings of 
forecasting models and provide a useful benchmark for assessing actual forecasts. 
They sometimes need modification, however, when parameter estimation 
uncertainty is acknowledged. For example, in models with estimated parameters, 
keep in mind the following points: 
a. Forecast error variance needn't grow monotonically with horizon. Typically 

we expect forecast error variance to increase monotonically with horizon, but it 
doesn't haveio. 

b. Even in covariance stationary environments, die forecast error variance 
needn't converge to the unconditional variance as the forecast horizon 
lengthens; instead, it may grow without bound. Consider, for example, 
forecasting a series that's just a stationary AR( 1) process around a linear 
trend. With known parameters, the point forecast will converge to the trend 
as the horizon grows, and the forecast error variance will converge to the 
unconditional variance of the AR(1) process. With estimated parameters, 
however, if the estimated trend parameters are even the slightest bit different 
from the true values (as they almost surely will be, due to sampling variation), 
that error will be magnified as the horizon grows, so the forecast error 
variance will grow. 

Thus, results derived under the assumption of known parameters should be 
viewed as a benchmark to guide our intuition, rather than as precise rules. 

12. (The empirical success of forecast combination) In the text we mentioned that we 
have nothing to lose by forecast combination and potentially much to gain. That's 
certainly true in population, with optimal combining weights. However, in finite 
samples of the size typically available, sampling error contaminates the combining 
weight estimates, and the problem of sampling error may be exacerbated by the 
collinearity diat typically exists between and y f ^ h r Thus, although we hope 
to reduce out-of-sample forecast MSE by combining, there is no guarantee. 
Fortunately, however, in practice forecast combination often leads to very good 
results. The efficacy of forecast combination is well documented in Clemen's 
(1989) review of die vast literature, and it emerges clearly in the landmark study 
by Stock and Watson (1999). 

13. (Forecast combination and the Boxjenkins paradigm) In an influential book. 
Box andjenkins (latest edition is Box,Jenkins, and Reinsel, 1994) envision an 
ongoing, iterative process of model selection and estimation, forecasting, and 
forecast evaluation. What is the role of forecast combination in that paradigm? In 
a world in which information sets can be instantaneously and costlessly combined, 
there is no role; it is always optimal to combine information sets rather than 
forecasts. That is, if no model forecast-encompasses the others, we might hope to 
eventually figure out what's gone wrong, learn from our mistakes, and come up 
with a model based on a combined information set that does forecast-encompass 
the others. But in the short run—particularly when deadlines must be met and 
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timely forecasts produced—pooling of information sets typically is either 
impossible or prohibitively costly. This simple insight motivates the pragmatic 
idea of forecast combination, in which forecasts rather than models are the basic 
object of analysis, due to an assumed inability to combine information sets. Thus, 
forecast combination can be viewed as a key link between the short-run, real-time 
forecast production process, and the longer-run, ongoing process of model 
development. 

14. (Consensus forecasts) A number of services, some commercial and some 
nonprofit, regularly survey economic and financial forecasters and publish 
"consensus*' forecasts, typically the mean or median of the forecasters surveyed. 
The consensus forecasts often perform very well relative to the individual 
forecasts. The Survey of Professional Forecasters is a leading consensus forecast 
that has been produced each quarter since the late 1960s; currently it's produced 
by the Federal Reserve Bank of Philadelphia. See Zarnowitz and Braun (1993) 
and Croushore (1993). 

15. (The Delphi method for combining experts' forecasts) The "Delphi method" is a 
structured judgmental forecasting technique that sometimes proves useful in verv 
difficult forecasting situations not amenable to quantification, such as new-
technology forecasting. The basic idea is to survey a panel of experts 
anonymously, reveal the distribution of opinions to the experts so they can revise 
their opinions, repeat the survey, and so on. Typically the diversity of opinion is 
reduced as the iterations proceed. 
a. Delphi and related techniques arc fraught with difficulties and pitfalls. 

Discuss them. 
b. At the same time, it's not at all clear that we should dispense with such 

techniques; they may be of real value. Why? 

Bibliographical and Computational Nates 
This chapter draws on Diebold and Lopez (1996) and Diebold (1989). 

Mincer-Zarnowitz regressions are due to Mincer and Zarnowitz (1969). 
The test for a zero expected loss differential, due to Diebold and Mariano (1995), 

builds on earlier work by Granger and Xewbold (1986) and has been improved and 
extended by Harvey, Leybourne, and Xewbold (1997); West (1996); White (2000); 
and Hansen (2001). 

The idea of forecast encompassing dates at least to Nelson (1972) and was 
formalized and extended bv Chong and Hendry (1986) and Fair and Shiller (1990). 

The variance-covariance method of forecast combination is due to Bates and 
Granger (1969), and the regression interpretation is due to Granger and 
Ramanathan (1984). 

Winkler and Makridakis (1983) document the frequent good performance of 
simple averages. In large part motivated by that finding, Clemen and Winkler (1986) 
and Diebold and Paulv < 199<»> develop forecast combination techniques that feature 
shrinkage toward the mean, and Stock and Watson (1998) arrive at a similar end via a 
very different route. See also Elliott and Timmermann (2002). 
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Unit Roots, Stochastic 
Trends, ARIMA 
Forecasting Models, 
and Smoothing 

Thus far we've handled nonstat ionarides, such as t rend, using deterministic 
components . Now we consider an alternative, stochastic approach. Stochastic 
t rend is impor tant insofar as it sometimes provides a good description of cer­
tain business, economic, and financial time series, and it has a n u m b e r of spe­
cial propert ies and implications. As we'll see, for example, if we knew for sure 
that a series had a stochastic t rend, then we'd want to difference the series and 
then fit a stationary model to the difference. 1 The strategy of differencing to 
achieve stationarity contrasts with the approach of earlier chapters, in which 
we worked in levels and included deterministic trends. In practice, it's some­
times very difficult to decide whether t rend is best modeled as deterministic 
or stochastic, and the decision is an important par t of the science—and art— 
of building forecasting models. 

I. Stochastic Trends and Forecasting 
Consider an ARMA(/>, q) process, 

4>(L)j, = e < ! ) £ , . 

1 We speak of modeling in "differences," as opposed to "levels." We also use differences and changes 
interchangeably. 
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with all the autorecrresshe roots on or outside the unit circle, at most one auto­
regressive root on the unit circle, and all moving average roots outside the unit 
circle; We sav that \ has a unit autoregressive root, or simply a unit root, if o n e 
of the p roots of its autoregressive lag opera tor polynomial is 1, in which case 
we can factor the autoregressive lag opera tor polynomial as 

<D(L) = < D ' ( L ) ( 1 - L ) , 

where &(L) is of degree p — 1. Thus , y is really an ARMA(/> — 1, q) process in 
differences, because 

* U ) ( l - L ) j , = e ( I ) e , 

is simply 

<t>'(7_)Ay, = &(L)tt. 

Note that y is not covariance stationary, because one of the roots of its auto­
regressive lag opera tor polynomial is on the unit circle, whereas covariance 
stationarity requires all roots to be outside the unit circle. However, Ay is a 
covariance stationary and invertible ARMA( p — 1, q) process. 

You may recall from calculus that we can "undo" an integral by taking a de­
rivative. By analogy, we say that a nonstat ionary series is integrated if its non-
stationarity is appropriately "undone" by differencing. If only one difference is 
required (as with the series y earlier) , we say that the series is integrated of 
o rde r 1, or 7(1) (p ronounced "eye-one") for short. More generally, if d differ­
ences are required, the series is 1(d). T h e order of integration equals the num­
ber of autoregressive unit roots. In practice, 7(0) and 7(1) processes are by far 
the most impor tant cases, which is why we restricted our discussion to allow for 
at most one unit root.- To get a feel for the behavior of 7(1) processes, let's 
take a simple and very important example, the random walk, which is no th ing 
more than an AR( 1) process with a unit coefficient, 

y, - y,_ ( + E , 

Et ~ WN(0, rj*) . 

T h e random walk is not covariance stationary, because the AR(1) coefficient 
is no t less than 1. In particular, it doesn ' t display mean reversion; in contrast to 
a stationary AR(1), it wanders u p and down randomly, as its name suggests, 
with no tendency to re turn to any particular point. Although the r andom walk 
is somewhat ill behaved, its first difference is the ultimate well-behaved series: 
zero-mean white noise. 

As an illustration, we show a random walk realization of length 300, as well 
as its first difference, in Figure 13 .1 . 3 T h e difference of the r andom walk is 
white noise, which vibrates randomly. In contrast, the level of the r andom 

* /(2) series sometimes, but rarely, arise, and orders of integration greater than 2 are almost 
unheard of. 
3 The random walk was simulated on a computer with y\ = 1 and N{0,1) innovations. 
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walk, which is the cumulative sum of the white noise changes, wanders aim­
lessly and persistently. 

Now let's consider a random walk with drift, 

y, = 8 4- y ,_ , + £ , 

e, ~ WN{0, t r 2 ) . 

Note that the r a n d o m walk with drift is effectively a model of t rend, because 
on average it grows each per iod by the drift, 5. Thus , the drift pa rameter plays 
the same role as the slope parameter in ou r earlier model of linear deter­
ministic t rend. We call the r a n d o m walk with drift (and of course also the 
random walk without drift) a model of stochastic trend, because the t rend is 
driven by stochastic shocks, in contrast to the deterministic trends considered 
in Chapter 5. 

Just as the r andom walk has n o particular level to which it re turns , so too 
the r andom walk with drift has n o particular t rend to which it re turns . If a 
shock lowers the value of a r a n d o m walk, for example, there is no tendency for 
it to necessarily rise again—we expect it to stay permanent ly lower. Similarly, if 
a shock moves the value of a r andom walk with drift below the currendy pro­
jec ted trend, there 's n o tendency for it to re tu rn—the t rend simply begins 
anew from the series' new location. Thus, shocks to r andom walks have com­
pletely p e r m a n e n t effects; a uni t shock forever moves the expected future 
path of the series by one unit , regardless of the presence of drift. 

For illustration, we show in Figure 13.2 a realization of a r andom walk with 
drift, in levels and differences. As before, the sample size is 300 and y\ = 1. T h e 
innovations are A r(0, 1) white noise, and the drift is 5 = 0.3 per period, so the 
differences are white noise with a mean of 0.3. It's hard to notice the nonzero 
mean in the difference, because the stochastic t rend in the level, which is the 
cumulative sum of N(0.S, 1) white noise, dominates the scale. 
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Let's study the propert ies of r a n d o m walks in greater detail . T h e r a n d o m 
walk is 

y, = >v_i + 6, 

e, ~ WA/(0, c r ) . 
Assuming the process started at some time 0 with value yo, we can write it as 

i 

> = > + £ E " 
Immediately, 

and 

In particular, note that 

E{y,) = ,v0 

var(y,) = to2. 

lim var(v,) = 0 0 , 

so that the variance grows continuously ra ther than converging to some finite 
uncondi t ional variance. 

Now consider the r andom walk with drift. T h e process is 

YR = 8 + y,-i + e, 

E, - WN(0, a 2 ) . 

Assuming the process started at some time 0 with value yo, we have 

v, = /8 + >'o + 5 Z e , . 
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Immediately 

E(yi) = > + *5 

and 

var(^) = tcr2. 

As with the simple random walk, then, the random walk with drift also has the 
property that 

lim var(y,) = oo . 
t-*oo 

Just as white noise is the simplest 7(0) process, the random walk is the sim­
plest f(\) process. And just as 1(0) processes with richer dynamics than white 
noise can be constructed by transforming white noise, so too can 1(1) 
processes with richer dynamics than the random walk be obtained by trans­
forming the random walk. We're led immediately to the ARIMA(/>, 1 , q) 
model, 

<D(L)( l -L)yv = c + 0 ( L ) e , 

or 

( 1 - L)y, = c4>-\\) + 4»-1(L)©(L)e f , 

where 

< & ( £ ) = 1 - <D,Z, 

0 ( L ) = 1 - 0 , L e 9 u , 

and all the roots of both lag operator polynomials are outside the unit circle. 
ARIMA stands for autoregressive integrated moving average. The ARIMA(/>, 1, q) 
process is just a stationary and invertible ARMA(/>, q) process in first differ­
ences. 

More generally, we can work with the ARIMA(p, d, q) model, 

or 

(1 - L)djt = r*" 1 (1) + 4>"' ( /„ )0 (L )E / , 

where 

<D(L) = 1 -<D,Z. QpL* 

0 ( 7 . ) = 1 - 0 | L 0 , 7 , ' , 

and all the roots of both lag operator polynomials are outside the unit circle. 
The ARIMA(jb, d, q) process is a stationary and invertible ARMA(/>, q) after dif­
ferencing d times. In practice, d = 0 and d = 1 are by far the most important 
cases. When d = 0, y is covariance stationary, or 1(0), with mean rO"' ( l ) . When 
d= 1, y is 7(1) with drift, or stochastic linear trend, of c4> - 1 (1) per period. 
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It turns out that more complicated ARlMA(/>, 1, q) processes behave like 
r andom walks in certain key respects. First, ARIMA(/>, 1, q) processes are ap­
propriately made stationary by differencing. Second, shocks to ARIMA(/?, 1, q) 
processes have pe rmanen t effects. 4 Third, the variance of an ARIMA(/», 1, q) 
process grows without bound as time progresses. T h e special propert ies of /(1) 
series, associated with the fact that innovations have pe rmanen t effects, have 
important implications for forecasting. In regard to point forecasting, the 
shock persistence means that optimal forecasts, even at very long horizons, 
don 't completely revert to a mean or a trend. And in regard to interval and den­
sity forecasting, the fact that the variance of an /(1) process approaches infinity 
as time progresses means that the uncertainty associated with our forecasts, 
which translates into the width of interval forecasts and the spread of density 
forecasts, increases without bound as the forecast horizon grows. 1 

Let's see how all this works in the context of a simple r a n d o m walk, 
which is an AR(1) process with a unit coefficient. Recall that for the AR(1) 
process, 

y, = ipy,-i + £ / 

E, - WA r(0, rr*) , 

the optimal forecast is 

Vr+ft./ = 9*>T -

Thus, in the random walk case of tp = 1, the optimal forecast is simply the cur­
rent value, regardless of horizon. This makes clear the way that the perma­
nence of shocks to r andom walk processes affects forecasts-. Any shock that 
moves the series up or down today also moves the optimal forecast u p or down, 
at all horizons. In particular, the effects of shocks don ' t wash out as the fore­
cast horizon lengthens, because the series does not revert to a mean . 

In Figure 13.3, we illustrate the important differences in forecasts from de­
terministic t rend and stochastic t rend models for U.S. GNP per capita. 6 We 
show GNP per capita 1869-1933, followed by the forecasts from the best-fitting 
deterministic and stochastic t rend models, 1934—1993, made in 1933. T h e 
best-fitting deterministic t rend model is an AR(2) in levels with linear t rend, 
and the best-fitting stochastic t rend model is an AR(1) in differences (i.e., an 
ARIMA(1, 1,0)) with a drift.' Because 1932 and 1933 were years of severe re­
cession, the forecasts are made from a position well below trend. T h e forecast 
from the deterministic t rend model reverts to t rend quickly, in sharp contrast 
to that from the stochastic trend model, which remains permanent ly lower. As 

4 In contrast to random walks, however, the long-run effect of a unit shock to an ARIMA(/>. 1, q) 
process may be greater or les* than unitv, depending on the parameters o f the process. 
'This is true even if we ignore parameter estimation uncertainty. 

h The GNP per capita data are in I' tyarithms. See Diebold and Senhadji (1996) for details. 
7 Note well that the T W O dashed lair* are rwu different point extrapolation forecasts, not an inter­
val forecast. 
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it happens , the forecast from the deterministic t rend model turns out to 
be distinctly bet ter in this case, as shown in Figure 13.4, which includes the 
realization. 

Now let's consider interval and density forecasts from 1(1) models. Again, 
it's instructive to consider a simple r andom walk. Recall that the e r ro r associ­
ated with the optimal forecast of an AR(1) process is 

*T+h,T = (yT+h - yr+h.r) = £r+* + <p£r+A-i H + <P* _ , er+i , 

with variance 
h-l 

2 2 V 2i 

http://-3.il
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Thus, in the r andom walk case, the e r ror is the sum of h white noise innova­
tions, 

/ = ( ) 

with variance ha~. The forecast e r ror variance is propor t ional to h and there­
fore grows without b o u n d as h grows. An /*-step-ahead 9 5 % interval forecast 
for any future horizon is then y y-± 1 . 9 6 C J \fh, and an /hstep-ahead density 
forecast is A T (y r , her"). 

Thus far, we've explicitly illustrated the construction of point, interval, 
and density forecasts for a simple r andom walk. Forecasts from more compli­
cated 7(1) models are constructed similarly. Point forecasts of levels of 
ARIMA(/>, 1, q) processes, for example, are obtained by recognizing that 
ARIMA processes are ARMA processes in differences, and we know how to 
forecast ARMA processes. Thus, we forecast the changes, cumulate the fore­
casts of changes, and add them to the current level, yielding 

yr+h.T = yr+ (Av)Tvi.r H 4- (A>)r+*.T. 

I I I I I I I I 

2. Unit Rants: Estimation and Testing 

LEAST-SQUARES REGRESSION WITH UNIT ROOTS 

T h e propert ies of least-squares estimators in models with unit roots are of in­
terest to us, because the\ have implications for forecasting. We'll use a r andom 
walk for illustration, but the results carry over to general ARIMA(//, 1, q) 
processes. Suppose thai v is a random walk, so that 

y, = y,_, + e , , 

but we don ' t know that the autoregressive coefficient is 1. so we estimate the 
AR(1) model , 

y. = vp v,_i + e , . 

Two key and offsetting propert ies of the least squares estimator emerge: 
superconsistencv and bias. 

First we consider superconsistencv. In the unit root case of <p = 1, the dif­
ference between i f , and 1 vanishes quickly as the sample size (T) grows: in fact, 
it shrinks like ~. Thus . — li converges to a nondegenera te random 
variable. In contrast, in the covariance stationary case of |<p| < 1, the difference 
between 9! s and ^ shrink> more slowh. like -U, so that v / r7'((fL S — tp) converges 
to a nondegenera te random variable. We call the extrafast convergence in the 
unit root case sufjerconuutt we sav that the least-squares estimator of a unit 
root is superconsistem. 
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Now we consider bias. It can be shown that the least-squares estimator, tp L S , 
is biased downward, so that if the trite value of tp is tp*, the expected value of 
(PLS is less than ip*. 8 O the r things the same, the larger is the t rue value of <p, the 
larger the bias, so the bias is worst in the unit root case. T h e bias is also larger 
if an intercept is included in the regression and larger still if a t rend is in­
cluded. The bias vanishes as the sample size grows, as the estimate converges 
to the t rue populat ion value, but the bias can be sizeable in samples of the size 
that concern us. 

Superconsistency and bias have offsetting effects as regards forecasting. 
Superconsistency is helpful; it means that the sampling uncertainty in our 
parameter estimates vanishes unusually quickly as sample size grows. Bias, in 
contrast, is harmful, because badly biased parameter estimates can translate 
into poor forecasts. The superconsistency associated with unit roots guaran­
tees that bias vanishes quickly as sample size grows, but it may nevertheless be 
highly relevant in small samples. 

EFFECTS OF UNIT ROOTS ON THE SAMPLE 
AUTOCORRELATION AND PARTIAL 
AUTOCORRELATION FUNCTIONS 

If a series has a unit root, its autocorrela t ion function isn't well defined in 
populat ion, because its variance is infinite. But the sample autocorrela t ion 
function can of course be mechanically computed in the usual wav, because 
the compute r software doesn ' t know or care whether the data being fed into 
it have a unit root. The sample autocorrelat ion function will tend to d a m p ex­
tremely slowly; loosely speaking, we say that it fails to d a m p . T h e reason is 
that, because a r a n d o m walk fails to revert to any populat ion mean, any given 
sample path will t end to wander above and below its sample mean for long 
periods of time, leading to very large positive sample autocorrelat ions, even 
at long displacements. T h e sample partial autocorrelat ion function of a unit 
root process, in contrast, will d a m p quickly: It will tend to be very large and 
close to o n e at displacement 1 bu t will tend to be smaller and decay quickly 
thereafter. 

If the propert ies of the sample autocorrelat ions and partial autocorrela­
tions of unit root processes appear ra ther exotic, the propert ies of the sample 
autocorrelat ions and partial autocorrelat ions of differences of unit root 
processes are much more familiar. That ' s because the first difference of an 
/ ( I ) process, by definition, is covariance stationary and invertible. 

We illustrate the p roper t i es of sample au tocorre la t ions and partial auto­
corre la t ions of levels and differences of uni t root processes in Figures 13.5 
and 13.6. Figure 13.5 shows the cor re logram of ou r s imulated r a n d o m walk. 

8 The bias in the least-squares estimator in the unit root and near-unit root cases was studied by 
Dickey (1976) and Fuller (1976), and it is sometimes called the Dickey-Fuller teas. 
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T h e sample au tocor re la t ions fail to d a m p , a n d the sample partial autocor­
relat ion is h u g e at d isp lacement 1, bu t tiny thereafter. Figure 13.6 shows 
the cor re logram of the first difference of the r a n d o m walk. All the sample 
au tocor re la t ions and partial au tocor re la t ions are insignificantly different 
from 0, as expec ted , because the first difference of a r a n d o m walk is white 
noise. 

UNIT ROOT TESTS 

In light of the special propert ies of series with unit roots, it's sometimes of in­
terest to test for their presence, with an eye toward the desirability of imposing 
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them, by differencing the data, if they seem to be present. Let's start with the 
simple AR( 1) process, 

yt — <py,-i + E, 

We can regress ^ o n yt-i, and then use the standard Hest for testing <p = 1, 

9 - 1 

s I s 

\ 1=2 

where s is the standard error of the regression. Note that the T-statistic is not 
the ^statistic computed automatically by regression packages; the standard 
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^-statistic is for the null of a 0 coefficient, whereas T is the ^-statistic for a unit 
coefficient. A simple trick, however, coaxes standard software into print ing T 
automatically. Simply rewrite the first-order autoregression as 

y,-y,-\ = (<p - 1 >>v-I + e, • 

Thus, T is the usual ^statistic in a regression of the first difference of yon the first 
lag of y. 

A key result is that, in the unit root case, T does not have the / distribution. 
Instead it has a special distribution now called the Dickey-Fuller distribution, 
named for two statisticians who studied it extensively in the 1970s and 1980s. 
Fuller (1976) presents tables of the percentage points of the disuibut ion of f, 
which we'll call the Dickey-Fuller statistic, u n d e r the null hypothesis of a unit 
root. Because we're only allowing for roots on or outside the unit circle, a one­
sided test is appropria te . 

T h u s far, we've shown how to test the null hypothesis of a r a n d o m walk with 
n o drift against the alternative of a zero-mean, covariance-stationary AR(1). 
Now we allow for a nonzero mean, p., under the alternative hypothesis, which 
is of potential importance because business and economic data can rarely be 
assumed to have zero mean. Under the alternative hypothesis, the process 
becomes a covariance stationary AR( 1) process in deviations from the mean, 

(y, - u.) = tp(y,_i - u,) + E/ , 

which we can rewrite as 

y, = a + <py,_i + E , , 

where a = | i ( I — cp). If we knew p,, we could simply center the data and pro­
ceed as before. In practice, of course, p must be estimated along with the 
o ther parameters . Although a vanishes tinder the unit root null hypothesis of 
tp = 1, it is nevertheless present unde r the alternative hypothesis, and so we in­
clude an intercept in the regression. The distribution of the corresponding 
Dickey-Fuller statistic, T ^ , has been tabulated unde r the null hypothesis of 
(a, tp) = (0, 1); tables appear in Fuller (1976). 

Finally, let's allow for deterministic linear trend under the alternative 
hypothesis, by writing the ARC 1) in deviations from a linear t rend, 

(y, - a - ft TIME,) = ip(vr-i - a - £TIME,_,) + £ / , 

o r 

y, = o n - PTIME, + <p}<,_, + E, , 

where a = fl(l - <p) -f- by and (3 = £(1 — <p). U n d e r the unit root hypothesis 
that cp = 1, we have a random walk with drift, 

v, = b + y,_i + £, , 

which is a stochastic trend, but unde r the deterministic t rend alternative hy­
pothesis, both the intercept and the t rend enter, so they must be included in 
the regression. The r andom walk with drift is a null hypothesis that frequently 
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arises in economic applications; stationary deviations from linear trend are a 
natural alternative. The distribution of the Dickey-Fuller statistic T t , which 
allows for linear trend under the alternative hypothesis, has been tabulated 
under the unit root null hypothesis by Fuller (1976). 

Now we generalize the test to allow for higher-order autoregressive dy­
namics. Consider the AR(p) process 

which we rewrite as 

y, = pj,y,_i + ^ P,(>/-,+i - } / - , ) + £, , 

p P 

where p > 2, pi = — £ <p7-, and p, = 2J <P,> ' = 2, . . . , p. If there is a unit 
7=1 7=1 

root, then pj = 1, and y is simply an AR( p — 1) in first differences. The Dickey-
Fuller statistic for the null hypothesis of pi = 1 has the same asymptotic 
distribution a s f . Thus, the results for the AR(1) process generalize (asymp­
totically) in a straightforward manner to higher-order processes. 

To allow for a nonzero mean in the AR{p) case, write 
(>/ - n) + ̂  % (y,-i - P ) = E, , 

or 

y, = a + p1_y<_, + ]|H p, (y,-i+i ->,.,)+£, , 

where a = p (1 -I- £ <p;), and the other parameters are as noted earlier. Under 

the null hypothesis of a unit root, the intercept vanishes, because in that case 

^ <Py = — 1. The distribution of the Dickey-Fuller statistic for testing pi = 1 in 

this regression is asymptotically identical to that ofT^. 
Finally, to allow for linear trend under the alternative hypothesis, write 

p 

(yt-a-b-TIME,) + £ <p ;(>v, - a - b • TIME,.,) = e , , 

which we rewrite as 
P 

y, = ki + k2 TIME, + piy , . , -I- ^ P/0><-/+i _ yi-i) + £ / » 

where 

and 
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P 
Under the null hypothesis, k\ = — i ' < p , and k» — 0. T h e Dickey-Fuller 

/=i 
statistic for the hypothesis tha tp i = 1 has the T . distribution asymptotically. 

Now we consider general .ARMA representat ions. We've seen that the orig­
inal Dickey-Fuller test for a unit root in AR(1) models is easily generalized to 
test for a unit root in the AR(/?) case, p < oo; we simply augment the test re­
gression with lagged first differences, which is called an augmented Dickey-
Fuller test or augmented Dickey-Fuller regression. Matters are more complex 
in the ARMA(/>, q) case, however, because the corresponding autoregression is 
of infinite order. A n u m b e r of tests have been suggested, and the most popu­
lar is to approximate the infinite autoregression with a finite-order augmented 
Dickey-Fuller regression. We let the n u m b e r of augmentat ion lags increase 
with the sample size, but at a slower rate. Hall (1994) shows that, under certain 
conditions, the asymptotic null distribution of the Dickey-Fuller statistic with 
augmentat ion lag order selected by SIC is the same as if the t rue o rder were 
known, so that the SIC provides a useful guide to augmenta t ion lag order se­
lection in Dickey-Fuller regressions. Ng and Perron (1995), however, a rgue 
that s tandard /-testing provides more reliable inference. Additional research is 
needed , but it does appear that, unlike when selecting lag orders for forecast­
ing models, it may be bet ter to use less harsh degrees-of-freedom penalties, 
such as those associated with Resting or the AIC, when selecting augmenta­
tion lag orders in Dickey-Fuller regressions. 

Depending on whether a zero mean, a nonzero mean, or a linear t rend is 
allowed under the alternative hypothesis, we write ei ther 

y, = pi>vi + Pi (yi-,+i - yi-j) + e< 

y, = a -+- p i> , - i + ^2 Pj (V/-/+1 - y,-j) + e , 

/=* 

or 

y, = k\ + *. 2TIME, + p[y,-\ + P> ~ Jt-i) + e<« 

where k — 1 augmenta t ion lags have been inc luded. T h e Dickey-Fuller statis­
tics on y,_i con t inue to have the T , T m , and T t asymptotic distr ibutions u n d e r 
the null hypothesis of a unit root . For selecting the n u m b e r of augmenta t ion 
lags, k — 1, we can use the SIC or AIC. as well as the /-statistics on the various 
lags of Ay, which have the s tandard normal distr ibution in large samples, re­
gardless of whether the unit root hypothesis is t rue or false. 

New tests, with better power than the Dickey-Fuller tests in certain situa­
tions, have been proposed recently. 9 But power and size problems will always 

** See Elliott. Rothenberg, and Stock (1996); Dickey and Gonzalez-Farias (1992V, and the compar­
isons in Pantnla, Gonzalez-Farias, and Fuller (1994). 
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plague uni t root tests—power problems, because the relevant alternative hy­
potheses are typically very close to the null hypothesis; and size problems, be­
cause we should include infinitely many augmentat ion lags in principle bu t we 
can' t in practice. 

Thus , a l though uni t root tests are sometimes useful, don ' t be fooled into 
thinking they're the e n d of the story regarding the decision of whether to 
specif) models in levels or differences. For example, the fact that we can ' t re­
ject a unit root doesn ' t necessarily mean that we should impose it—the power 
of unit root tests against alternative hypotheses near the null hypothesis, 
which are the relevant alternatives, is likely to be low. At the same time, it may 
sometimes be desirable to impose a unit root even when the t rue root is less 
than 1, if the t rue root is nevertheless very close to 1, because the Dickey-Fuller 
bias plagues estimation in levels. We need to use introspection and theory, in 
addit ion to formal tests, to guide the difficult decision of whether to impose 
unit roots, and we need to compare the forecasting performance of different 
models with and without unit roots imposed. 

In certain respects, the most impor tant part of unit root theory for fore­
casting concerns estimation, not testing. It's important for forecasters to un­
derstand the effects of unit roots on consistency and small-sample bias. Such 
unders tanding on the one hand leads to the insight that at least asymptotically 
we're probably better off estimating forecasting models in levels with trends 
included, because then we'll get an accurate approximation to the dynamics 
in the data regardless of the t rue state of the world, unit root or no unit root. 
If there 's no unit root, then of course it's desirable to work in levels; if there is 
a unit root, then the estimated largest root will converge appropriately to 
unity, and at a fast rate. O n the other hand, differencing is appropria te only 
in the unit root case, and inappropria te differencing can be harmful, even 
asymptotically. 

I 1 I I M 

3. Application: Modeling and Forecasting the 
Yen/Dollar Exchange Rate 
Let's apply and illustrate what we've l ea rned by model ing and forecasting the 
Japanese yen /U .S . dollar (JPY/USD) exchange rate. For convenience, we 
call the yen /do l l a r series y, the log level In y, and the change in the log level 
Alny. W'e have end-of-month data from 1973.01 th rough 1996.07; we plot In v 
in the top panel of Figure 13.7 and A l n y in the bot tom p a n e l . 1 0 Note that In y 
looks very highly persistent; pe rhaps it has a unit root . Conversely, Alny looks 

1 0 Throughout, we work with the log of the exchange rate, because the change in the log has the 
convenient interpretation of approximate percentage change. Thus, when we refer to the level of 
the exchange rate, we mean the log of the level (In y), and when we refer to the change, we mean 
the change of the log exchange rate (A In y). 



thoroughly stationary and in fact ra ther close to white noise. Figure 13.8, 
which shows the corre logram for Alny, and Figure 13.9, which shows the cor­
re logram for the A In y, confirm the impression we gleaned from the plots. 
T h e sample autocorre la t ions of In y are all very large and fail to d a m p , and 
the first sample partial autocorre la t ion is huge while all the o thers are in­
significantly different from 0. T h e corre logram of A In y, however, looks very 
different. Both the sample autocorre la t ion and partial autocorre la t ion func­
tions d a m p quickly; in fact, beyond displacement 1, they ' re all insignificantly 
different from 0. All of this suggests that In y is / (1 ) . 

Now we fit forecasting models. We base all analysis and modeling on In y, 
1973.01-1994.12, and we reserve 1995.01-1996.07 for out-of-sample forecast­
ing. We begin by fitting deterministic t rend models to In y, we regress In y o n an 
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intercept and a t ime t rend, allowing for u p to ARMA(3, 3) dynamics in the 
disturbances. In Tables 13.1 and 13.2 we show the AIC and SIC values for all 
the ARMA(/J, q) combinations. The AIC selects an ARMA(3,1) model , while the 
SIC selects an AR(2). We proceed with the more parsimonious model selected 
by the SIC. The estimation results appear in Table 13.3 and the residual plot in 
Figure 13.10; note in particular that the dominan t inverse root is very close to 1 
(0.96), while the second inverse root is positive but much smaller (0.35). 

Out-of-sample forecasts appear in Figures 13.11-13.13. Figure 13.11 
shows the history, 1990.01-1994.12, and point and interval forecasts, 
1995.01-1996.07. Although the estimated highly persistent dynamics imply 
very slow reversion to t rend, it happens that the end-of-sample values of lny 
in 1994 are very close to the estimated t rend. Thus , to a good approximat ion, 
the forecast simply extrapolates the fitted t rend. In Figure 13.12, we show the 
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MA Order T A B L E 13 i 
LogJPY/USD Rate, 

0 1 2 3 Levels: AIC Values, 
0 -5.171 -5.953 -6.428 Various ARMA 

AR Order 1 -7.171 -7.300 -7.293 -7.287 M o d d s 

2 -7.319 -7.314 -7.320 -7.317 
3 -7.322 -7.323 -7.316 -7.308 
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T A B L E > 3 2 MA Order 
LogJPY/USD Rate, 
Levels: SIC Values, 0 1 2 3 
Various ARMA 0 -5.130 -5.899 -6.360 
Models AR Order 1 -7.131 -7.211 -7.225 -7.205 

2 -7.265 -7.246 -7.238 -7.221 
3 -7.253 -7.241 -7.220 -7.199 

history together with a very long-horizon forecast ( through 2020.12), in 
o rde r to illustrate the fact that the confidence intervals eventually flatten at 
plus or minus two s tandard errors . Finally, Figure 13.13 displays the history 
and forecast together with the realization. Most of the realization is inside the 
9 5 % confidence intervals. 

In light of the suggestive nature of the correlograms, we now perform a for­
mal unit root test, with trend allowed under the alternative hypothesis. Table 13.4 
presents the results with three augmentation lags. 1 1 There 's no evidence whatso­
ever against the unit root; thus, we consider modeling A In y. We regress A lny 
on an intercept and allow for up to ARMA(3, 3) dynamics in the disturbance. 

T A B L E 1 3 3 
Log Exchange 
Rate, Best-Fitting 
Deterministic Trend 
Model 

IS // Dependent variable is LYEN. 
Sample (adjusted): 1973:03 1994:12 
Included observations: 262 after adjusting endpoints 
Convergence achieved after 3 iterations 

Variable Coefficient Std. Error f-Statistic Prob. 

C 
TIME 
AR(1) 
AR(2) 

R2 

Adjusted i? 2 

SE of regression 
Sum squared resid. 
Log likelihood 
Durbin-Watson slat 

Inverted AR roots 

5.904705 
-0.004732 

1.305829 
-0.334210 

0.136665 
0.000781 
0.057587 
0.057656 

43.20570 
-6.057722 

22.67561 
-5.796676 

0.994468 Mean dependent var. 
0.994404 SD dependent var. 
0.025551 Akaike info criterion 
0.168435 Schwarz criterion 
591.0291 F-statistic 
1.964687 Prob(/r-statisdc) 

.96 .35 

0.0000 
0.0000 
0.0000 
o.oooo 

5.253984 
0.341563 

-7.319015 
-7.264536 
15461.07 
0.000000 

1 1 We considered a variety of augmentation lag orders, and the results were robust—the unit root 
hypothesis can't be rejected. For the record, the SIC selected one augmentation lag, while the AIC 
and ^testing selected three augmentation lags. 
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The AIC values appear in Table 13.5 and the SIC values in Table 13.6. AIC selects 
an ARMA(3, 2), and SIC selects an AR(1). Note that the models for In y and 
A In v selected by the SIC are consistent with each other under the unit root 
hypothesis—an AR(2) with a unit root in levels is equivalent to an AR(1) in 
differences—in contrast to the models selected by the AIC. For this reason and of 
course for the usual parsimony considerations, we proceed with the AR(1) se­
lected by SIC. We show the regression results in Table 13.7 and Figure 13.14; note 
the small but nevertheless significant coefficient of 0.32. 1 2 

4 2 ' ' " " I ' I I I I I ' J l l I I I I I I • I I I H t I I I I I I H I I I I I I I I I I 1 

1990 1991 1992 1993 1994 1995 1996 

Time 

The ARMA(3, 2) selected bv the AIC is in fact very close to an AR( 1). because the two estimated 
MA roots nearly cancel with two of the estimated AR roots, which would leave an AR(1) . 
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Out-of-sample forecasting results appear in Figures 13.15-13.17. Fig­
ure 13.15 shows the history and forecast. T h e forecast looks very similar—in 
fact, almost identical—to the forecast from the deterministic t rend model ex­
amined earlier. That ' s because the stochastic t rend and deterministic t rend 
models are in fact extremely close to one ano the r in this case; even when we 
don ' t impose a unit root, we get an estimated dominant root that 's very close 
to unity. In Figure 13.16 we show the history and a very long-horizon forecast. 
T h e long-horizon forecast reveals one minor and o n e major difference be­
tween the forecasts from the deterministic t rend and stochastic t rend models. 
T h e minor difference is that, by the time we're out to 2010, the point forecast 
from the deterministic t rend model is a little lower, reflecting the fact that the 
estimated t rend slope is a bit more negative for the deterministic t rend model 
than for the stochastic t rend model . Statistically speaking, however, the 
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Augmented Dickey-Fuller test statistic — 2.498863 1% Critical Value -3.9966 
5% Critical Value -3.4284 

10% Critical Value -3.1373 

Augmented Dickev-Fuller Test Equation 
L-S / / Dependent variable is /J(LYEN). 
Sample (adjusted): 1973:05 1994:12 
Included observations: 260 after adjusting endpoints 

Variable Coefficient Std. Error r-Statistic Prob. 

LYEN(-l) -0.029423 0.011775 -2.498863 0-0131 
D(LYEN(-l)) 0.362319 0.061785 5.864226 0.0000 
D(LYEN(-2)) -0.114269 0.064897 -1.760781 0.0795 
D(LYEN( -3 ) ) 0.118386 0.061020 1.940116 0.0535 
C 0.170875 0.068474 2.495486 0.0132 
@TREND( 1973:01) -0.000139 5.27E-05 -2.639758 0.0088 

R* 0.142362 Mean dependent var. -0.003749 
Adjusted R2 0.125479 SD dependent var. 0.027103 
SE of regression 0.025345 Akaike info criterion -7.327517 
Sum squared resid. 0.163166 Schwarz criterion -7.245348 
Log likelihood 589.6532 F-statistic 8.432417 
Durbin-Watson stat. 2.010829 ProM/Hitatistic) 0.000000 

T A B L E 1 3 A 
LogJPY/USD 
Exchange Rate 
Augmented 
Dickey-Fuller Unit 
Root Test 

point forecasts are indistinguishable. T h e major difference concerns the in­
terval forecasts: The interval forecasts from the stochastic t rend model widen 
continuously as the horizon lengthens, whereas the interval forecasts from the 
deterministic t rend model don ' t . Finally, in Figure 13.17 we show the history 
and forecast together with the realization 1995.01-1996.07. 

Comparing the AR(2) with trend in levels (the levels model selected by the 
SIC) and the AR( 1) in differences (the differences model selected by the SIC), 
it appears that the differences model is favored in that it has a lower SIC value. 
The AR(1) in differences fits only slightly worse than the AR(2) in levels— 
recall that the AR(2) in levels had a near unit root—and saves 1 degree of 
f r e e d o m . n Moreover, economic and financial considerations suggest that ex­
change rates should be close to r andom walks, because if the change were pre­
dictable, one could make a lot of money with very little effort, and the very act 
of doing so would eliminate the oppor tun i ty . H 

r < A word of caution: In a sense, die AR( 1) model in differences mav not save the degree of free­
dom, insofar as die decision to impose a unit root was itself based on an earlier estimation (the 
augmented Dickev-Fuller test i. which is not acknowledged when computing the SIC for the AR( 1) 
in differences. 

" As for the (rend ldrill), it ma\ help as a local approximation, but be wan' of too long an ex­
trapolation. See the E.\rrri»e«. Problems, and Complements at the end of this chapter. 
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T A B L E 13.5 MA Order 
LogJPY/USD Rate, 
Changes: AIC 0 1 2 3 
Values, Various 0 -7.298 -7.290 -7.283 
ARMA Models AR Order 1 -7.308 -7.307 -7.307 -7.302 

2 -7.312 -7.314 -7.307 -7.299 
3 -7.316 -7.309 -7.340 -7.336 

T A B L E 13 B MA Order 
LogJPY/USD Rate, 
Changes: SIC 0 1 2 3 
Values, Various 0 -7.270 -7.249 -7.228 
ARMA Models AR Order 1 -7.281 -7.266 -7.252 -7.234 

2 -7.271 -7.259 -7.238 -7.217 
3 -7.261 -7.241 -7.258 -7.240 

T A B L E 13.7 
LogJPY/USD 
Exchange Rate, 
Best-Fitting 
Stochastic Trend 
Model 

LS / / Dependent variable is DLYEN. 
Sample (adjusted): 1973:03 1994:12 
Included observations: 262 after adjusting endpoints 
Convergence achieved after 3 iterations 

Variable Coefficient Std. Error f-Stadstic Prob. 

C 0.003697 0.002350 -1.573440 0.1168 
AR(1) 0.321870 0.057767 5.571863 0.0000 

R* 0.106669 Mean dependent var. -0.003888 
Adjusted R* 0.103233 SD dependent var. 0.027227 
SE of regression 0.025784 Akaike info criterion -7.308418 
Sum squared resid. 0.172848 Schwarz criterion -7.281179 
Log likelihood 587.6409 /^statistic 31.04566 
Durbin-Watson stat. 1.948933 Prob(/-statistic) 0.000000 

Inverted AR roots .32 



Unit Roots, Stochastic Trends. AR1MA Forecasting Models, and Smoothing 311 

f i g u r e i ? ( 6 . LogJPY/L TSD Exchange Rate, Best-Fitting Stochastic Trend Model 
Residual Plot 

Ironically enough , in spite of the arguments in favor of the stochastic-
t rend model for In v, the deterministic t rend model does slightly better in out-
of-sample forecasting on this particular dataset. The mean-squared forecast 
e r ror from the deterministic t rend model is 0.0107, while that from the 
stochastic t rend model is 0.0109. T h e difference, however, is likely statistically 
insignificant. 
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4. Smoothing 
We b u m p e d into the idea of time series smoothing early on, when we intro­
duced simple moving-average smoothers as ways of estimating t rend. 1 ° Now we 
int roduce additional smoothing techniques and show how they can be used to 
p roduce forecasts. 

1 5 See the Exercises, Problems, and Complements of Chapter h. 
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Smoothing techniques, as traditionally implemented, have a different fla­
vor than the modern model-based methods that we've used in this book. 
Smoothing techniques, for example, don ' t require "best-fitting models," and 
they don ' t generallv produce "optimal forecasts." Rather, they're simply a way to 
tell a computer to draw a smooth line through data, just as we'd do with a pen­
cil, and to extrapolate the smooth line in a reasonable and replicable way. 

When using smoothing techniques, we make n o a t tempt to find the model 
that best fits the data: rather, we force a prespecified model on the data. Some 
academics turn their nose at smoothing techniques for that reason, bu t such 
behavior reflects a shallow unders tanding of key aspects of applied forecast­
ing. Smoothing techniques have been used productively for many years—and 
for good reason. Thev ' re most useful in situations when model-based methods 
can' t , or shouldn ' t , be used. First, available samples of data are sometimes very 
small. Suppose, for example, that we must p roduce a forecast based on a sam­
ple of historical data containing only four observations. This scenario sounds 
extreme, and it is, but such scenarios arise occasionally in certain impor tant 
applications, as when forecasting the sales of a newly introduced product . In 
such cases, available degrees of freedom are so limited as to render any esti­
mated model of dubious value. Smoothing techniques, in contrast, require n o 
estimation, or minimal estimation. 

Second, the forecasting task is sometimes immense. Suppose, for example, 
that each week we must forecast the prices of 10,000 inputs to a manufactur­
ing process. Again, such situations are extreme, but they do occur in practice 
(e.g., think of how many parts there are in a large airplane) . In such situations, 
even if historical data are plentiful (and, of course, they might not b e ) , there 
is simply no way to provide the tender loving care required for estimation and 
main tenance of 10,000 different forecasting models. Smoothing techniques, 
in contrast, require little at tention. They ' re one example of what are some­
times called "automatic" forecasting methods and are often useful for fore­
casting voluminous, high-frequency data. 

Finally, smoothing techniques do p roduce optimal forecasts u n d e r certain 
conditions, which turn out to be intimately related to the presence of uni t 
roots in the series being forecast. That ' s why we waited until now to in t roduce 
them. Moreover, fancier approaches produce optimal forecasts only unde r 
certain conditions as well, such as correct specification of the forecasting 
model . As we've stressed throughout , all our models are approximations, and 
all are surely false. Anv procedure with a successful track record in practice is 
worthy of serious consideration, and smoothing techniques d o have successful 
track records in the situations sketched here . 

MOVING AVERAGE SMOOTHING, REVISITED 

As a precursor to the more sophisticated smoothing techniques that we'll soon 
introduce, recall the workings of simple moving average smoothers. Denote 
the original data by | > i | / _ j and the smoothed data by {>,)• T h e n the two-sided 
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m 

moving average is y, = (2m 4- l ) " 1 ]T y,-lt the one-sided moving average is 
m t=—m 

¥ / = (m + £ V/-«. a n d the one-sided weighted moving average is 

y, = Y w,y,_,. The standard one-sided moving average corresponds to a one-

sided weighted moving average with all weights equal to (m + 1 ) _ 1 . T h e user 
must choose the smoothing parameter, m: the larger m is, the more smoothing 
is done . 

One-sided weighted moving averages turn out to be very useful in practice. 
T h e one-sided structure means that at any time U we need only cur ren t and 
past data for computat ion of the time-/ smoothed value, which means that it 
can be implemented in real time. The weighting, moreover, enables flexibility 
in the way that we discount the past. Often, for example, we want to discount 
the distant past more heavily than the recent past. Exponential smoothing, to 
which we now turn, is a particularly useful and convenient way of implement­
ing such a moving average. 

EXPONENTIAL SMOOTHING 

Exponential smoothing, also called simple exponential smoothing or single 
exponential smoothing, is what's called an exponentially weighted moving 
average, for reasons that will be apparent soon. The basic framework is simple. 
Imagine that a series Co is a r andom walk, 

= C o . / - 1 -4- TV 

T V ~ WN(0,cj';) , 
in which case the level of en wanders randomly up and down, and the best fore­
cast of any future value is simply the cur ren t value. Suppose, however, that we 
don ' t see CQ\ instead, we see y, which is c 0 plus white no i se , 1 6 

yt = clh,+z,, 

where £ is uncorre la ted with r) at all leads and lags. T h e n ou r optimal forecast 
of any future y is just our optimal forecast of future ro, which is cur ren t CQ. plus 
our optimal forecast of future £, which is 0. T h e problem, of course, is that we 
don ' t know cur ren t r(>, the cur ren t "local level." We d o know cur ren t a n d past 
y, however, which should contain information about cur ren t ro. WTien the 
data-generating process is as written here , exponent ia l smoothing constructs 
the optimal estimate of CQ—and hence the optimal forecast of any future value 
of y—on the basis of current and past y. Wlien the data-generating process is 
not as written here , the exponential smoothing forecast may not be optimal, 
but recent work suggests that exponential smoothing remains optimal or 
nearly optimal u n d e r surprisingly broad c i rcumstances . 1 7 

As is common , we state the exponent ia l smoothing procedure as an algo­
r i thm for converting the observed series, {yi}^, into a smoothed series, 
, r ' We can think of the added white noise as measurement error. 
1 7 See. in particular. Chatfield et al. (2001). 
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and forecasts, yT+n.r' 

1. Initialize at t = 1: Yi = y\. 
2. Update: y, = ay, + (1 - ot)y,_,, t = 2 , . . . , 7 . 
3. Forecast: vr+*. / = yr> 

Referring to the level of CQ, we call y, the estimate of the level at t ime L T h e 
smoothing parameter a is in the unit interval, a € [0, 1]. T h e smaller is a the 
smoother the estimated level. As a approaches 0, the smoothed series ap­
proaches constancy, and as a approaches 1, die smoothed series approaches 
point-by-point interpolat ion. Typically, the more observations we have per 
unit of calendar time, the more smoothing we need; thus, we'd smooth weekly 
data (52 observations per year) more than quarterly data (4 observations per 
year) . The re is n o substitute, however, for a trial-and-error approach involving 
a variety of values of the smoothing parameter. 

It's not obvious at first that the algorithm we just described delivers a one­
sided moving average with exponentially declining weights. To convince your­
self, start with the basic recursion, 

y, =ay, + (1 -a)y,-i , 

and substitute backward for y, which yields 
t-\ 

y , = Ylwiy>-i' 
where 

Wj = ot(l — a)}. 

Suppose, for example, that a = 0.5. T h e n 

w» = 0.5(1 - 0 . 5 ) ° = 0.5 

u>, = 0.5(1 - 0.5) = 0.25 

w<2 = 0.5(1 - 0 . 5 ) 2 = 0.125 , 

and so forth. Thus, moving average weights decline exponentially, as claimed. 
Notice that exponential smoothing has a recursive structure, which can be 

very convenient when data are voluminous. At any time U the new time-< esti­
mate of the level, yt, is a function only of the previously computed estimate, 
y,-i, and the new observation, y,. Thus , there 's no need to resmooth the en­
tire dataset as new data arrive. 

HOLT-WINTERS SMOOTHING 

Now imagine that we have not only a slowly evolving local level but also a t rend 
with a slowly evolving local slope, 

\i = <o,f + f i . i TIME f + E( 

C , U T = Co , / - | + T V 
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where all the disturbances are orthogonal at all leads and lags. Then the 
optimal smoothing algorithm, named Holt-Winters smoothing after the re­
searchers who worked it out in the 1950s and 1960s, is 

1. Initialize at * = 2: 
y-i = >2 

F 2 = y 2 - y , . 

2. Update: 

y, = cry, + (1 - a)(j«-i + Ft-\), 0 < a < l 

F, = 0 t f , - 5 , _ 1 ) + ( 1 - P ) F I _ „ O < 0 < 1 

1 = 3 . 4 , . . . , T. 

3. Forecast: 
yr+h,r = yr + hFT. 

y, is the estimated, or smoothed, level at time /, and Ft is the estimated slope 
at time /. The parameter a controls smoothing of the level, and 0 
controls smoothing of the slope. The fc-step-ahead forecast simply takes the 
estimated level at time Tand augments it with h times the estimated slope at 
time T. 

Again, note that although we've displayed the data-generating process for 
which Holt-Winters smoothing produces optimal forecasts, when we apply 
Holt-Winters, we don't assume that the data are actually generated by that 
process. We hope, however, that the actual data-generating process is close to 
the one for which Holt-Winters is optimal, in which case the Holt-Winters 
forecasts may be close to optimal. 

HOLT-WLNTERS SMOOTHING TO ALLOW FOR 
SEASONALITY 

We can apply Holt-Winters smoothing with seasonality with period s. The algo­
rithm becomes 

1. Initialize at / = s: 

- 1 

Fx=0 
> = l , 2 , . . . , s . 
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2. Update: 

5 , = a ( v , - G l _ , ) + ( l - a ) < 5 , _ 1 + F , _ ) ) . 0 < a < 1 

F, = P(5, - j i - i ) + (1 - 0 ) ^Vt , 0 < 0 < 1 

G, - 5 / ) + ( 1 - 7 ) 6 , - , , 0 < ^ < 1 

F = 5 4 - 1 r . 
3. Forecast: 

r = h + + G 7 - + A _„ A = 1, 2 5 , 

> T * f t . 7 = > T + */*>+ Gr*ft_2j, A = 5 + 1, J + 2, . . . , 2 s , 
and so forth. 

T h e only thing new is the recursion for the seasonal, with smoothing 
parameter y. 

FORECASTING WITH SMOOTHING TECHNIQUES 

Regardless of which smoothing technique we use, the basic paradigm is the 
same. We plug data into an algorithm that smooths the data and lets us gener­
ate point forecasts. T h e resulting point forecasts are optimal for certain data-
generat ing processes, as we indicated for simple exponential smoothing and 
Holt-Winters smoothing without seasonality. In practice, of course, we don ' t 
know if the actual data-generating process is close to the one for which the 
adopted smoothing technique is optimal; instead, we just swallow hard and 
proceed. That 's the main contrast with the model-based approach, in which 
we typically spend a lot of time trying to find a "good" specification. 

The "one size fits all" flavor of the smoothing approach has its costs, because 
surely one size does HO/fit all, but it also has benefits in that no. or just a few, pa­
rameters need be estimated. Sometimes we simply set the smoothing parameter 
values based on our knowledge of the propert ies of the series being considered, 
and sometimes we select parameter values that provide the best /j-step-ahead 
forecasts unde r the relevant loss function. For example, u n d e r 1-step-ahead 
squared-error loss, if the sample size is large enough so that we're willing to en­
tertain estimation of the smoothing parameters , we can estimate them as 

7 
8 = argmin (y, - yi-uf . 

where m is an integer large enough such that the start-up values of the smooth­
ing algorithm have little effect. 

In closing this section, we note that smoothing techniques, as typically im­
plemented , p roduce point forecasts only. They may p roduce optimal point 
forecasts for certain special data-generating processes, bu t typically we don ' t 
assume that those special data-generating processes are the t ruth . Instead, 
the smoothing techniques are used as "black boxes" to p roduce poin t fore­
casts, with n o a t tempt to exploit the stochastic s t ructure of the data to find a 
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best-fitting model , which could be used to p roduce interval o r density fore­
casts in addition to point forecasts. 

Now we forecast the JPY/USD exchange rate using a smoothing procedure . In 
the ARIMA(/;, d, q) models considered earlier, we always allowed for a t rend 
(whether deterministic or stochastic). To maintain comparability, we'll use a 
Holt-Winters smoother, which allows for locally linear trend. We present the 
estimation results in Table 13.8. The estimate of a is large, so the estimated 
local level moves closely with the series. The estimate of {3 is small, so the local 
slope of die t rend is much less adaptive. 

T h e Holt-Winters forecast is simply the t rend line beginning at the esti­
mated end-of-period level, with the estimated end-of-period slope. Because 
the estimated slope of the t rend at the end of the sample is larger in absolute 
value than the corresponding t rend slopes in the deterministic t rend and sto­
chastic t rend models studied earlier, we expect the Holt-Winters point fore­
casts to decrease a bit more quickly than those from the ARIMA models. In 
Figure 13.18, we show the history and out-of-sample forecast. No confidence 
intervals appear with the forecast because the smoothing techniques don ' t 
p roduce them. The forecast looks similar to those of the ARIMA models, ex­
cept that it drops a bit more quickly, as is made clear by the very long horizon 
forecast that we show in Figure 13.19. Finally, in Figure 13.20, we show the re­
alization as well. For out-of-sample forecasting, Holt-Winters fares the worst of 
all the forecasting methods tried in this chapter; the mean-squared forecast 
e r ro r is 0.0135. 

\ - \ I I I M 1 \ I I I t I M 

5. Exchange Rates, Continued 

T A B L E 1 3 . a Sample: 1973:01 1994:12 
LogJPY/USD 
Exchange Rate, 
Holt-Winters 
Smoothing 

Included observations: 264 
Method: Holt-Winters, no seasonal 
Original series: LAEN 
Forecast series: LYENSM 

Parameters: Alpha 
Beta 0.090000 

1.000000 

Sum of squared residuals 
Root mean-squared error 

0.202421 
0.027690 

End-of-period levels: Mean 4.606969 
Trend 0.005193 
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Exercises, Problems, and Complements 
1. (Modeling and forecasdng the deutschemark/dollar (DEM/USD) exchange 

rate) On the book's web page, you'll find monthly data on the DEM/USD 
exchange rate for the same sample period as the JPY/USD data studied in the 
text 
a. Model and forecast the DEM/USD rate, in parallel with the analysis in the 

text, and discuss your results in detail. 
b. Redo your analysis using forecasting approaches without trends—a levels 

model without trend, a first-differenced model without drift, and simple 
exponential smoothing. 

c. Compare die forecasting ability of the approaches with and without trend. 
d. Do you feel comfortable with the inclusion of trend in an exchange rate 

forecasting model? Why or why not? 

2. (Housing starts and completions, continued) As always, our Chapter 11 VAR 
analysis of housing starts and completions involved many judgment calls. Using 
the starts and completions data, assess the adequacy of our models and forecasts. 
Among other things, you may want to consider the following questions: 
a. How would you choose the number of augmentation lags? How sensitive are 

the results of the augmented Dickey-Fuller tests to the number of 
augmentation lags? 

b. When performing augmented Dickey-Fuller tests, is it adequate to allow only 
for an intercept under the alternative hypothesis, or should we allow for both 
intercept and trend? 

c. Should we allow for a trend in the forecasting model? 
d. Does it make sense to allow a large number of lags in the augmented Dickey-

Fuller tests, but not in the actual forecasting model? 
e. How do the results change if, in light of the results of the causality tests, we 

exclude lags of completions from die starts equation, reestimate by seemingly 
unrelated regression, and forecast? 

f. Are the VAR forecasts of starts and completions more accurate than univariate 
forecasts? 

3. (ARIMA models, smoothers, and shrinkage) From the vantage point of the 
shrinkage principle, discuss the trade-offs associated with "optimal" forecasts from 
fitted ARIMA models versus "ad hoc" forecasts from smoothers. 

4. (Using stochastic trend unobserved-components models to implement smoothing 
techniques in a probabilistic framework) We noted that smoothing techniques, as 
typically implemented, are used as "black boxes" to produce point forecasts. 
There is no attempt to exploit stochastic structure to produce interval or density 
forecasts in addition to point forecasts. Recall, however, that the various 
smoothers produce optimal forecasts for specific data-generating processes 
specified as unobserved-components models. 
a. For what data-generating process is exponential smoothing optimal? 
b. For what data-generating process is Holt-Winters smoothing optimal? 
c. Under the assumption that the data-generating process for which exponential 

smoothing produces optimal forecasts is in fact the true data-generating 
process, how* might vou estimate the unobserved-components model and use 
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it to produce optimal interval and density forecasts? {Hint: Browse through 
Harvey, 1989.) 

d. How would you interpret the interval and density forecasts produced by the 
method of part r, if we no longer assume a particular model for the true data-
generating process? 

5. (Automatic ARIMA modeling) "Automatic" forecasting software exists for 
implementing the ARIMA and exponential smoothing techniques of this and 
previous chapters without any human intervention. 
a. What are do you think are the benefits of such software? 
b. What do you think are the costs? 
c. When do you think it would be most useful? 
d. Read Ord and Lowe (1996), who review most of the automatic forecasting 

software, and report what you learned. After reading Ord and Lowe, how, if at 
all, would you revise your answers to parts a, b, and r? 

6. (The multiplicative seasonal ARIMA(/>, d, q) x (P, D, Q) model) Consider the 
forecasting model, 

* f ( I * ) * ( I ) ( l - /.)''(1 - / / ) % = C-)S(LS)C-)(L)£, 

*AL') = l-v\V tfpl/1 

<D(L) = l - < p , L t?pL* 

0 , ( L ' ) = 1 - 8 , 1 / / e j , / - * 

0 ( 1 ) = 1 - BiL 

a. The standard ARIMA(p, d, q) model is a special case of this more general 
model. In what situation does it emerge? What is the meaning of the ARIMA 
(p, d, q) x (P, D, Q) notation? 

b. The operator (1 — L*) is called the seasonal difference operator. What does it do 
when it operates on y,? Why might it routinely appear in models for seasonal 
data? 

c. The appearance of (1 — U) in the autoregressive lag operator polynomial 
moves us into the realm of stochastic seasonality, in contrast to the 
deterministic seasonality of Chapter 6, just as the appearance of (1 — L) 
produces stochastic as opposed to deterministic trend. Comment. 

d. Can you provide some intuitive motivation for the model? Hint: Consider a 
purely seasonal ARIMA(P, D, Q) model, shocked by serially correlated 
disturbances. Why might the disturbances be serially correlated? What, in 
particular, happens if an ARIMA(P, D, Q) model has ARIMA(/>, d, q) 
disturbances? 

e. The multiplicative structure implies restrictions. What, for example, do you 
get when you multiply <P,(L) and $(/.)? 

f. What do you think are the costs and benefits of forecasting with the 
multiplicative ARIMA model versus the "standard" ARIMA model? 

g. Recall that in Chapter 10 we analyzed and forecasted liquor sales using an 
ARMA model with deterministic uend. Instead, analyze and forecast liquor 
sales using an ARIMA (p, d, q) x (P, D, Q) model, and compare the results. 

7. (The Dickey-Fuller regression in the AR(2) case) Consider the AR(2) process, 

y, + <p,y/_i + (p2y/_-.> = £, . 
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a. Show that it can be written as 

yi = PI>/-I +P2(>/-I - >/-2) + e<. 

where 

pi = ~(<Pi + <Pa) 

P2 = 92 • 

b. Show that it can also be written as a regression of Ay, on y,_i and Ay,_i. 
c. Show that if pi = 1, the AR(2) process is really an AR(1) process in first 

differences; that is, the AR(2) process has a unit root. 

(Holt-Winters smoothing with multiplicative seasonality) Consider a seasonal 
Holt-Winters smoother, written as 

1. Initialize at / = s: 

- 1 

Ts=0 

Ff 

2. Update : 

5 / = a ( ^ ) + ( l - a ) < J / - i + 7;_,). 0 < a < l 

Ti = P (y, - 5*-i) + (1 - 0W - i . o < p < l 

Ft = y ( ^ + (l-y)F,-t, 0<y < 1 

r = * + l 7 \ 

3. Forecast: 

5r+*.r = (yr + A7r)F7+A-», A = 1, 2 5, 

$•/••+-*. r = (y~T+ hTT)FT+h-2s, h = s + I, s+ 2,...,2s, 

and so forth. 
a. The Holt-Winters seasonal smoothing algorithm given in the text is more 

precise!)' called Holt-Winters seasonal smoothing with additive seasonality. The 
algorithm given here, in contrast, is called Holt-Winters seasonal smoothing with 
multiplicative seasonality. How does this algorithm differ from the one given in 
the text, and what, if anything, is the significance of the difference? 

b. Assess the claim that Holt-Winters with multiplicative seasonality is 
appropriate when the seasonal pattern exhibits increasing variation. 

c. How does Holt-Winters with multiplicative seasonality compare with the use 
of Holt-Winters with additive seasonality applied to logarithms of the 
original data? 

yj ; = l , 2 . . . . , s 

/=i 
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9. (Cointegration) Consider two series, x and y, both of which are /(1). In general, 
there is no wav to form a weighted average of xand y to produce an 7(0) series, 
but in the verv special case where such a weighting does exist, we say that xand y 
are cointegrated. Cointegration corresponds to situations in which variables tend 
to cling to one another, in the sense that the cointegrating combination is 
stationary, even though each variable is nonstationary. Such situations arise 
frequently in business, economics, and finance. To take a business example, it's 
often the case that both inventories and sales of a product appear 7(1), yet their 
ratio (or, when working in logs, their difference) appears 1(0), a natural by­
product of various schemes that adjust inventories to sales. Engle and Granger 
(1987) is the key early research paper on cointegration; Johansen (1995) surveys 
most of the more recent developments, with an emphasis on maximum likelihood 
estimation. 
a. Consider the bivariate system 

X, = x , . | + v,, v, ~ WN(0, cr 2 ) 
y, = * , + £ / , e, - WN(i), a 2 ) 

Both x and y are 7( 1). Why? Show, in addition, that x and y are cointegrated. 
What is the cointegrating combination? 

b. Engle and Yoo (1987) show that optimal long-run forecasts of cointegrated 
variables obey the cointegrating relationship exactly. Verify' their result for the 
system at hand. 

10. (Error correction) In an error correction model, we take a long-run model 
relating 7(1) variables, and we augment it with short-run dynamics. Suppose, for 
example, that in long-run equilibrium, y and x are related by y = bx. Then the 
deviation from equilibrium is z = y — bx, and the deviation from equilibrium at 
any time may influence the future evolution of the variables, which we 
acknowledge by modeling Ax as a function of lagged values of itself, lagged values 
of Ay, and the lagged value ofz, the error correction term. For example, allowing for 
one lag of Ax and one lag of Ay on the right side, we write equation for x as 

Ax, = a,A.v,_i + B,Ay,_i 4-"y,z,_i -4-£„, . 

Similarly, the y equation is 

Ay, = a v Ax,_, 4- B* Aj,_i +7 T z ,_ i + E„ . 

So long as one or both of y x and yT are nonzero, the system is very different from 
a VAR in first differences; the key feature that distinguishes the error correction 
system from a simple VAR in first differences is the inclusion of the error 
correction term, so that the deviation from equilibrium affects the evolution of 
the system. 
a. Engle and Granger (1987) establish the key result that existence of 

cointegration in a VAR and existence of error correction are equivalent—a 
VAR is cointegrated if and only if it has an error correction representation. 
Try to sketch some intuition as to why die two should be linked. Why, in 
particular, might coiniegration imply error correction? 

b. Why are coiniegration and error correction of interest to forecasters in 
business, finance, economics, and government? 

c. Evaluation of forecasts of cointegrated series poses special challenges, insofar 
as traditional accuracy measures don't value the preservation of cointegrating 



324 Chapter 13 

relationships, whereas presumably they should. For details and constructive 
suggestions, see Chrisioffersen and Diebold (1998). 

11. (Forecast encompassing tests for 1(1) series) An alternative approach to testing 
for forecast encompassing, which complements the one presented in Chapter 12, 
is particularly useful in /(l) environments. It's based on forecasted fr-step changes. 
We run the regression 

(y, + A - y,) = 0„ (y^hl - y,) + 0 A (y';+h, - .*,)+£,+»., • 

As before, forecast encompassing corresponds to coefficient values of (1, 0) or 
(0, 1). Under the null hypothesis of forecast encompassing, the regression based 
on levels and the regression based on changes are identical. 

12. (Evaluating forecasts of integrated series) The unforecastability principle remains 
intact regardless of whether die series being forecast is stationary or integrated. 
The errors from optimal forecasts are not predictable on the basis of information 
available at the time the forecast was made. However, some additional 
implications of the unforecastability principle emerge in the case of forecasting 
/( l) series, including these: 
a. If the series being forecast is / ( l ) , then so, too, is the optimal forecast. 
b. An /( l) series is always cointegrated with its optimal forecast, which means 

that there exists an /(()) linear combination of the series and its optimal 
forecast, in spite of the fact that both the series and the forecast are /(I) . 

c. The cointegrating combination is simply the difference of the actual and 
forecasted values—the forecast error. Thus, the error corresponding to an 
optimal forecast of an /(1) series is /(0), in spite of the fact that the series 
is not. 

Cheung and Chinn (1999) make good use of these results in a study of the 
information content of U.S. macroeconomic forecasts; try to sketch their 
intuition. (Hint: Suppose the error in forecasting an /(l) series were not 1(0). 
What would that imply?) 

13. (Theil's I '-statistic) Sometimes it's informative to compare the accuracy of a 
forecast to that of a "naive" competitor. A simple and popttlar such comparison is 
achieved by the Ustatistic, which is the ratio of the 1-step-ahead MSE for a given 
forecast relative to that of a random walk forecast yt+\.i — » : diat is, 

T 

£ ( . V , + i - Xif 
i=\ 

One must remember, of course, that the random walk is not necessarily a naive 
competitor, particularly for many economic and financial variables, so that values 
of ( r near 1 are not necessarily "bad." 

The {^statistic is due to Theil (1966, p. 28) and is often called Theil's U-statistic. 
Several authors, including Armstrong and Fildes (1995), have advocated using 
the (^statistic and close relatives for comparing the accuracy of various forecasting 
methods across series. 
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Bibliographical and Computational Notes 
We expect random walks, or near-random walks, to be good models for financial asset 
prices, and they are. See Malkicl (1999). More general ARIMA(/», 1, q) models have 
found wide application in business, finance, economics, and government. Beveridge 
and Nelson (1981) show that /(1) processes can always be decomposed into the sum of 
a random walk component and a covariance stationary component. Tsay (1984) shows 
that information criteria such as the SIC remain valid for selecting ARMA model 
orders, regardless of whether a unit autoregressive root is present. 

In parallel to the Nerlove, Grether, and Carvalho (1979) treatment of unobserved-
components models with deterministic trend, Harvey (1989) treats specification, 
estimation, and forecasting with unobserved-components models with stochastic 
trend, estimated by using state-space representations in conjunction with the Kalman 
filter. 

The forecasts of U.S. GNP per capita that we examine in the text, and the related 
discussion, draw heavily on Diebold and Senhadji (1996). 

Development of methods for removing the Dickey-Fuller bias from the parameters 
of estimated forecasting models, which might lead to improved forecasts, is currently 
an active research area. See, among others, Andrews (1993), Rudebusch (1993), and 
Fair (1996). 

In an influential book, Box and Jenkins propose an iterative modeling process that 
consists of repeated cycles of model specification, estimation, diagnostic checking, and 
forecasting. (The latest edition is Box, Jenkins, and Reinsel, 1994.) One key element of 
the Box-Jenkins modeling strategy is the assumption that die data follow an ARIMA 
model (sometimes called a Box-Jenkins model), 

4>( / ) ( l - / . ) ' ' y , = e ( / . ) e , . 

Thus, although y , is nonstationary, it is assumed that its rfth difference follows a 
stationary and invertible ARMA process. The appropriateness of the Box-Jenkins tactic 
of differencing to achieve stationarity depends on the existence of one or more unit 
roots in the autoregressive lag operator polynomial, which is partly responsible for the 
large amount of subsequent research on unit root tests. 

Dickev-Fuller tests trace to Dickey (1976) and Fuller (1976). Using simulation 
techniques, MacKinnon (1991) obtains highly accurate estimates of the percentage 
points of the various Dickey-Fuller distributions. 

Alternatives to Dickey-Fuller unit root tests, called Phillips-Perron tests, are proposed 
in Phillips and Perron (1988). The basic idea of Phillips-Perron tests is to estimate a 
Dickey-Fuller regression without augmentation, 

X, = <px,_i + e, , 

and then to correct the Dickey-Fuller statistic for general forms of serial correlation 
and/or heteroskedasticity that might be present in e,. See Hamilton (1994) for 
detailed discussion of the Phillips-Perron tests and comparison with augmented 
Dickey-Fuller tests. 

A key question for forecasters is determination of the comparative costs of 
misspecifying forecasting models in levels versus differences, as a function of sample 
size, forecast horizon, true value of the dominant root, and so on. Related, we need to 
learn more about the efficacy for forecasting of rules such as "Impose a unit root unless 
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a Dickey-Fuller test rejects at the 5% level."1 8 Campbell and Perron (1991) make some 
initial progress in that direction: Diebold and Kilian (2000) explore the issue in detail 
and argue that such strategies are likely to be successful; and in an extensive 
forecasting competition, Stock and Watson (1999) show that such strategies are in fact 
successful. 

Smoothing techniques were originally proposed as reasonable, if ad hoc, forecasting 
strategies; only later were they formalized in terms of optimal forecasts for underlving 
stochastic trend unobserved-components models. This idea—implementing smoothing 
techniques in stochastic environments via stochastic trend unobserved-components 
models—is a key theme of Harvey (1989), which also contains references to important 
earlier contributions to the smoothing literature, including Holt (1957) and Winters 
(1960). The impressive Stamp software of Koopman, Harvey, Doornik, and Shephard 
(1995) can be used to estimate and diagnose stochastic trend unobserved-components 
models and to produce forecasts.1 9 Stamp stands for "structural time series analyzer, 
modeler, and predictor"; unobserved-components models are sometimes called 
structural time series models. 

Concepts for Review 
Unit autoregressive root 
Unit root 
Random walk 
Random walk with drift 
Random walk without drift 
Mean reversion 
ARIMA(/i, 1, i /) model 
ARlMA(/>, d, q) model 
Shock persistence 
Superconsistency 
Dickey-Fuller distribution 
Unit root test with nonzero mean 

allowed under the alternative 
hypothesis 
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Volatility Measurement, 
Modeling, and 
Forecasting 

T h e celebrated Wold decomposit ion makes clear that every covariance sta­
tionary series may be viewed as ultimately driven by underlying weak white 
noise innovations. Hence , it is n o surprise that every forecasting model 
discussed in this book is driven by underlying white noise. To take a simple 
example, if the series y , follows an AR(1) process, then 

y, = <pv/-i + e , , 

where £, is white noise. In some situations, it is inconsequential whether e, is 
weak or strong white noise—that is, whether e, is independen t , as opposed to 
merely serially uncorrelated. Hence , to simplify matters, we sometimes assume 
strong white noise, 

iid o 

£ / ~ ( 0 , c r 2 ) . 
T h r o u g h o u t this book, we have thus far taken that approach, sometimes ex­
plicitly and sometimes implicitly. 

When e, is independent , there is n o distinction between the uncondi t ional 
distribution of £, and the distribution of t, conditional on its past, by defini­
tion of independence . Hence , rr 2 is both the uncondi t ional and condit ional 
variance of £,. The Wold decomposit ion, however, does not require that E, be 
serially independent : rather, it requires only that E, be serially uncorre la ted . 

329 



Chapter 14 

If E, is dependen t , then its uncondit ional and conditional distributions will 
differ. We deno te the uncondi t ional innovation distribution by 

e , - (0 ,<r 2 ) . 

We are particularly interested in conditional dynamics characterized bv 
heteroskedasticity, o r time-varying volatility. We denote the conditional distri­
but ion by 

e, |n,-t-(G\ o-,2), 
where &,-\ = { £ , - 1 , E , _ 2 , . . . } . The conditional variance 07* will in general evolve 
as evolves, which focuses at tention on the possibility of time-varying inno­
vation volatility.1 

Allowing for time-varying volatility is crucially important in certain eco­
nomic and financial contexts. T h e volatility of financial asset re turns, for 
example, is often time varying. Tha t is, markets are sometimes tranquil and 
sometimes turbulent , as can readily be seen by examining the time series of 
stock market re turns in Figure 14.1, ro which we shall re turn in detail. Time-
varying volatility has impor tant implications for financial risk management , 
asset allocation, and asset pricing, and it has therefore become a central part 
of the emerging field of financial econometrics. Quite apart from financial ap­
plications, however, time-varying volatility also has direct implications for 
interval and density forecasting in a wide variety of applications: correct con­
fidence intervals and density forecasts in the presence of volatility fluctuations 
require time-varying confidence interval widths and time-varying density 
forecast spreads. T h e forecasting models that we have considered thus far, 
however, d o not allow for that possibility. In this chapter we do so. 

I I I I I I I 

I. The Basic ARCH Process 
Consider the general linear process, 

y, = B(L)tt 

X X 

B{L) = yf£jbiL £ & ; < o o bo = 1 

e< - W\V(0,0--). 

We will work with various cases of tliis process. 
Suppose first tha t E, is s t rong white noise. E, ~ (0, a2). Let us review some 

results already discussed for the genera l l inear process, which will prove 

• In principle, aspects of the conditional distribution other than the variance, such as conditional 
skewness, could also fluctuate. Conditional variance fluctuations are bv far the most important in 
practice, however, so we assume that fluctuations in the conditional distribution of c are due 
exclusively to fluctuations in aj, 
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useful in what follows. T h e unconditional mean and variance of y are E(y,) = 0 

and E(yJ) = o*- £ b~, which are both time-invariant, as must be the case u n d e r 

covariance stationary ty. However, the conditional mean of y is t ime varying: 

E(y, | ft,_i) = &,£,-,. where the information set is ft,_i = {e ,_i ,e,_ 2 , . . .} . 

T h e ability of the general linear process to capture covariance stationary con­
ditional mean dynamics is the source of its power. 

Because the volatility of many economic time series varies, o n e would hope 
that the general linear process could capture conditional variance dynamics as 
well, but such is not the case for the model as presently specified: T h e condi­
tional variance of y is constant at E((y, — E(y, | ft,_i))2 | ft,_i) = o*-. This 
potentially unfor tunate restriction manifests itself in the propert ies of the 
/i-step-ahead conditional prediction e r ro r variance. The min imum mean 
squared e r ro r forecast is the conditional mean, 

X 

E(y,+i, | ft,) = bk+tEi-; , 
/=() 

and so the associated prediction e r ro r is 
h-\ 

y , + A - E(y,+k | ft,) = 53 . 

which has a conditional predict ion e r ro r variance of 

E((yl+, - E(y„h | ft,))2 | ft,) = a 2 £ b~ . 

The conditional prediction e r ro r variance is different from the uncondit ional 
variance, but it is not time varying. It depends only on K not on the condi­
t ioning information ft,. In the process as presendy specified, the conditional 
variance is not allowed to adapt to readily available and potentially useful con­
dit ioning information. 

So much for the general linear process with iid innovations. Now we ex­
tend it by allowing e, to be weak ra ther than strong white noise, with a particu­
lar nonlinear dependence structure. In particular, suppose that, as before, 

y, = B(L)et 

B{L) = Y^b,Li £ > ? < o o 4b = l , 

but now suppose as well that 

£, | f t ,_ , ~iV(0,cr, 2) 

a? = to + "y (L)E 2 

/' 

o> > 0 7(L) = 53^'Z'' "ft - 0 f o r 3 1 1 1 ZlV < 1 ' 
1=1 

Note that we parameterize the innovation process in terms of its conditional 
density, e, | ft,_i, which we assume to be normal with a zero conditional mean 
and a conditional variance that depends linearly on p past squared innovations. 
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E, is serially uncorre la ted but not serially independent , because the cur ren t 
conditional variance af depends on the history of £,. 2 T h e stated regularity 
condit ions are sufficient to ensure that the conditional and uncondi t ional vari­
ances are positive and finite and that y, is covariance stationary. 

T h e uncondi t ional moments of £, are constant and are given by £(£,) = 0 
and £((£/ — £ ( £ , ) ) ) = = — . T h e impor tant result is no t the particular 

formulas for the uncondi t ional mean and variance bu t the fact that they are 
fixed, as required for covariance stationarity. As for the conditional moments 
of £,, its conditional variance is time varying, 

£((£, - E(E, I a,.,))* I Q,.,) = w + 7<I)e?. 
and of course its conditional mean is zero by construction. 

Assembling the results to move to the uncondi t ional and condit ional mo­
ments of y as opposed to £,, it is easy to see that both the uncondi t ional mean 
and variance of y are constant (again, as required by covariance stationarity) 
but that both the condit ional mean and variance are time varying: 

•x. 

E(y, | nf_,) = 

E((y, - E(y, I 12,.,))* I n,-i) = o + 7<L)e, . 
Thus, we now treat conditional mean and variance dynamics in a symmetric 
fashion by allowing for movement in each, as de te rmined by the evolving in­
formation set Qt-\. 

In the development just described, £, is called an ARCH(jb) process, and 
the full model sketched is an infinite-ordered moving average with ARCH(p) 
innovations, where ARCH stands for autoregressive conditional heteroskedas-
ticity. Clearly £, is conditionally heteroskedastic, because its conditional vari­
ance fluctuates. The re are many models of conditional heteroskedasticity, bu t 
most are designed for cross-sectional contexts, such as when the variance of a 
cross-sectional regression disturbance depends on o n e or more of the regres-
sors . 3 However, heteroskedasticity is often present as well in the time series 
contexts relevant for forecasting, particularly in financial markets. T h e partic­
ular conditional variance function associated with the ARCH process, 

of = <D + 7 (L)E/ , 

is tailor-made for t ime series environments , in which o n e often sees volatility 
clustering, such that large changes tend to be followed by large changes and 
small by small, of either sign. Tha t is, one may see persistence, or serial correla­
tion, in volatility dynamics (conditional variance dynamics), quite apart from 
persistence (or lack thereof) in conditional mean dynamics. T h e ARCH 
process approximates volatility dynamics in an autoregressive fashion—hence 
the name autoregressive condition^] heteroskedasticity. To unders tand why, note 

* In particular, of depends on the previous //values of e, via the distributed lag y(L)E~. 
3 The variance of the disturbance in a model of household expenditure, for example, may depend 
on income. 
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that the ARCH conditional variance function links today's conditional variance 
positively to earlier lagged £7's, SO that large £ 2 ' s in the recent past p roduce a 
large conditional variance today, thereby increasing the likelihood of a large £ 2 

today. Hence . .ARCH processes are to conditional variance dynamics precisely 
as standard autoregressive processes are to conditional mean dynamics. 

T h e .ARCH process mav be viewed as a model for the disturbance in a 
broader model , as was the case when we in t roduced it earlier as a model for 
the innovation in a general linear process. Alternatively, if there are n o condi­
tional mean dvnamics of interest, the ARCH process may be used for an 
observed series. It turns out that financial asset re turns often have negligible 
conditional mean dvnamics but strong conditional variance dynamics; hence , 
in much of what follows, we will view the ARCH process as a model for an ob­
served series, which for convenience we will sometimes call a "return." 

2. The GARCH Process 

Thus far, we have used an ARCH(p) process to model conditional variance dy­
namics. We now int roduce the GARCH(/>, q) process (GARCH stands for gen­
eralized ARCH), which we shall subsequendy use almost exclusively. As we 
shall see, GARCH is to ARCH (for conditional variance dynamics) as ARMA is 
to AR (for conditional mean dynamics). 

The pure GARCH (p, q) process is given by 4 

y< = £ R 

e,|fl/-i-A'(0,ff/) 
<j? = w + a(L)£? + 3(L)rj(

2 

a (L ) = P(L) = 
/=i ;=i 

w > 0, a, > 0, > 0, £̂ a, + ]P 3, < 1 . 
T h e stated condit ions ensure that the conditional variance is positive and that 
y, is covariance stationary. 

Back substitution on a" reveals that the GARCH(p, q) process can be rep­
resented as a restricted infinite-ordered ARCH process, 

2 to a(L) 2 <*> . V ^ R J 2 

which precisely parallels writing an ARMA process as a restricted infinite-
o rdered AR. Thus, the GARCH(p, q) process is a parsimonious approximat ion 
to what may truly be infinite-ordered ARCH volatility dynamics. 

•* By "pure" we mean that we have allowed onlv for conditional variance dynamics, by setting 
yt = tt- We could of course also introduce conditional mean dynamics, but doing so would only 
clutter the discussion while adding nothing new. 
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It is important to note a n u m b e r of special cases of the GARCH (p, q) process. 
First, of course, the ARCH(/>) process emerges when P(L) = 0. Second, if both 
OL(L) and S(£) are 0, then the process is simply iid Gaussian noise with variance 
u). Hence , al though ARCH and GARCH processes may at first appear unfamiliar 
and potentially ad hoc, diey are in fact much more general than standard iid 
white noise, which emerges as a potentially highly restrictive special case. 

Here we highlight some important propert ies of GARCH processes. All of 
the discussion of course applies as well to ARCH processes, which are special 
cases of GARCH processes. First, consider the second-order momen t structure 
of GARCH processes. The first two uncondit ional moments of the pure 
GARCH process are constant and given by £(£,) = 0 and 

In particular, the uncondit ional variance is fixed, as must be the case unde r co-
variance stationarity, while the conditional variance is time varying. It is no 
surprise that the conditional variance is time varying—the GARCH process was 
of course designed to allow for a time-varying conditional variance—but it is 
certainly worth emphasizing: T h e condit ional variance is itself a serially corre­
lated time series process. 

Second, consider the uncondi t ional higher-order (third and fourth) 
m o m e n t structure of GARCH processes. Real-world financial asset re turns, 
which are often modeled as GARCH processes, are typically unconditionally 
symmetric but leptokurtic (i.e., more peaked in the center and with fatter tails 
than a normal distr ibution). It turns out that the implied uncondit ional 
distribution of the conditionally Gaussian GARCH process introduced earlier 
is also symmetric and leptokurtic. T h e uncondi t ional leptokurtosis of GARCH 
processes follows from the persistence in conditional variance, which pro­
duces clusters of "low-volatility" and "high-volatility" episodes associated with 
observations in the center and in the tails of the uncondit ional disuibut ion, 
respectively. Both the uncondi t ional svmmetry and uncondit ional leptokurto­
sis agree nicely with a variety of financial market data. 

Third, consider the conditional prediction e r ror variance of a GARCH 
process and its dependence on the condit ioning information set. Because the 
conditional variance of a GARCH process is a serially correlated random 
variable, it is of interest to examine the optimal /j-step-ahead prediction, 
prediction error, and conditional prediction e r ro r variance. Immediately, the 
/(-step-ahead predict ion is E(£l+h | ft,) = 0, and the corresponding prediction 
e r ro r is 

— £(£,+/< I ft/) = Ef+A • 

This implies that the conditional variance of the prediction error, 

£((£,+/, - £(£,+,, I ft,))2 | ft,) = £ ( e ; + , I ft,), 

while the condit ional momen t s are £(E, | ft,, i) = 0 and of course 

£((e, - £(e, I ft,_,))2 I ft,-,) = w 4 - « ( £ ) £ ? + 0 ( I ) o f . 
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depends on both h and ft,, because of the dynamics in the conditional vari­
ance. Simple calculations reveal that the expression for the GARCH(p, q) 
process is given by 

£ ( e ; + , | ft,) = to ^ X > ( 1 ) + j + <«0> + W))h~X<*l\ • 

In the limit, this conditional variance reduces to the uncondi t ional variance of 
the process, 

, 9 v (1) 
^ E ( ^ l ° ' > - l - a ( l ) - P ( l ) -

For finite h % the dependence of the prediction e r ro r variance on the cur ren t 
information set ft, can be exploited to improve interval and density forecasts. 

Fourth, consider the relationship between £," and cr,". T h e relationship is 
important : GARCH dynamics in erf turn out to int roduce ARMA dynamics in 
£, . J More precisely, if e, is a GARCH(/?, q) process, then has the ARMA 
representat ion 

e; = to + (a(L) 4 P(L))e 2 - B(L)t;, + v , . 

where i>, = e, — erf is the difference between the squared innovation and the 
conditional variance at time /. To see this, note that if e, is GARCH [p. q), then 
O", = to + a.(L)z, 4 B(L)«jf. Adding and subtracting B(/,)E7 from the right side 
gives 

(J? = a) + a(L)e 2 4 P(L)e; - B(L)e" + B(L)crf 

= to 4 (a(L) 4 0 (ZJ)£ 2 - 0(L)(e? - cr, 2). 

Adding E," to each side then gives 

o-f + E, = to 4- (o(X.) 4- B(Z.))E7 - P ( L ) ( E , - a 2 ) + E? , 

so that 

e; = to + ( a(L) 4 B(Z,))e; - B ( L ) ( E 2 - a 2 ) 4 (E, - a f ) . 

= to 4 <a(L) 4 B ( L ) ) E 2 - $(L)v, 4 u, . 

Thus, £f is an ARMA(max(/>, q), p) process with innovation vlt where 
v, e [—erf, oc). E ; is covariance stationary if the roots of a (L ) 4 B (L) = 1 are 
outside the unit circle. 

Fifth, consider in greater dep th the similarities and differences between 
cr," and t',. It is worth studying closely the key expression t1, = f, — cr,2, which 
makes clear that is effectively a "proxy" for cr,", behaving similarly bu t not 
identically, with v, being the difference, or error. In particular, £ 2 is a noisy 
proxy: z~, is an unbiased estimator of cr, , but it is more volatile. It seems rea­
sonable, then, that reconciling the noisy proxy £, and the t rue underlying 
cr," should involve some sort of smoothing of z",. Indeed, in the GARCH(1, 1) 

1 Put differently, the GARCH process approximates conditional variance dynamics in the same 
way that an ARMA. process approximates conditional mean dynamics. 
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case rj," is precisely obta ined by exponentially smoothing e,. To see why, con­
sider the exponential smoothing recursion, which gives the current smoothed 
value as a convex combinat ion of the cur ren t unsmoothed value and the 
lagged smoothed value, 

e 2 = ",£7 + (1 • 
Back substitution yields an expression for the cur ren t smoothed value as an 
exponentially weighted moving average of past actual values: 

where 

w, = -y ( l - 7 ) ' . 

Now compare this result to the GARCH(L 1) model , which gives the cur ren t 
volatility as a linear combinat ion of lagged volatility and the lagged squared 
re turn , 

rj,2 = a) + a£7_! + Brjili . 

Back substitution yields 

so that the GARCH(1, 1) process gives cur ren t volatility as an exponentially 
weighted moving average of past squared re turns . 

Sixth, consider the temporal aggregation of GARCH processes. By tempo­
ral aggregation, we mean aggregation over time, as, for example, when we 
convert a series of daily re turns to weekly returns, and then to monthly 
re turns , then quarterly, and so on. It turns out that convergence toward nor­
mality unde r temporal aggregation is a feature of real-world financial asset 
re turns . Tha t is, a l though high-frequency (e.g., daily) re turns tend to be fat 
tailed relative to the normal , the fat tails tend to get th inner u n d e r temporal 
aggregation, and normality is approached. Convergence to normality u n d e r 
temporal aggregation is also a property of covariance stationary GARCH 
processes. The key insight is that a low-frequency change is simply the sum of 
the corresponding high-frequency changes. For example, an annual change is 
the sum of the internal quarterly changes, each of which is the sum of its in­
ternal monthly changes, and so on. Thus, if a Gaussian central limit theorem 
can be invoked for sums of GARCH processes, convergence to normality 
unde r temporal aggregation is assured. Such theorems can be invoked if the 
process is covariance stationary. 

In closing this section, it is worth not ing that the symmetry and leptokur-
tosis of the uncondit ional distribution of the GARCH process, as well as the 
disappearance of the leptokurtosis unde r temporal aggregation, provide nice 
independen t confirmation of the accuracy of GARCH approximations to asset 
re turn volatility dynamics, insofar as GARCH was certainly not invented with 
the intent of explaining those features of financial asset re tu rn data. O n the 
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contrary, the uncondi t ional distributional results emerged as unanticipated 
byproducts of allowing for conditional variance dynamics, thereby providing a 
unified explanation of p h e n o m e n a that were previously believed unrelated. 

3. Extensions of ARCH and GARCH Models 
There are numerous extensions of the basic GARCH model . In this section, we 
highlight several of the most important . O n e important class of extensions al­
lows for asymmetric response; that is, it allows for last per iod 's squared re turn 
to have different effects on today's volatility, depend ing on its sign. b Asymmet­
ric response is often present, for example, in stock returns. 

ASYMMETRIC RESPONSE 

T h e simplest GARCH model allowing for asymmetric response is the thresh­
old GARCH, or TGARCH, mode l . 7 We replace the standard GARCH condi­
tional variance function, 

of = (0 + aef_, + Bo-,1, , 

w i t h 

a? — to + ae?_i 4- -ye 2.,D,-\ + Bcr,!, , 

where 
^ [ 1 , ife, < 0 

' j 0 o the rwise . 

T h e dummy variable D keeps track of whetiier the lagged re turn is positive or 
negative. WTien the lagged re turn is positive (good news yesterday), D = 0, so 
the effect of the lagged squared re turn on the cur ren t conditional variance is 
simply a. In contrast, when the lagged re turn is negative (bad news yesterday), 
D = 1 , so the effect of the lagged squared re turn on the cur ren t condit ional 
variance is a + 7. If 7 = 0, the response is symmetric, and we have a s tandard 
GARCH model; but if 7 ^ 0, we have asymmetric response of volatility to 
news. Allowance for asymmetric response has proved useful for model ing 
"leverage effects" in stock re turns , which occtir when 7 < 0.8 

fi In the GARCH model studied thus far, only the square of last period's return affects the current 
conditional variance; hence, its sign is irrelevant. 
7 For expositional convenience, we will introduce all GARCH extensions in the context of 
GARCH(1, 1). which is by far the most important case for practical applications. Extensions to 
the GARCH(/;. q) case are immediate but notationally cumbersome. 
8 Negative shocks appear to contribute more to stock market volatility than do positive shocks. 
Tliis is called die liverage effect, because a negative shock to the market value of equity increases the 
aggregate debt, equity ratio (other tilings the same), thereby increasing leverage. 
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Asymmetric response may also be in t roduced via the exponential GARCH 
(EGARCH) model , 

In (a, 2) = (o 4 a E/-1 £/—I / 9 v 

+ 7 — + 0 1 n ( o v , ) . 
U"/-l 

Note that volatility is driven by both size and sign of shocks; hence, the model 
allows for an asymmetric response depending on the sign of news. 9 The log 
specification also ensures that the conditional variance is automatically positive, 
because cr2 is obtained by exponentiat ing In (of)—hence the name "exponential 
GARCH." 

EXOGENOUS VARIABLES IN THE VOLATILITY 
FUNCTION 

Just as ARMA models of condit ional mean dynamics can be augmented to in­
clude the effects of exogenous variables, so too can GARCH models of condi­
tional variance dynamics. We simply modify the s tandard GARCH volatility 
function in the obvious way, writing 

af — to + aef_j 4 Boy_, +yx,, 

where "y is a parameter and x is a positive exogenous var iable . 1 0 Allowance for 
exogenous variables in the conditional variance function is sometimes useful. 
Financial market volume, for example, often helps to explain market volatility. 

REGRESSION WITH G A R C H DISTURBANCES 
AND G A R C H - M 

Just as ARMA models may be viewed as models for disturbances in regressions, 
so too may GARCH models. We write 

yt - Po + B,x ( + E , 

£, | f t ,_ , - A/(0,cr2) 

af = to 4- ae 2 _, 4 per,2., . 

Consider now a regression model with GARCH disturbances of the usual sort, 
with one additional twist: T h e conditional variance enters as a regressor, 
thereby affecting the condit ional mean . We write 

y, = Bo 4 Bj x, 4- yaf 4- £, 

e,|n,_, a,2) 
'J 2 n 2 

a, = to 4 <*£,_, 4- per,., . 
y The absolute "size" of news is captured by |r|_i/cr/_il, and the sign is captured by rt-\/<rt-\. 
1 0 Extension to allow multiple exogenous variables is straightforward. 
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This model, which is a special case of the general regression model with 
GARCH disturbances, is called GARCH-in-mean (GARCH-M). It is sometimes 
useful in model ing the relationship between risks and re turns on financial 
assets when risk, as measured by the conditional variance, varies. 1 1 

COMPONENT G A R C H 

Note that the standard GARCH(1, 1) process may be written as 

(or,- - to) = a(et, - w) -r- (3(o-,i, - to) , 

where to — t_"_p is the uncondi t ional var iance . 1 2 This is precisely the 
GARCH(1, 1) model in t roduced earlier, rewritten it in a slighdy different but 
equivalent form. In this model , short-run volatility dvnamics are governed by 
the parameters a and B, and there are n o long-run volatility dynamics, 
because to is constant. 

Sometimes we might want to allow for both long-run and short-run, or per­
sistent and transient, volatility dynamics in addit ion to the short-run volatility 
dynamics already incorporated. To d o this, we replace to with a time-varying 
process, yielding 

(erf - q,) = a(e 2 _, - </,_,) 4- B(oy_, - ?,_,) , 

where the time-varying long-run volatility, q,, is given by 

q, = to + p(?,_i - co) -I- tp(e'_! - oy_,) . 

This "componen t GARCH" model effectively lets us decompose volatility 
dynamics into long-run (persistent) and short-run (transitory) components , 
which sometimes yields useful insights. The persistent dynamics are governed 
by p , and the transitory dynamics are governed by a and 3-13 

MIXING AND MATCHING 

In closing this section, we no te that the different variations and extensions of 
the GARCH process may of course be mixed. Consider the following condi­
tional variance function as an example: 

(V ~ q>) = a(e2_j - q,-i) 4- - q,-\)D,-X 4- 6(0-; - 4- 6x, . 

1 1 One may also allow the conditional standard deviation, rather than the conditional variance, to 
enter the regression. 

J) is sometimes called the "long-run" variance, referring to the fact that die unconditional vari­
ance is the long-run average of the conditional variance. 
1 3 It turns out. moreover, that under suitable conditions, die component GARCH model intro­
duced here is covariance stationary and equivalent to a GARCH(2. 2) process subject to certain 
nonlinear restrictions on its parameters. 
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This is a componen t GARCH specification, generalized to allow for asymmet­
ric response of volatility to news via the sign dummy D, as well as effects from 
the exogenous variable x. 

I I I I I I f I I I I I I I 

4. Estimating, Forecasting, and Diagnosing 
GARCH Models 
Recall that the likelihood function is the joint density function of the data, 
viewed as a function of the model parameters , and that maximum likelihood 
estimation finds the parameter values that maximize the likelihood function. 
This makes good sense: We choose those parameter values that maximize the 
likelihood of obtaining the data that were actually obtained. It turns out that 
construction and evaluation of the likelihood function is easily d o n e for 
GARCH models, and maximum likelihood has emerged as the estimation 
m e t h o d of cho ice . 1 4 No closed-form expression exists for die GARCH maxi­
m u m likelihood estimator, so we must maximize the likelihood numerically. 1 5 

Construction of optimal forecasts of GARCH processes is simple. In fact, 
we derived the key formula earlier but did not comment extensively on it. 
Recall, in particular, that 

<£<u = I n,) = co ̂ E(«(]) + j + («0 ) + 3<t))*"V+i • 

In words, the optimal ^step-ahead forecast is proport ional to the optimal 
1-step-ahead forecast. T h e optimal 1-step-ahead forecast, moreover, is easily cal­
culated: All of the de terminants of <j?+} are lagged by at least one period, so that 
there is n o problem of forecasting the right-hand side variables. In practice, of 
course, the underlying GARCH parameters a and B are unknown and so must 
be estimated, resulting in the feasible forecast 6y + y , , formed in the obvious way. 

In financial applications, volatility forecasts are often of direct interest, 
and the GARCH model delivers the optimal /j-step-ahead point forecast, cr~+h 

Alternatively, and more generally, we might not be intrinsically interested in 
volatility; rather, we may simply want to use GARCH volatility forecasts to 
improve /i-step-ahead interval or density forecasts of £,. which are crucially 
d e p e n d e n t on the /j-step-ahead prediction e r ro r variance, <r~^hConsider, for 
example , the case of interval forecasting. In the case of constant volatility, we 
earlier worked with Gaussian 9 5 % interval forecasts of the form 

y,+hJ ± 1.96 cr,, , 
u The precise form of the likelihood is complicated, and we will not give an explicit expression 
here, but it may be found in various of the surveys mentioned in die Bibliographical and Compu­
tational Notes at the end of the chapter. 

' ' Routines for maximizing the GARCH likelihood are available in a number of modern software 
packages such as EViews. As with any numerical optimization, care must be taken with startup val­
ues and convergence criteria to help ensure convergence to a global, as opposed to mcrelv local, 
maximum. 
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where o*,, denotes the uncondi t ional ^-step-ahead standard deviation (which 
also equals the conditional //-step-ahead standard deviation in the absence of 
volatility dynamics). Now, however, in the presence of volatility dynamics we use 

V,_A., ± 1.96 0%,,., . 

T h e ability of the conditional prediction interval to adapt to changes in volatil­
ity is natural and desirable: when volatility is low, the intervals are naturally 
tighter, and conversely. In the presence of volatility dynamics, the uncondi­
tional interval forecast is correct on average but likely incorrect at any given 
time, whereas the conditional interval forecast is correct at all times. 

The issue arises as to how to detect GARCH effects in observed re turns 
and, related, how to assess the adequacy of a fitted GARCH model . A key and 
simple device is the correlogram of squared returns, £ j . As discussed earlier, E 2 

is a proxy for the latent conditional variance: if the conditional variance dis­
plays persistence, so, too. will £*."' O n e can of course also fit a GARCH model 
and assess significance of the GARCH coefficients in the usual way. 

Note that we can write the GARCH process for re turns as 

e, = fTiVt , 

where 

v,- A r (0 , l ) 

rj, = to + (*£,_, + f3a,_, . 

Equivalent])', the standardized re turn, v, is iid, 

£ = i: ,V(0.1) . 

This observation suggests a wav to evaluate the adequacy of a fitted GARCH 
model: Standardise re turns bv the conditional s tandard deviation from the 
fitted GARCH model, a. and then check for volatility dynamics missed by the 
fitted model bv examining the correlogram of the squared standardized re turn , 
(£,/6\)-. This is routinelv done in practice. 

I I I I 

5. Application: Stock Market Volatility 
We model and forecast the \olatilirv of daily re turns on the New York Stock 
Exchange (XYSEi fromjanuarv 1. 1988, through December 31 , 2001, exclud­
ing holidays, for a total nt 3531 observations. We estimate using observations 
1-3461, and then u e forecast observations 3462-3531. 

Note well, how e\n M>J» I t (iv^rse i« m »t true. That is. if eirdisplays persistence, it does not nec­
essarily follow thai rhr . di". i V . inance displays persistence. In particular, neglected serial cor­
relation associated un:>. .r , r ..-. _ m r . , i i dynamics may cause serial correlation in 6/ and hence also 
in zf. Thus, bet< >u- j>r« • -«-.-•1 ••:••_ . ^x . : iM !nr ,uul interpret the correlogram of £ 7 as a check for volatil­
ity dynamic s. it i« mr,'- r.ir. u 1' • •riditional mean effects be appropriately modeled, in which 
case£, should be mu-ij r - ! r ; a* u- Lav.iirbj.ticc in an appropriate conditional mean model. 

file:///olatilirv
http://Lav.iirbj.ticc


342 Chapter 14 

In Figure 14.1 we plot the daily re turns , r,. There is no visual evidence of 
serial correlation in the returns, but there is evidence of serial correlation in 
the amplitude of the returns. That is, volatility appears to cluster: Large changes 
tend to be followed by large changes and small by small, of either sign. 

Figure 14.2 presents the histogram and related statistics for r,. T h e mean 
daily re tu rn is slightly positive. Moreover, the re turns are approximately sym­
metric (only slightly left skewed) but highly leptokurtic. T h e Jarque-Bera sta­
tistic indicates decisive rejection of normality. 

F I G U R E 1 4 2 Histogram and Related Diagnostic Statistics, \YSE Returns 

1200 r 
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0 
t b . 

-0.050 -0.025 0.000 
Return 

0.025 0.050 

Series: R 
Sample 13461 
Observations 3461 

Mean 
Median 
Maximum 
Minimum 
Std. Dev 
Skewness 
Kurtosis 

Jarque-Bera 
Probability 

0.000522 
0.000640 
0.047840 

-0.063910 
0.008541 

-0.505340 
8.335016 

4565.446 
0.000000 
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The correlogram for ' appears in Figure 14.3. T h e sample autocorrelat ions 
are tinv and usually insignificant relative to the Bartlett s tandard errors , yet the 
autocorrelation function show s some evidence of a systematic cyclical pat tern, 
and the Q-statistics i n< i t shown •. which cumulate the information across all dis­
placements, reject the null of weak white noise. Despite the weak serial correla­
tion evidenth present in the returns, we will proceed for now as if re turns were 
weak white noise, whir h > approximately, if not exactly, the case . 1 ' 

In Figure 14.4 wr pi-»t •". The volatility clustering is even more evident 
than it was in the time » c n o plot of returns. Perhaps the strongest evidence of 

( M m ] 

^" J -liL.11[, L. l l . 

1 7 III tlir E x 
tiolUtl ITir..: 

F I G U R E 1 4 4 
Time Series Plot, 
Squared NYSE 
Returns 

1500 2000 2500 

Time 
3000 

l i , implements at the end of this chapter, we model the condi-
.in.il variance, of returns. 
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all comes from the correlogram of /,", which we show in Figure 14.5: All sam­
ple autocorrelat ions of r,~ are positive, overwhelmingly larger than those of 
the re turns themselves, and statistically significant. 

As a c rude first pass at model ing the stock market volatility, we fit an AR(5) 
model directly to rf; the results appear in Table 14.1. It is interesting to no te 

' . - E L E 16 1 
.Mi 5) Model, 
vwared NYSE 
Returns 

Dependent Variable: R2 
Method: Least squares 

Sample(adjusted): 6 3461 
Included observations: 3456 after adjusting endpoints 

Variable Coefficient Std. Error /-Statistic Prob. 

C 4.40E-05 3.78E-06 11.62473 0.0000 
K 2 ( - l ) 0.107900 0.016137 6.686547 0.0000 
/?2(-2) 0.091840 0.016186 5.674167 0.0000 
/?2(-3) 0.028981 0.016250 1.783389 0.0746 
* 2 ( - 4 ) 0.039312 0.016481 2.385241 0.0171 
* 2 ( - 5 ) 0.116436 0.016338 7.126828 0.0000 

0.052268 Mean dependent var. 7.19E-05 
Adjusted R2 0.050894 SD dependent var. 0.000189 
SF. of regression 0.000184 Akaike info criterion -14.36434 
Sum squared resid. 0.000116 Schwarz criterion -14.35366 
Log likelihood 24827.58 /•-statistic 38.05372 
Durbin-Watson stat. 1.975672 Prob(f-statistic) 0.000000 
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Dependent variable: R 
Method: Ml^ARCH (Marquardt) 

Sample: 1 3461 
Included observations: 3461 
Convergence achieved after 13 iterations 
Variance backcast: ON 

T A B L E 1 4 2 
ARCH(5) Model, 
NYSE Returns 

Coefficient Std. Error z-Statistic Prob. 

C 0.000689 0.000127 5.437097 0.0000 
Variance Equation 
C 3.16E-05 1.08E-06 29.28536 0.0000 
ARCH(l) 0.128948 0.013847 9.312344 0.0000 
ARCH (2) 0.J 66852 0.015055 11.08281 0.0000 
ARCH (3) 0.072551 0.014345 5.057526 0.0000 
ARCH (4) 0.143778 0.015363 9.358870 0.0000 
ARCH (5) 0.089254 0.018480 4.829789 0.0000 

R2 -0.000381 Mean dependent var. 0.000522 
Adjusted R2 -0.002118 SD dependent var. 0.008541 
SE of regression 0.008550 Akaike info criterion -6.821461 
Sum squared resid. 0.252519 Schwarz criterion -6.809024 
Log likelihood 11811.54 Durbin-Watson slat. 1.861036 

that the f-statistics on the lagged squared re turns are often significant, even at 
long lags, yet the R~ of the regression is low, reflecting the fact that r~ is a very 
noisy volatility proxy, 

.As a more sophisticated second pass at model ing NYSE volatility, we fit an 
ARCH (5) model to r,: the results appear in Table 14.2. T h e lagged squared 
re turns appear significant even at long lags. T h e correlogram of squared stan­
dardized residuals shown in Figure 14.6. however, displays some remaining sys­
tematic behavior, indicating Lhat the ARCH (5) model fails to capture all of the 
volatility dynamics, potentially because even longer lags are n e e d e d . 1 8 

Table 14.3 shows the results of fitting a GARCH(1. 1) model . All of the 
parameter estimates are highly statistically significant, and the "ARCH coeffi­
cient" (a) and "GARCH coefficient" (B) sum to a value near unity (0.987), with 
B substantially larger than a, as is commonly found for financial asset re turns. 
We show the correlogram of squared standardized GARCH(1, 1) residuals in 

'* In the E.verrises. Problems, and Complements at the end of this chapter, we also examine 
ARCH' (•< model* wuli p > 3. 
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Figure 14.7. All sample autocorrelat ions are tiny and inside the Bartlett bands, 
and they display noticeably less evidence of any systematic pat tern than for the 
squared standardized ARCH(5) residuals. 

In Figure 14.8 we show the time series of estimated conditional standard 
deviations implied by the estimated GARCH(1, 1) model . Clearly, volatility 

T A B L E >^ 3 
GARCH(1, 1) 
Model, NYSE 
Returns 

Dependent variable: R 
Method: ML-ARCH (Marquardt) 

Sample: 1 3461 
Included observations: 3461 
Convergence achieved after 19 iterations 
Variance backcast: ON 

Coefficient Std. Error z-Statistic Prob. 

Variance Equation 
0.000640 0.000127 5.036942 0.0000 

c 1.06E-06 1.49E-07 7.136840 0.0000 
ARCH(l) 0.067410 0.004955 13.60315 0.0000 
GARCH(l) 0.919714 0.006122 150.2195 0.0000 

R2 -0.000191 Mean dependent var. 0.000522 
Adjusted R2 -0.001059 SD dependent var. 0.008541 
SE of regression 0.008546 Akaike info criterion -6.868008 
Sunt squared resid. 0.252471 Schwarz criterion -6.860901 
Log likelihood 11889.09 Durbin-Watson stat. 1.861389 
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fluctuates a great deal and is highly persistent. For comparison we show in 
Figure 14.9 the series of exponentially smoothed r,, computed using a stan­
dard smoothing parameter of 0 .05 . 1 9 Clearly the GARCH and exponent ial 
smoothing volatility estimates behave similarly, al though not at all identically. 
The difference reflects the fact that the GARCH smoothing parameter is 

_ 0.025 

0.000 
500 1000 1500 2000 

Time 

2500 3000 

F1L5URE 14 B 
Estimated 
Conditional 
Standard 
Droiation, 
GARCH(1, 1) 
Model, NYSE 
Returns 

1 9 For comparability with the earlier-computed GARCH estimated conditional standard deviation, 
we actually show the square root of exponentially smoothed r,. 
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effectively estimated by the m e t h o d of maximum likelihood, whereas the ex­
ponent ia l smoothing parameter is set rather arbitrarily. 

Now, using the model estimated using observations 1-3461, we genera te a 
forecast of the conditional s tandard deviation for the out-of-sample observa­
tions 3462-3531. We show the results in Figure 14.10. The forecast period 
begins jus t following a volatility burst, so it is not surprising that the forecast 
calls for gradual volatility reduct ion. For greater unders tanding, Figure 14.11 
presents both a longer history and a longer forecast. Clearly the forecast con­
ditional standard deviation is reverting exponentially to the uncondit ional 
s tandard deviation (0.009), per the formula discussed earlier. 
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Exercises, Problems, and Complements 

3. 

(Removing conditional mean dynamics before modeling volatility dynamics) In 
the application in the text, we noted that NYSE stock returns appeared to have 
some weak conditional mean dynamics, yet we ignored them and proceeded 
directly to model volatility. 
a. Instead, first fit autoregressive models using the SIC to guide order selection, 

and then fit GARCH models to the residuals. Redo the entire empirical 
analysis reported in the text in this w^y, and discuss anv important differences 
in the results. 

b. Consider instead the simultaneous estimation of all parameters of AR(p)-
GARCH models. That is, estimate regression models where the regressors are 
lagged dependent variables and die disturbances display GARCH. Redo the 
entire empirical analysis reported in the text in this way, and discuss any 
important differences in the results relative to those in the text and those 
obtained in part a. 

(Variations on the basic ARCH and GARCH models). Using the stock return data, 
consider richer models than the pure ARCH and GARCH models discussed in the 
text. 
a. Estimate, diagnose, and discuss a threshold GARCH (1, 1) model. 
b. Estimate, diagnose, and discuss an EGARCH(1, 1) model. 
c. Estimate, diagnose, and discuss a component GARCH (1, 1) model. 
d. Estimate, diagnose, and discuss a GARCH-M model. 

(Empirical performance of pure ARCH models as approximations to volatility 
dynamics) Here we will fit pure ARCH(p) models to the stock return data, 
including values of/? larger than p = 5 as done in the text, and contrast the 
results with those from fitting GARCH(p, q) models, 
a. When fitting pure .ARCH (p) models, what value of p seems adequate? 
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b. When fitting GARCH (/>,</) models, what values of p and q seem adequate? 
c. Which approach appears more parsimonious? 

4. (Direct modeling of volatility proxies) In the text, we fit an AR(5) directly to a 
subset of the squared NYSE stock returns. In this exercise, use the entire KYSE 
dataset. 
a. Construct, display, and discuss the fitted volatility series from the AR(5) 

model. 
b. Construct, display, and discuss an alternative fitted volatility series obtained by 

exponendal smoothing, using a smoothing parameter of 0.10, corresponding 
to a large amount of smoodting, but less than that done in the text. 

c. Construct, display, and discuss the volatility series obtained by fitting an 
appropriate GARCH model. 

d. Contrast the results of parts a, b, and c. 
e. Why is fitting of a GARCH model preferable in principle to die AR(5) or 

exponential smoothing approaches? 

5. (GARCH volatility forecasting) You work for Xanadu, a luxury resort in the 
tropics. The daily temperature in the region is beautiful year-round, with a mean 
around 76 (Fahrenheit!) and no conditional mean dynamics. Occasional pressure 
systems, however, can cause bursts of temperature volatility. Such volatility bursts 
generally don't last long enough to drive away guests, but the resort still loses 
revenue from fees on activities that are less popular when the weather isn't 
perfect. In the middle of such a period of high temperature volatility, your boss 
gets worried and asks vou make a forecast of volatility over the next 10 days. After 
some experimentation, you find that daily temperature y , follows 

y, | f2,_i ~ AT (p.. o f ) , 
>> 

where a," follows a GARCH(1, 1) process, 
t 2 „ 2 a , = w 4- aE,_, + ficr,_l . 

a. Estimation of your model using historical daily temperature data yields 
ji = 76, u> = 3, a = 0.6, and |3 = 0. If yesterday's temperature was 92 degrees, 
generate point forecasts for each of the next 10 days' conditional variance. 

b. According to your volatility forecasts, how many days will it take until volatility 
drops enough such that there is at least a 90% probability that the 
temperature will be within 4 degrees of 76? 

c. Your boss is impressed by vour knowledge of forecasting and asks you whether 
your model can predict the next spell of bad weather. How would you answer 
him? 

6. (Assessing volatility dynamics in observed returns and in standardized returns) In 
the text, we sketched the use of correlograms of squared observed returns for the 
detection of GARCH and squared standardized returns for diagnosing the 
adequacy of a fitted GARCH model. Examination of Ljung-Box statistics is an 
important part of a correlogram analysis. McLeod and Li (19.83) show that the 
Ljung-Box statistics may be legitimately used on squared observed returns, in 
which case it will have die usual x,« disuibution under the null hypothesis of 
independence. Bollerslev and Mikkelson (1996) argue that one may also use the 
Ljung-Box statistic on die squared standardized returns but that a belter 
distributional approximation is obtained in that case by using a X,»-* distribution, 
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where k is tlte number of estimated GARCH parameters, to account for degrees of 
freedom used in model fitting. 

7. (Allowing for leptokurtic conditional densities) Thus far, we have worked 
exclusively with conditionally Gaussian GARCH models, which correspond t o 

i i d 

i / , - -V(0, 1) 
or, equivalentlv. to normality7 of the standardized return, E//cr,. 
a. The conditional normality assumption may sometimes be violated. However, 

Bollerslcv and Wooldridge (1992) show that GARCH parameters are 
consistently estimated by Gaussian maximum likelihood even when the 
normality assumption is incorrect. Sketch some intuition for this result. 

b. Fit an appropriate conditionally Gaussian GARCH model to the stock return 
data. How might you use the histogram of the standardized returns to assess 
the validity of the conditional normality assumption? Do so and discuss your 
results. 

c Sometimes the conditionally Gaussian GARCH model does indeed fail to 
explain all of the leptokurtosis in returns; that is, especially with very high-
frequency data, we sometimes find that the conditional density is leptokurtic. 
Fortunately, leptokurtic conditional densities are easily incorporated into 
the GARCH model. For example, in Bollerslev's (1987) conditionally 
S t u d e n t ' s / G A R C H model, the conditional density is assumed to be 
Student's /, with the degrees-of-freedom d treated as another parameter t o 
be estimated. More precisely, we write 

£, = a,v, 

V t ~~ std</,,) ' 
What is the reason for dividing the Student's / variable, by its standard 
deviation, std(7,/)? How might such a model be estimated? 

8. (Optimal prediction under asymmetric loss) In the text, we stressed GARCH 
modeling for improved interval and density forecasting, implicitly working under 
a symmetric loss function. Less obvious but equally true is the fact that, imder 
as\mmetric\o$&, volatility dynamics can be exploited to produce improved point 
forecasts, as shown bv Christoffersen and Diebold (1996, 1997). The optimal 
predictor under asymmetric loss is not the conditional mean but rather the 
conditional mean shifted by a time-varying adjustment that depends on 
the conditional variance. The intuition for the bias in the optimal predictor is 
simple: When errors of one sign are more costly than errors of the other sign, it 
is desirable to bias the forecasts in such a way as to reduce the chance of making 
an error of the more damaging type. The optimal amount of bias depends on the 
conditional prediction error variance of the process because, as the conditional 
variance grows, so, too, does the optimal amount of bias needed to avoid large 
prediction errors of (he more damaging type. 

9. (Mult ivariate G A R C H models) In the multivariate case, such as when modeling a 
net of returns rather than a single return, we need to model not only conditional 
variances but also conditional cowiriances. 
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a. Is the GARCH conditional variance specification introduced earlier, say for 
the h h return, 

still appealing in the multivariate case? Why or why not? 
b. Consider the following specification for the conditional covariance between 

rth and j th returns: 

Is it appealing? Why or why not? 
c. Consider a fully general multivariate volatility model, in which every conditional 

variance and covariance may depend on lags of every conditional variance and 
covariance, as well as lags of every squared return and cross product of returns. 
What are the strengths and weaknesses of such a model? Would it be useful for 
modeling, say, a set of500 returns? If not, how might you proceed? 

Bibliographical and Computational Nates 
This chapter draws on the survey by Diebold and Lopez (1995), which may be 
consulted for additional details. Other broad surveys include Bollerslev, Chou, and 
Kroner (1992); Bollerslev, Engle, and Nelson (1994); Taylor (2005); and Andersen 
etal. (2007). 

Engle (1982) is the original development of the ARCH model. Bollerslev (1986) 
provides the important GARCH extension, and Engle (1995) contains many others. 
Diebold (1988) shows convergence to normality under temporal aggregation. 

TGARCH traces to Glosten.Jagannathan, and Runkle (1993) and EGARCH to 
Nelson (1991). Engle, Lilien, and Robins (1987) introduce the GARCH-M model, 
and Engle and Lee (1999) introduce component GARCH. 

Recently, methods of volatility measurement, modeling, and forecasting have 
been developed that exploit the increasing availability of high-frequency financial 
asset return data. For a fine overview, see Dacorogna et al. (2001); for more recent 
developments, see Andersen, Bollerslev, Diebold, and Labys (2003) and Andersen, 
Bollerslev, and Diebold (2006). For insights into the emerging field of financial 
econometrics, see Diebold (2001) and many of the other essavs in die same 
collection. 

cfji = a) 4- a£] 

<jjjA = o> 4- ae,.,_i.e;,,_i + Bo-^,_i. 

Concepts (or Review 
Heteroskedasticity 
Time-varying volatility 
Financial econometrics 

Asymmetric response 
Threshold GARCH 
Exponential GARCH 
GARCH-in-mean ARCH(/>) process 

Volatility clustering 
Volatility dynamics 

Component GARCH 
Student's t GARCH 
Multivariate GARCH GARCH(/>, q) process 
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