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Introduction
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Numerous Communities Use Econometrics

Economists, statisticians, analysts, "data scientists” in:

» Finance (Commercial banking, retail banking, investment
banking, insurance, asset management, real estate, ...)

» Traditional Industry (manufacturing, services, advertising,
brick-and-mortar retailing, ...)

» e-Industry (Google, Amazon, eBay, Uber, Microsoft, ...)

v

Consulting (financial services, litigation support, ...)

» Government (treasury, agriculture, environment, commerce,
» Central Banks and International Organizations (FED, IMF,
World Bank, OECD, BIS, ECB, ...
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Econometrics is Special

Econometrics is not just “statistics using economic data”. Many
properties and nuances of economic data require knowledge of
economics for sucessful analysis.

Emphasis on predictions, guiding decisions

Observational data

>

>

» Structural change

» Volatility fluctuations (" heteroskedasticity” )
>

Even trickier in time series: Trend, Seasonality, Cycles ("serial
correlation™)
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Let's Elaborate on the “Emphasis on Predictions Guiding
Decisions” ...

Q: What is econometrics about, broadly?

A: Helping people to make better decisions
» Consumers

» Firms

» Investors

| 2
»

Policy makers

Forecasts guide decisions.
Good forecasts promote good decisions.

Hence prediction holds a distinguished place in econometrics,
and it will hold a distinguished place in this course.
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Types/Arrangements of Economic Data
— Cross section
Standard cross-section notation: i =1,.... N

— Time series

Standard time-series notation: t =1,..., T

Much of our discussion will apply to both cross-section and
time-series environments, but still we have to pick a notation.
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A Few Leading Econometrics Web Data Resources
(Clickable)

Indispensible:

» Resources for Economists (AEA)
» FRED (Federal Reserve Economic Data)

More specialized:

» National Bureau of Economic Research
» FRB Phila Real-Time Data Research Center

> Many more
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http://www.rfe.org
https://fred.stlouisfed.org/
http://www.nber.org
http://www.philadelphiafed.org/research-and-data/real-time-center/

A Few Leading Econometrics Software Environments
(Clickable)

» High-Level: EViews, Stata

» Mid-Level: R (also CRAN; RStudio; R-bloggers), Python (also
Anaconda), Julia

» Low-Level: C, C++, Fortran

“High-level” does not mean “best”, and “low-level’ does not
mean worst. There are many issues.
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http://www.eviews.com
http://www.stata.com/
http://www.r-project.org
http://cran.r-project.org
http://www.rstudio.com
http://www.r-bloggers.com/
https://www.python.org/
https://anaconda.org
http://julialang.org/
https://gcc.gnu.org/

Graphics Review
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Graphics Help us to:

» Summarize and reveal patterns in univariate cross-section
data. Histograms and density estimates are helpful for learning
about distributional shape. Symmetric, skewed, fat-tailed, ...

» Summarize and reveal patterns in univariate time-series data.
Time Series plots are useful for learning about dynamics.
Trend, seasonal, cycle, outliers, ...

» Summarize and reveal patterns in multivariate data
(cross-section or time-series). Scatterplots are useful for
learning about relationships. Does a relationship exist? Is it
linear or nonlinear? Are there outliers?
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Histogram Revealing Distributional Shape:
1-Year Government Bond Yield
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Time Series Plot Revealing Dynamics:
1-Year Goverment Bond Yield
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Scatterplot Revealing Relationship:
1-Year and 10-Year Government Bond Yields
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Some Principles of Graphical Style

» Know your audience, and know your goals.
> Appeal to the viewer.

» Show the data, and only the data, withing the bounds of
reason.

» Avoid distortion. The sizes of effects in graphics should match
their size in the data. Use common scales in multiple
comparisons.

» Minimize, within reason, non-data ink. Avoid chartjunk.

» Third, choose aspect ratios to maximize pattern revelation.
Bank to 45 degrees.

» Maximize graphical data density.

» Revise and edit, again and again (and again). Graphics
produced using software defaults are almost never satisfactory.
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Probability and Statistics Review
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Moments, Sample Moments and Their Sampling
Distributions

P Discrete random variable, y
» Discrete probability distribution p(y)
» Continuous random variable y

> Probability density function f(y)
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Population Moments: Expectations of Powers of R.V.'s

Mean measures location:

pw=E(y) = Z piyi (discrete case)

1

pw=E(y)= /y f(y)dy (continuous case)

Variance, or standard deviation, measures dispersion, or scale:

o? = var(y) = E(y — p)*.

— o easier to interpret than o2. Why?
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More Population Moments

Skewness measures skewness (!)

_Ey-w®

o3

S

Kurtosis measures tail fatness relative to a Gaussian distribution.
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Covariance and Correlation

Multivariate case: Joint, marginal and conditional distributions
f(x,y), f(x), f(y), f(xly), f(ylx)
Covariance measures linear dependence:

cov(y,x) = E[(y — py)(x — px)]-

So does correlation:

cov(y, x)

corr(y,x) = g
yOx

Correlation is often more convenient. Why?
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Sampling and Estimation

Sample : {y;}N, ~ iid f(y)
Sample mean:
1N
y = N Z}’i
i=1
Sample variance:

N —
52 — iy — )/)2

N
Unbiased sample variance:
N _
2 — > iz (i — Y)2
N-1
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More Sample Moments

Sample skewness:

N _
% Zi:l()/i - )/)3

S=
53
Sample kurtosis:
N _
K — % >im1(yi — 7)!

6-4
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Still More Sample Moments

Sample covariance:

N
cv(y, x) Z 7)(xi — %))

Sample correlation:

&rr(y. x) = 2 X)
Gy0x
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Exact Finite-Sample Distribution of the Sample Mean
(Requires iid Normality)

Simple random sampling : y; ~ iid N(p,0°),i =1,..., N

¥ is unbiased and normally distributed with variance o°/N.

0_2
g~ N (2
y (u,N),

and we estimate o using s2, where

&2 — 2?1:1(}’1' _)7)2
N—-1 '

e {y:l:tl_%(N— 1)%} wp. 1—a

p=p = Tt g (V-1

VN
where “tl,%(N —1)" denotes the appropriate critical value of the Student'’s ¢
density with N — 1 degrees of freedom
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Large-Sample Distribution of the Sample Mean
(Requires iid, but not Normality)

Simple random sampling : y; ~ iid (i, 02), i=1,...,.N
y is consistent and asymptotically normally distributed with variance v.

a
y o~ N(Na V)7

and we estimate v using 0 = s?/N, where
N _
2 — Sy —y)?
N-—-1 '

This is an approximate (large-sample) result, due to the central limit theorem.
The “a" is for “asymptotically”, which means “as N — oo”.

s
As N — o0, p € {yizl,%— w.p. l—a«a
VN

As N = o0, p=p = @NN(OJ)
VN
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Wages: Distributions
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Wages: Sample Statistics

WAGE log WAGE

Sample Mean 12.19 2.34
Sample Median 10.00 2.30
Sample Maximum 65.00 4.17
Sample Minimum 1.43 0.36
Sample Std. Dev. 7.38 0.56
Sample Skewness 1.76 0.06
Sample Kurtosis 7.93 2.90
Jarque-Bera 2027.86 1.26
(p=10.00) (p=0.53)
t(Ho : p=12) 0.93 -625.70

(p=0.36) (p=0.00)
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Regression
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Regression

A. As curve fitting. “Tell a computer how to draw a line through a
scatterplot”. (Well, sure, but there must be more...)

B. As a probabilistic framework for optimal prediction.
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Regression as Curve Fitting
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Distributions of Log Wage, Education and Experience
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Scatterplot: Log Wage vs. Education
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Curve Fitting

Fit a line:

yi = B1+ Pox;

Solve:
N
min > (yi — 1 — Boxi)?

B1,82 P

“least squares” (LS, or OLS)

“quadratic loss”
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Actual Values, Fitted Values and Residuals

Actual values: y;, i=1,.... N
Least-squares fitted parameters: 51 and Bz
Fitted values: y; = B1 + Poxi, i = 1,..., N,

(“hats” denote fitted things...)

Residuals: ej =y; —y;, i=1,...,N.
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Log Wage vs. Education with Superimposed Regression
Line

0 4 8 12 16 20 24

LWAGE = 1.273 + .081EDUC
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Multiple Linear Regression (K RHS Variables)

Solve:
N

ﬁm?,nﬁx ,Z:; (vi — B1 — Baxia — . — Brxik)?
Fitted hyperplane:
9i = P1+ Poxio + ... + Brxix

More compactly:
K
%i = Brxik,
k=1
where x;1 = 1 for all /.

Wage dataset:

LWAGE = 867 + .093EDUC + .013EXPER
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Regression as a Probability Model
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An ldeal Situation (“The Ideal Conditions”, or IC)
1. The data-generating process (DGP) is:

Yi = P1+ Poxia + ... + Prxik + €
g; ~ iidN(0, o?)
i=1,..,N,

and the fitted model matches it exactly.
1.1 The fitted model is correctly specified
1.2 The disturbances are Gaussian
1.3 The coefficients (5k's) are fixed
1.4 The relationship is linear
1.5 The g;'s have constant unconditional variance o2
1.6 The €;'s are uncorrelated
2. g; is independent of (x;1, ..., xjk), for all i
2.1 E(&‘,‘ | Xi1, ...,X,'K) = 0, for all i
2.2 var(e; | xi1, ..., xi) = o2, for all i
(Written here for cross sections. Slight changes in 2.1, 2.2 for tim
series.)
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Some Concise Matrix Notation
(Useful for Notation, Estimation, Inference)

You already understand matrix (“spreadsheet”) notation,
although you may not know it.

i 1 xpo x3 ... Xk B1 €1

Y2 1 x» x3 ... X B2 &2
y = X = 6 = E =

YN 1 Xy2 Xn3 ... Xnk Bk EN
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Elementary Matrices and Matrix Operations

0 0 0 10 . 0
00 0 01 . 0
0 0 0 0 0 1

Transposition: Aj-j = Aji
Addition: For Aand B nx m, (A+ B); = Aj + Bj
Multiplication: For A n x m and B m x p, (AB)jj = Y i1 AikByj.

Inversion: For non-singular A n X n, A1 satisfies
A~TA = AA~! = |. Many algorithms exist for calculation.
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The DGP in Matrix Form, Written Out

%1 1 X2 x13 ... Xxik B1 €1
ya| |1 xe2 xe3 ... Xk B2 €2
YN 1 xn2 xn3 ... Xnk Bk EN

€1 0 o2 0 0

) 0 0 o2 0

~ N , .
EN 0 0O O o2
y=XB+e¢
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Three Notations

Original form:
Yi = P1+ Baxiz + .. + Brxik + &, &i ~ iidN(0,07)
i=1,2...,N
Intermediate form:
vi=x\B+¢e;, e~ iidN(0,0?)
i=1,2,...,N
Full matrix form:

y=XB+e e~ N(O,O‘2I)
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Ideal Conditions Redux

We used to write this: The DGP is
Vi = B1+ Boxia + ... + Brxik + iy €i ~ iidN(0, 0?),
and the fitted model matches it exactly, and

¢; is independent of (x1, ..., xix), for all i

Now, equivalently, we write this: The DGP is
y=XB+e, &~ N(0,0o°

and the fitted model matches it exactly, and

¢; is independent of x;, for all i
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The OLS Estimator in Matrix Notation

As before, the LS estimator solves:

N
i (0= e

i=1

Now, in matrix notation:

min (y = XB)(y — XB))

It can be shown that the solution is:

Brs = (X' X)Xy
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Large-Sample Distribution of /s
Under the IC

s is consistent and asymptotically normally distributed with
covariance matrix V/,

Note the precise parallel with the large-sample distribution of the
sample mean.
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Sample Mean, Regression on an Intercept, and Properties
of Residuals

— Sample mean is just LS regression on nothing but an intercept.
(Why?)

— Intercept picks up a “level effect”

— Regression generalizes the sample mean to include predictors
other than just a constant

— If an intercept is included in a regression,
the residuals must sum to 0 (Why?)
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Conditional Moment Implications of the IC
Conditional mean:

E(y; | xi=x*) = x*'B

Conditional variance:

var(y; | xi=x*) = o?

Full conditional density:

yi | xi=x* ~ N(x*/,B, 02)

Why All the Talk About Conditional Moment Implications?
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“Point Prediction”

A major goal in econometrics is predicting y. The question is “If a
new person j arrives with characteristics x;=x"*, what is my best
prediction of her y;? The answer is E(y; | x;/=x*) = x*'f3.

“The conditional mean is the minimum MSE point predictor”

Non-operational version (remember, in reality we don’t know [3):
E(yi | xj = x*)=x*'$

Operational version (use BLS):
E(y; | xi=x*) = x*Bis (regression fitted value at x;=x*)

— LS delivers operational optimal predictor with great generality

— Follows immediately from the LS optimization problem
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“Interval Prediction”

Non-operational (in reality we don't know 3 or o):

vi € [x*B+1.960] w.p.0.95

Operational:

yi € [xBLs £1.965] w.p. 0.95

(Notice that, as is common, this operational interval forecast
ignores parameter estimation uncertainty, or equivalently, assumes
a large sample, so that that the interval is based on the standard
normal distribution rather than Student’s t.)
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“Density Prediction”

Non-operational version:

yi | xi=x® ~ N(X*lﬁ7 02)

Operational version:

yvi | xi=x* ~ N(x"'fis, s°)

(This operational density forecast also ignores parameter
estimation uncertainty, or equivalently, assumes a large sample, as
will all of our interval and density forecasts moving forward.)
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“Typical” Regression Analysis of Wages, Education and

Experience

=) Equation: UNTITLED Worlkfile: GRAPHS: Untitled\

x

[VIEW[Pru(IDbJE(t] [PrlnthamE[FrEEZE] [EstlmatelFUrE(astIStatisEslds]

so\documents\my dropl

10W Delete

ragekernel
nwhite

1

'sid

ble01
roregressions
tion

age

agehist
agehistandstats
agekernel

Dependent Variable: LWAGE
Method: Least Squares

Date: 06/27/13 Time: 16:38
Sample (adjusted): 1 1323

Included cbservations: 1323 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
C 0.867382 0.075331 11.51431 0.0000
EDUC 0.093229 0.005045 18.48002 0.0000
EXPER 0.013104 0.001164 11.26208 0.0000
R-squared 0.232224 Mean dependent var 2.341995
Adjusted R-squared 0.231061 S.D. dependent var 0.561435
S.E. of regression 0.492318 Akaike info criterion 1.422881
Sum squared resid 319.9376 Schwarz criterion 1.434644
Log likelihood -938.2358 Hannan-Quinn criter. 1.427291
F-statistic 199.6260 Durbin-Watson stat 1.926045

Prob(F-statistic) 0.000000

EXPER
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“Top Matter”: Background Information

» Dependent variable
> Method
> Date

» Sample

v

Included observations
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“Middle Matter”: Estimated Regression Function

> Variable

» Coefficient — appropriate element of (X'X) ™1 X'y

» Standard error — appropriate diagonal element of \/W
P t-statistic — coefficient divided by standard error

P> p-value
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Predictive Perspectives

— OLS coefficient signs and sizes give the weights put on the
various x variables in forming the best in-sample prediction of y.

— The standard errors, t statistics, and p-values let us do statistical
inference as to which regressors are most relevant for predicting y.
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“Bottom Matter: Statistics”

There are many...
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Regression Statistics: Mean dependent var 2.342
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Predictive Perspectives

The sample, or historical, mean of the dependent variable, y, an
estimate of the unconditional mean of y, is a naive benchmark
forecast. It is obtained by regressing y on an intercept alone — no
conditioning on other regressors.
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Regression Statistics: S.D. dependent var .561

_ Z,N:l()’i —7)?
SD = N1
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Predictive Perspectives

— The sample standard deviation of y is a measure of the in-sample
accuracy of the unconditional mean forecast .
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Regression Statistics: Sum squared resid 319.938

N
SSR=> ¢
i=1

— Optimized value of the LS objective; will appear in many places.
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Predictive Perspectives

— The OLS fitted values, y; = X,/B are effectively in-sample
regression predictions.

— The OLS residuals, e; = y; — y;, are effectively in-sample
prediction errors corresponding to use of the regression predictions.

SSR measures “total” in-sample predictive accuracy
“squared-error loss”

“quadratic loss”
SSR is closely related to in-sample MSE:
1 1<
_ _ 2
MSE = 1SSR = N;e,

(“average" in-sample predictive accuracy)
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Regression Statistics: F-statistic 199.626

(SSRres - SSR)/(K — 1)
SSR/(N — K)

F =
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Predictive Perspectives

— The F statistic effectively compares the accuracy of the
regression-based forecast to that of the unconditional-mean
forecast.

— Helps us assess whether the x variables, taken as a set, have
predictive value for y.

— Contrasts with the t statistics, which assess predictive value of
the x variables one at a time.
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Regression Statistics: S.E. of regression .492
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Predictive Perspectives

s? is just SSR scaled by N — K, so again, it's a measure of the
in-sample accuracy of the regression-based forecast.

Like MSE, but corrected for degrees of freedom.
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Regression Statistics:
R-squared .232, Adjusted R-squared .231

1 N 2
R2_1 N Die1 €

_ - -
% Zi:l(yi - Y)2

1 N 2
= VoK Doie1 €

RP=1-
N _
1 D (i — ¥)?

“What percent of variation in y is explained by variation in x?"
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Predictive Perspectives

R? and R? effectively compare the in-sample accuracy of
conditional-mean and unconditional-mean forecasts.

R? is not corrected for d.f. and has MSE on top:

1 N 2
N Die1 &

RP=1-
N _
%Ziﬂ(%‘ —)/)2

R? is corrected for d.f. and has s2 on top:

1 N 2

R2=1-—
N -
T (i — 7)?
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R? and “Multicollinearity”
(not shown in the computer output)

Perfect multicollinearity (Big problem for LS!):
One x a perfect linear combination of others. X’X singular.

Imperfect multicollinearity (Not a big problem for LS):
One x correlated with a linear combination of others.

We often measure the strength of multicollinearity by R,% the
R? from a regression of x, on all other regressors.

It can be shown that:

5 2 2 2
var(Bx) =f | o°, o5, Rk

+ Z +

68 /280



Predictive Perspectives

— Multollinearity makes it hard to identify the contributions of the
individual x's to the overall predictive relationship.
(Low t-stats)

— But we still might see evidence of a
strong overall predictive relationship.
(High F-stat)
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Regression Statistics: Log likelihood -938.236

Understanding this requires some background / detail:

» Likelihood — joint density of the data (the y;'s)
> Maximum-likelihood estimation — natural estimation strategy:
find the parameter configuration that maximizes the likelihood

of getting the y;'s that you actually did get.

» Log likelihood — will have same max as the likelihood (why?)
but it's more important statistically

» Hypothesis tests are based on log likelihood
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Detail: Maximum-Likelihood Estimation

Linear regression DGP (under the IC) implies that:
yilxi ~ iidN(x{ B, 5%),
so that I .
F(yilx) = (2m0?) 7 e22 Vi)
Now by independence of the ;'s and hence y;'s,

N

L="1f(y1,...,yn|xi) = fyalxa)f(ynlxn) = H(2w02)%leﬁ(yi—xfﬁ)2
i=1
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Detail: Log Likelihood
-N 1 N
InL=In ((27702)T> ~ 552 Z(}/i — x;B)?

-N N
= T/n(27r) — Eln 20—2 Z — X; 6
— Log turns the product into a sum and eliminates the exponential

— The [ vector that maximizes the likelihood is the 3 vector that
minimizes the sum of squared residuals

— Additive constant _TNIn(27T) can be dropped

— “MLE and OLS coincide for linear regression under the I1C”
(Normality, in particular, is crucial)

72/280



Detail: Likelihood-Ratio Tests

It can be shown that, under the null hypothesis (that is, if the
restrictions imposed under the null are true):

a
—2(InLy —InLy) ~ X3,

where In Ly is the maximized log likelihood under the restrictions
imposed by the null hypothesis, In Ly is the unrestricted log
likelihood, and d is the number of restrictions imposed under the
null hypothesis.

— t and F tests are likelihood ratio tests under a normality
assumption, which of course is part of the IC. That's why they can
be written in terms of minimized SSR’s in addition to maximized
InL’s.
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Predictive Perspectives

» Gaussian L is intimately related to SSR

» Therefore L is closely related to prediction (and measuring
predictive accuracy) as well

» Small SSR <= large L
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Regression Statistics: Schwarz criterion 1.435
Akaike info criterion 1.422

We'll get there shortly...
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Regression Statistics: Durbin-Watson stat. 1.926

We'll get there in six weeks...
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Residual Scatter

LWAGE
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Residual Plot

WH‘ IH\\ |

250 500 750 1000 1250

—— Residual —— Actual —— Fitted

Figure: Wage Regression Residual Plot
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Predictive Perspectives

— The LS fitted values, y; = x,’ﬁA are effectively best in-sample
predictions.

— The LS residuals, e; = y; — y;, are effectively in-sample prediction
errors corresponding to use of the best predictor.

— Residual plots are useful for visually flagging violations of the IC
that can impact forecasting.

For example:
1. The true DGP may be nonlinear
2. & may be non-Gaussian

3. € may have non-constant variance
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Misspecification and Model Selection

Do we really believe that the fitted model matches the DGP?
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Regression Statistics:
Akaike info criterion 1.422, Schwarz criterion 1.435

SSR versions:

N €
AIC = e &=L 50
N

More general InL versions:
AIC = =2InL + 2K

SIC = —=2InL + KInN
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Penalties
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Predictive Perspectives

— Estimate out-of-sample forecast accuracy (which is what we
really care about) on the basis of in-sample forecast accuracy. (We
want to select a forecasting model that will perform well for
out-of-sample forecasting, quite apart from its in-sample fit.)

— We proceed by inflating the in-sample mean-squared error
(MSE), in various attempts to offset the deflation from regression
fitting, to obtain a good estimate of out-of-sample MSE.

N 2

D ie1 €
MSE = &i=151
N

N
2 _
s —<N_K>MSE

SIC = (N(%)) MSE

“Oracle property”
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Non-Normality and Outliers

Do we really believe that the disturbances are Gaussian?
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What We'll Do

— Problems caused by non-normality and outliers
(Large sample estimation results don't change,
LS results can be distorted or fragile, and
density prediction changes)

— Detecting non-normality, outliers, and influential observations
(JB test, residual histogram, residual QQ plot,
residual plot and scatterplot, leave-one-out plot, ...)

— Dealing with non-normality, outliers, and influential observations
(LAD regression, simulation-based density forecasts, ...)
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Large-Sample Distribution of BLS
Under the ldeal Conditions (Except Normality)

515 is consistent and asymptotically normally distributed with
covariance matrix V/,

a
BLS ~ N(ﬁ? V))
and we estimate V' using V = s2(X’X)™1, where

N 2
2 D=1 €

N—-K

No change from asymptotic result under IC!
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So why worry about normality?

— Non-normality and resulting outliers
can distort finite-sample estimates

— Interval and density prediction change fundamentally
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Jarque-Bera Normality Test

— Sample skewness and kurtosis, Sand K

— Jarque-Bera test. Under normality we have:
N

N 1 -
B — — 2 (K — 2 ~ 2
J 6(5 +4( 3)) X2

— Many more
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Recall Our OLS Wage Regression

=) Equation: UNTITLED Worlfile: GRAPHS: Untitled\ TR
[VIEW[Prn:IDmE:t] [PrlnthamE[FrEeZe] [Estlmate]Fore:astlitatisEslds]

setdocumentsimy drogd e hendent Variable: LWAGE -

ou[retcn]storeetete|  pathod: Least Squares I
Date: 06/27/13 Time: 16:38

- | Sample (adjusted): 1 1323

ragekernel Included observations: 1323 after adjustments

nwhite

Lid Variable Coefficient Std. Error t-Statistic Prob.

ble01

Ioregressions [& 0.867382 0.075331 11.51431 0.0000

rion EDUC 0.093229 0.005045 18.48002 0.0000

age EXPER 0.013104 0.001164 11.26208 0.0000

agehist

:gzg:::;dsms R-squared 0.232224 Mean dependent var 2.341995
Adjusted R-squared 0.231061 S.D. dependent var 0.561435
S.E. of regression 0.492318 Akaike info criterion 1.422881
Sum squared resid 319.9376 Schwarz criterion 1.434644
Log likelihood -938.2358 Hannan-Quinn criter. 1.427291
F-statistic 199.6260 Durbin-Watson stat 1.926045
Prob(F-statistic) 0.000000

EXPER

Path = c\users\francis x, diebo\documents\diebold files\courses\econ104\old\econl04_2011\sw3e\eviews mfﬁla ;ﬁ ﬁB =
| = e = =




OLS Residual Histogram and Statistics

I SIS 2222 I W WS e

View Proc Quick Options Add-ins Window Help

i ES:HE RESID Workfile: WAGESWFTEMP::Untitled\ - A Xx
[view | proc| object| Froperties| [ print  Hame [ Freeze | sample | Genr | sheet| Grapn | stats [ 1ent
SESWFTEMP - ( sers\francis x. diebo\d|
400 — 1400 obs
323 — 1323 obs
B table1dd 140
S table1ddd mill Series: RESID
Stablete . Sample 1 1323
Stabletf B u Observations 1323
Stable1ff
Stable1ff | 1007 M Mean -5.826-16
Btable1ggg Median 0.003600
Stable1ggg| 80 i TreseT
B uni_non il :
& union st Minimum -1.888482
Swage Std. Dev. 0.455104
Skewness -0.228689
i Kurtosis 3.712251
er 20 Jarque-Bera  39.49685
Probability 0.000000
o LA L L
15 10 05 0.0 05 1.0 15
NewPage /|
TE&U | Z3oT1ZuiZ] |
21 | 2.550637
Sl

Path = isx. diebo\ DB = no@y) MDg@=g=:




QQ Plots

> We introduced histograms earlier...

» ...but if interest centers on the tails of distributions, QQ plots
often provide sharper insight as to the agreement or
divergence between the actual and reference distributions

> QQ plot is quantiles of the standardized data against quantiles
of a standardized reference distribution (e.g., normal)

> If the distributions match, the QQ plot is the 45 degree line
» To the extent that the QQ plot does not match the 45 degree

line, the nature of the divergence can be very informative, as
for example in indicating fat tails
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OLS Wage Regression Residual QQ Plot

4 B N S W WS 20202002 il

View Proc Quick Options Add-ins

Window Help

£/ Series: RESID  Workfile: WAGESWFTEMP: Untitlech

[view]Proc| Object | Properties | Print | Name [Freeze | Defauit

~ | [options] sampe [Genr[ sheet] stats [1dent |

SESWFTEMP - (c\users\francis x. diebo\d: 1 6
2
400 — 1400 obs 124
323 — 1323 obs
Stable1e
Btable1f 0.8
Stable1ff .
Stablefff g
Etable1ggg 5 0.4+
Stable19ggg =
S uni_non 5
& union o 0.0+
Bwage k]
;E 4 obs,
g 044
€}
084
-1.2+ o
&
o
! 1642 ‘ ‘ .
New Page / -2 -1 0 1
Quantiles of RESID
. Path= is x. diebo) DB = nn?z




Residual Scatter

LWAGE
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OLS Residual Plot

TN 0909092TEETEE . o2

View Proc Quick Options Add-ins Window Help

SESWFTEMP - (c\users\francis . diebo\doct

3
400 — 1400 obs
323 - 1323 obs

Stable1e
Etable1f
Stable1ff

S table1fff
Etable1ggg
=table1gagg
& uni_non

& union

& wage

'
s}

i 250 500 750 1000 1250
Hew Page /

Residual Actual

Fitted

Path = isx. diebo\ DB = no@. VD g@age:




Leave-One-Out Plot

Consider:
(B =8), i=1..N

“Leave-one-out plot”
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Wage Regression

Leave—0One-Out Plot

0.094

Coefficient (Education)

0.090
|

| I | | I | |
0 200 400 600 800 1000 1200

Leave t out
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Robust Estimation: Least Absolute Deviations (LAD)

The LAD estimator, ﬂALAD, solves:

N
ming Z ’E,"
i=1

— Not as simple as OLS, but still simple

x!Bors is an estimate of E(y;|x;)
“OLS fits the conditional mean function”

X{BALAD is an estimate of median(y;|x;)

“LAD fits the conditional median function”

— The two are equal with symmetric disturbances, but not with
asymmetric disturbances, in which case the median is a more
robust measure of central tendency of the conditional density
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LAD Wage Regression Estimation

File Edit Object View Proc Quick Options Window Help
qreg log(wage) ¢ educ exper

Workfile: C

view| proc| obj

Range: 1132
Sample: 1132

kA age
B8]

c

A educ
kA exper
kA female
kA Inwage
A nonwhite
kA resid
kA union
A wage

<+ Output9]

= Equation: UNTITLED Workfile: CPS 1995 EVIEWS: Output95_updatel, =

m]

| view| Proc| object| [print | name | Freeze | |Estimate | Forecast| stats| resias |

Dependent Variable: LOG{WAGE)
Method: Quantile Regression (Median)

Date: 02/02M16 Time: 12:44

Sample: 11323

Included obsernvations: 1323

Huber Sandwich Standard Errors & Covariance

Sparsity method: Kernel (Epanechnikov) using residuals

Bandwidth method: Hall-Sheather, bw=0.088501

Estimation successfully identifies unique optimal solution

Variable Coefficient Std. Error t-Statistic Prob.

c 0.709127 0.087528 8101740 0.0000

EDUC 0.101366 0.006316 16.04818 0.0000

EXPER 0.016384 0.001352 12.12388 0.0000
Pseudo R-squared 0.158726 Mean dependentvar 2.341995
Adjusted R-squared 0.157452 5.D. dependentvar 0.561435
S.E. of regression 0.494150 Objective 254 (522
CQuantile dependent var 2.302585 Restr. objective 302.6985
Sparsity 1.188622 CQuasi-LR statistic 323.3745

Prob{Quasi-LR stat) 0.000000
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Digging into Prediction (Much) More Deeply (Again)

The environment is:
yI:X[/ﬁ—"_EI? i:17"‘7N7
subject to the IC, except that we allow

g; ~ iid D(0,0?)
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Simulation Algorithm for
Feasible Density Prediction With Normality

Consider a density forecast for a person t
with characteristics x;j=x".

1. Take R draws from N(0,s?).

2. Add x'j to each disturbance draw.
3. Form a density forecast by making a histogram for the output
from step 2.
[If desired, form an interval forecast (95%, say) by sorting the
output from step 2 to get the empirical cdf, and taking the left
and right interval endpoints as the the 2.5% and 97.5% values.]

As R — oo and N — oo, all error vanishes.
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Now: Simulation Algorithm for
Feasible Density Prediction Without Normality

1. Take R disturbance draws by assigning probability 1/N to
each regression residual and sampling with replacement.
2. Add x*'f to each draw.

3. Form a density forecast by fitting a density to the output from
step 2.

[If desired, form a 95% interval forecast by sorting the output from
step 2, and taking the left and right interval endpoints as the the
.025% and .975% values.]

As R — oo and N — oo, all error vanishes.
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Indicator Variables in Cross Sections:
Group Effects

Effectively a type of structural change in cross sections
(Different intercepts for different groups of people)

Do we really believe that intercepts are identical across groups?
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Dummy Variables for Group Effects

A dummy variable, or indicator variable, is just a 0-1 variable that
indicates something, such as whether a person is female:

1 if person i is female

FEMALE; = { 0 otherwise

(It really is that simple.)

“Intercept dummies”
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Histograms for Wage Covariates
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Notice that the sample mean of an indicator variable is the

fraction of the sample with the indicated attribute.
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Recall Basic Wage Regression on Education and Experience

LWAGE — C,EDUC, EXPER
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Basic Wage Regression

Results

=] Equation: UNTITLED Workfile: GRAPHS:Untitled\ -0 x
[\iew] proc| object] [print | name [ Freeze | [ Estmate [ Forecast  stats | Resias |
Workfile: GRAPHS - (c:\users\francis x. diebo\documents\my drop! Dependent Variable: LWAGE
[vaew]proc| object] [t save | petaiis /-] [snow| Feten] stare [ petete Method: Least Squares
RannadiBU0R g 500 ohs Date: 08/27/13 Time: 16:38
Sample: 1 1400 — 1400 obs Sample (adjusted): 1 1323
g:ge gmf&ﬁi‘iz“el Included observations: 1323 after adjustments
g ZS:; g ?gsid Variable Coefficient Std. Error t-Statistic Prob.
Afemale & table01
@ final W tworegressions Cc 0.867382 0.075331 11.51431 0.0000
@final2 & unien EDUC 0.093229 0.005045 18.48002 0.0000
@ finalwithstats HAwage EXPER 0.013104 0.001164 11.26208 0.0000
w graph01 @ wagshist
gg::g:gg gx:gzﬂﬁ:&dsms R-squared 0.232224 Mean dependent var 2.341995
@graph04 Adjusted R-squared 0.231061 S.D. dependent var 0.561435
@ graph05 S.E. of regression 0.492318 Akaike info criterion 1.422881
 histscovariates Sum squared resid 319.9376 Schwarz criterion 1.434644
= lwage Log likelihood -938.2358 Hannan-Quinn criter. 1.427291
@ lwageeduc F-statistic 199.6260 Durbin-Watson stat 1.926045
Wlwageeducnoline Prob(F-statistic) 0.000000
w lwageexper )
il lwagehist
@ lwagehistandstats
EXPER
«+!,_Untitled [ New Page
Path = is x. diebo files\courses\ece onl04_2011'

materials
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Introducing Sex, Race, and Union Status
in the Wage Regression

Now:

LWAGE — C,EDUC, EXPER, FEMALE, NONWHITE, UNION

The estimated intercept corresponds to the “base case” across all
dummies (i.e., when all dummies are simultaneously 0), and the
estimated dummy coefficients give the estimated extra effects (i.e.,
when the respective dummies are 1).
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Workdile: GRAPHS - (c:\users\francis x. diebo's

[vaew]proc| object] [ print save | Detaiis /-] [snow]

Range: 11400 — 1400 obs
Sample: 1 1400 — 1400 obs

Hage o lwag
B¢ o lwag
A educ & non
A exper wqq
Afemale A resi
il final = resi
w final2 tablg
w finalwithstats 1l twor|
A fit &4 unio|
@ graph01 = wag
@ graph02 o wag
@ graph03 mwag
@ graph04 o wag
@ graph05

w histscovariates

= lwage

o lwageeduc

m lwageeducnoline
o lwageexper
m lwagehist

Wage Regression on Education, Experience,
Dummies

and Group

[view] proc| object | [print [ name | Frecze | [Estimate | Forecast  stats | Resias|

Dependent Variable: LWAGE
Method: Least Squares

Date: 07/03/13 Time: 13:36
Sample (adjusted): 1 1323

Included observations: 1323 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
C 1.000385 0.073180 13.67013 0.0000
EDUC 0.090809 0.004814 18.86314 0.0000
EXPER 0.012707 0.001119 11.35624 0.0000
FEMALE -0.237535 0.025965  -9.148397 0.0000
NONWHITE -0.085286 0.035786  -2.383199 0.0173
UNION 0.223392 0.035307 6.327126 0.0000
R-squared 0.307856 Mean dependent var 2.341995
Adjusted R-squared 0.305229 S.D. dependent var 0.561435
S.E. of regression 0.467973  Akaike info criterion 1.323712
Sum squared resid 288.4212 Schwarz criterion 1.347239
Log likelihood -869.6356 Hannan-Quinn criter. 1.3325632
F-statistic 117.1568 Durbin-Watson stat 1.810120

Prob(F-statistic) 0.000000

) Untited [ Newpage /T

Graph: GRAPHOS M

Path =

is . diebo\d

files\courses\ece

onl04_2011
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Predictive Perspectives

Basic Wage Regression
— Conditions only on education and experience.
— Intercept is a mongrel combination of those for
men, women; white, non-white; union, non-union.
— Comparatively sparse “information set”.
Forecasting performance could be improved.

Wage Regression With Dummies
— Conditions on education, experience,
and sex, race, and union status.
— Now we have different, “customized”, intercepts
by sex, race, and union status.
— Comparatively rich information set.
Forecasting performance should be better.
e.g., knowing that someone is female, non-white, and non-union
would be very valuable (in addition to education and experience) g
for predicting her wage!
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Nonlinearity

Do we really believe that the relationship is linear?
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Anscombe’s Quartet

=

View Proc Quick Options Add-ins Window Help

14_ANSCOMBEFINALIZED - (<. is . diebo\d dropborieconometr... - [ X

| [Pt save | petaits | [ show| Feten| store| elete | Genr| sampie

1 - 11obs Filter: *

1 - 11o0bs

Hy2
My3

] Group: UNTITLED Workfile: FCST4_ANSCOMBEFINALIZED: Untitled\ -0

2w proc| objeat| [prnt | ame Freeze| [Defaut +[ [sort|wanspase ait+/-[ smp1=- [Tt sampe |

obs Y1 X1 Y2 X2 N X3 Y4 X4
1 8.040000 10.00000 9.140000 10.00000 7.460000 10.00000 6.580000 8.000000
2 6.850000 8.000000 8.140000 8.000000 6.770000 8.000000 5.760000 8.000000
3 7.580000 13.00000 8.740000 13.00000 12.74000 13.00000 7.710000 8.000000
4 8.810000 9.000000 8.770000 9.000000 7.110000 9.000000 8.840000 8.000000
5 8.330000 11.00000 9.260000 11.00000 7.810000 11.00000 8.470000 8.000000
6 9.960000 14.00000 8.100000 14.00000 8.840000 14.00000 7.040000 8.000000
T 7.240000 6.000000 6.130000 6.000000 6.080000 6.000000 5.250000 8.000000
8 4.260000 4.000000 3.100000 4.000000 5.390000 4.000000 12.50000 19.00000
9 10.84000 12.00000 9.130000 12.00000 8.150000 12.00000 5.560000 8.000000

4.820000 7.000000 7.260000 7.000000 6.420000 7.000000 7.910000 8.000000
5.680000 5.000000 4.740000 5.000000 5.730000 5.000000 6.890000 8.000000

=

Path = is x. diebo\d files\courses\ecc onl04_2011 materials | DB = none  WFEFhty/ D@@nbe

- — T T T T L —— — *




Anscombe's Quartet: Regressions

L3 #f Dependent Vanable1s Y1
Variable Coeffictent  3td Error T-Statistic

C 3.00 112 2.67
1 0.50 012 4.4
R-squared 0.67 SE ofregression 1.24

L3 /f Dependent Variable is ¥2
Variable Coeffictent  5td Error T-Statistic

2 300 112 267
X2 050 01z 4.24
E-squared 0&7 SE efregression 1.24

L3 #f Dependent Variable is Y3

Variable Coefficient  Std Errer T-Statistic

C 3.00 112 2.67

3 0,50 01z 4.24

E-squared 067 SE. efregression 1.24

L3/ Dependent Variable is ¥4

Variable Coefficient  Std Error T-Statistic

C 3.00 112 2.67

¥4 0.50 01z 4.24

B—squared 067 SE of regression 1.24
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Anscombe’s Quartet Graphics: Dataset 1
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Anscombe’s Quartet Graphics: Dataset 2

Y2 vs. X2
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Anscombe’s Quartet Graphics: Dataset 3

Y3wvs. X3

Y3
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Anscombe’s Quartet Graphics: Dataset 4
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Log-Log Regression

Iny; = 81 4 Balnx; + €;

For close y; and x;, (Iny; — Inx;) - 100 is approximately the percent
difference between y; and x;. Hence the coefficients in log-log
regressions give the expected percent change in y for a one-percent
change in x. That is, they give the elasticity of y with respect to x.

Example: Cobb-Douglas production function
yi = ALY K exp(e;)

Iny; = InA+ adnL; + BInK; + ¢;

We expect an a% increase in output
in response to a 1% increase in labor input
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Log-Lin Regression

Iny; = Bx; + ¢

The coefficients in log-lin regressions give the expected percentage
change in y for a one-unit (not 1%!) change in x.

Example: LWAGE regression
Coefficient on education gives the expected percent change in
WAGE arising from one more year of education.
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Intrinsically Non-Linear Models

One example is the “S-curve” model,

B 1
y_a—i-brx
(0<r<l)

— No way to transform to linearity

— Minimize the sum of squared errors numerically
“Nonlinear least squares”

BnLs
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Taylor Series Expansions

Really no such thing as an intrinsically non-linear model...
In the bivariate case we can think of the relationship as
yi = g(xi, &)
or slightly less generally as

yi = f(X,‘) + &
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Taylor Series, Continued

Consider Taylor series expansions of f(x;).
The linear (first-order) approximation is

f(xi) = B+ Baxi,
and the quadratic (second-order) approximation is
f(xi) = B1 + Baxi + Bax7.

In the multiple regression case, Taylor approximations also involve
interaction terms. Consider, for example, y; = f(xj2, x;3). Then:

i = f(xi2,xi3) & 1+ Baxia + Baxiz + Bax + Bsx3 + Bexiaxiz + ...
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A Key Insight

The ultimate point is that so-called “intrinsically non-linear”
models are themselves linear when viewed from the series-expansion
perspective. In principle, of course, an infinite number of series
terms are required, but in practice nonlinearity is often quite gentle
(e.g., quadratic) so that only a few series terms are required.

— So omitted non-linearity is ultimately
an omitted-variables problem
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Predictive Perspectives

— One can always fit a linear model

— But if DGP is nonlinear, then potentially-important Taylor terms
are omitted, potentially severely degrading forecasting performance

— Just see the earlier Dataset 2 Anscombe graph!
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Assessing Non-Linearity
(i.e., deciding on higher-order Taylor terms)

Use SIC as always.

Use t's and F as always.
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Linear Wage Regression (Actually Log-Lin)

[VlewIPro:IOmen] [PrlnthameIFreeZe] [EstlmateIFﬂre:astIStatiseslds]
+od Dependent Variable: LWAGE
| Method: Least Squares
—| Date: 07/03/13 Time: 13:36
Sample (adjusted): 1 1323
% Included cbservations: 1323 after adjustments
; E
3?-.9 Variable Coefficient Std. Error t-Statistic Prob.
1
'sig C 1.000385 0.073180 13.67013 0.0000
18id EDUC 0.090809 0.004814 18.86314 0.0000
,bc:: EXPER 0.012707 0.001119 11.35624 0.0000
Jio FEMALE -0.237535 0.025965  -9.148397 0.0000
ag NONWHITE -0.085286 0.035786  -2.383199 0.0173
ag UNION 0.223392 0.035307 6.327126 0.0000
ag
ag] R-squared 0.307856 Mean dependent var 2.341995
Adjusted R-squared 0.305229 S.D. dependent var 0.561435
S.E. of regression 0.467973 Akaike info criterion 1.323712
Sum squared resid 288.4212 Schwarz criterion 1.347239
Log likelihood -869.6356 Hannan-Quinn criter. 1.332532
F-statistic 117.1568 Durbin-Watson stat 1.910120
Prob(F-statistic) 0.000000 .

Path = c\users\francis x, diebo\documents\diebold files\courses\econ104\old\econl04_2011\sw3e\eviews "’F‘Bﬁf'a)%ﬁ ﬁB =
I R = ==




Quadratic Wage Regression

Dependent Variable: LWAGE
Ausers Method: Least Squares _—
- Date: 10/02/13 Time: 12:37 e
[lox]< EF': Sample: 11323 =
jecedny ol Included observations: 1323
% Variable Coefficient Std. Error t-Statistic Prob. U_
&4
dinierac) A C 0.473236 0.240588 1.967017 0.0494 —
& EDUC 0.109673 0.028918 3.792608 0.0002 =
- g EXPER 0.064422 0.007652 8.419060 0.0000 v
) i EDUC2 0.000501 0.000885 0.559994 0.5756
monwhinl = EXPER2 -0.000705 8.86E-05 -7.962263 0.0000 =
nwhite | ) EDU_EXP -0.001789 0.000429  -4.173423 0.0000 =
sineod B8 FEMALE -0.237696 0.025508 -9.319335 0.0000
™ UNION 0.202955 0.034569 5.870998 0.0000 Rre
Eee g NONWHITE -0.095028  0.034931 -2.720476  0.0066 7
1
g R-squared 0.343072 Mean dependent var 2.341995 0
=| Adjusted R-squared 0.339073 S.D. dependent var 0.561435 = o
swcedu =| S.E. of regression 0.456433 Akaike info criterion 1.276028 =
wnunit &l Sum squared resid 273.7465 Schwarz criterion 1.311318
=| Log likelihood -835.0925 Hannan-Quinn criter. 1.289257
go0d | IGC F-statistic 85.77745 Durbin-Watson stat 1.894409 - i

Path = c\users\francis x. diebo\documents\diebeld files\books\econem etnG\dataandsoﬁware\aaf&wﬁer\
T — B R ==



Quadratic Wage Regression with Dummy Interactions

BA Eviews
File Edit Object View Proc Quick Options Add-ins Window Help
=) CQUATION: | ADLELLS VVOTKTIE: WAUEDWE I EIVIFIUNTITIED | -0
E [view] prac| ovject] [prnt | name | Freeze [ estimate [ Farecast | stats  mesias |
Depd D4t rGuar o Tiite: 1240
Methy Sample: 11323
&) & & @ equetion: 1a8LEIFFF Wq  Dgte| [NCluded observations: 1323
i Inclu Variable Coefficient Std. Error t-Statistic Prob.
0 R Dependent Variak
H Method: Least Sq € 0.482967  0.240926  2.004623  0.0452
0 4 § Date:10/02/13 T EDUC 0.109522  0.029003 3776211  0.0002
§ 9§ 4 Sample: 11323 EXPER 0064269 0007654 8396570  0.0000
Il I} = Included observa EDUC2 0.000517  0.000900  0.573929  0.5661
49 | EXPER2 -0.000701  8.87E-05 -7.904460  0.0000
A Variable EDU_EXP -0.001796  0.000429  -4.185878  0.0000
=49 §=——— FEMALE 0252921  0.029659 -8.527539  0.0000
N c UNION 0.200937  0.046575  4.314297  0.0000
A EDUC NONWHITE -0.161501  0.055077 -2.932246  0.0034
EXPER FEM_UNI -0.012956  0.070740 -0.183153  0.8547
= |7 EDUC2 FEM_NON 0.110319  0.070093  1.573909  0.1157
A A EXPER2 UNI_NON 0.033202  0.089258  0.371975  0.7100
A I EDU_EXP|
g9 4 FEMALE Ad-i R-squared 0.344357 Mean dependent var 2.341995
§ A5 UNION | o ,JE 1 Adjusted R-squared 0.338856  S.D. dependent var 0.561435
HAY NONWHITE o~ SE.of regression 0.456507  Akaike info criterion 1.278605
A9 Log Sum squared resid 2732109 Schwarz criterion 1.325658
A 9 R R-squared Foota] Log likelihood -833.7970  Hannan-Quinn criter 1.296244
= Y Y AdiustedR-squan "l F-statistic Durbin-Watscn stat 1.891544

]

t-Statis

18.394

15.771

ent var
nt var
terion
ion
criter.
n stat

21132559648

127 /280



Final Specification

BA Eviews.
File Edit Object View Proc Quick Dpt\orls“&zjd'm‘s“}l\ilzziniw“}:le‘\gqmuwmw» R _
[view]proc| ovjeat] [prnt | name [ Freeze [ estimate [ Farecast [ stats  mesias |
Dependent Variable: LWAGE 3
SIS EEE S L o35 Tme: 1119 —ox1ox
ate ime —

:E:EF:EEEEEE Sample: 1 1323 T R
" S 0 00RO O Included observations: 1323
B

oy H
R % Ooo00saQgadq Variable Coefficient Std. Error t-Statistic Prob
caleal 99909 9
not gy Il =0 (o] 0.360535 0.131792 2.735636 0.0063
s 8 = = = = = EDUC 0.125028 0.009188 13.60791 0.0000 — =
ed = A EXPER 0.086130 0.007016 9.424974 0.0000

g === L= EXPER2 -0.000710 8.82E-06  -8.042035 0.0000
B = = EDU_EXP -0.001905 0.000375  -5.078046 0.0000
eal A FEMALE -0.239352 0.025327  -9.450447 0.0000 — i
" @ = UNION 0.202574 0.034553 5.862629 0.0000
snd 4 R = T NONWHITE -0.094903 0.034921 -2.717655 0.0067

& A R A
RY

B g A U R-squared 0.342915 Mean dependent var 2.341995
o S g 95U Adjusted R-squared 0.339418 S.D. dependent var 0.561435

=l 4§ RS S.E. of regression 0.456313 Akaike info criterion 1.274755
Ma AU A Sum squared resid 273.8119  Schwarz criterion 1.306124 f—— =
rs=m H H § = =9| Log likelihood -835.2503 Hannan-Quinn criter. 1.286514

= = R § R R H| F-statistic 98.03775 Durbin-Watson stat 1.894273

or = L U A A| Prob(F-statistic) 0.000000 i r r

2
z
B
N
&
5

x. diebo\d | DB
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Discrete Response Models

What if the dependent variable is binary?
— Ultimately violates the IC in multiple ways...

(Nonlinear, non-Gaussian)
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Many Names

"“discrete response models”
“qualitative response models”
“limited dependent variable models”
“binary (binomial) response models”
“classification models”

“logistic regression models” (a leading case)

— Another appearance of a dummy variable,
but the dummy is on the left

130 /280



Framework

Left-hand-side variable is y; = l;(z), where the “indicator variable”
li(z) indicates whether event z occurs; that is,

I(z) = 1 if event z occurs
771 0 otherwise.

The usual linear regression setup,
E(yilxi) = xi 8
becomes
E(l:(2) | x) = x!B.

A key insight, however, is that
E(li(z) | x) = P(li(z)=1]x),

so the setup is really

P(li(2)=1x) = x. (1

— Leading examples: recessions, bankruptcies, loan or credit card
defaults, financial market crises, consumer choices, ...
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The “Linear Probability Model”

How to “fit a line” when the LHS variable is binary?

The linear probability model (LPM) does it by brute-force OLS
regression /;(z) — x;.

Problem: The LPM fails to constrain the fitted probabilities to be
in the unit interval.
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Squashing Functions

Solution: Run x//3 through a monotone “squashing function,”
F(-), that keeps P(li(z)=1]x;) in the unit interval.

More precisely, move to models with
E(yilxi) = P(li(2)=1]x) = F(xi8),

where F(-) is monotone increasing,
with limy o F(w) =1 and limy,_—,_oo F(w) = 0.
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The Logit Model

In the “logit” model, the squashing function F(-)
is the logistic function,

e% 1

F(w) = logit(w) = T ev —1qe ™

so the logit model is

— Logit is a nonlinear model for the event probability.
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Logit as a Linear Model for the Log Odds

Consider a linear model for log odds

Pli(z)=1]x) \ _,
’"<1_p(/,(z):1|x,))— i’

Solving the log odds for P(/i(z) =1 | x;) yields the logit model,

1 X8
P(i(z) =11 x) = °

1+e P 1498

So logit is just linear regression for log odds.
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Logit Estimation

The likelihood function can be derived, and the model can be
estimated by numerical maximization of the likelihood function.
For linear regression we had:
yilxi ~ N(xiB,0%),
from which we derived the likelihood and the MLE.

For the linear probability model we have:

yilxi ~ Bernoulli (xi ) .

For logit we have:

eiB
yi|xi ~ Bernoulli {1007 )

+ e
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Logit RHS Variable Effects

Note that the individual RHS variable effects, OE(y;|x;)/Oxik, are
not simply given by the Si's as in standard linear regression.
Instead we have

8E(y,-\x,-) . aF(X{B)
aX,'k - aX;k

= f(xi3)Bx,

where f(x) = dF(x)/dx. So the marginal effect is not simply S;
instead it is Bk weighted by f(x/3), which depends on all 5i's and
X,'k'S, k = 1,..., K.

— However, signs of the §i's are the signs of the effects,
because f must be positive.
(Recall that F is monotone increasing.)

— In addition, ratios of 5's do give ratios of effects,
because the f's cancel.
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Logit R?

Recall that traditional R? for continuous LHS variables is
p2_ 1 Xi—9)?
Y (vi—vi)?
For binary regression we proceed similarly:

S Ph(2) = 1))
=1 Sti—57

“Efron’s R?"
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The Logit Classifier

— Classification maps probabilities into 0-1 classifications.
“Bayes classifier” uses a cutoff of .5.

— Decision boundary:
Suppose we use a Bayes classifier.

We predict 1 when logit(x/3)>1/2. But that’s the same as
predicting 1 when x/3>0 since logit(0)=1/2. If there are 2 x;
variables (potentially plus an intercept), then the condition x/5=0
defines a line in R2. Points on one side will be classified as 0, and
points on the other side will be classified as 1. That line is the
“decision boundary”.

— In higher dimensions the decision boundary
will be a plane or hyperplane.

— Note the “linear decision boundary”. We can generalize to
nonlinear decision boundaries in various ways.
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Example: High-Wage Individuals

We now use a new wage data set that contains education and
experience data for each person, but not wage data. Instead it
contains only an indicator for whether the person is “high-wage" or
“low-wage”. (The binary indicator HIGHWAGE;=1 if the hourly
wage of person i is > 15.)

— 357 people with HIGHWAGE;=1
— 966 people with HIGHWAGE;=0

We will fit a logit model using education and experience and see
how it performs as a Bayes classifier.
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Logit Regression of HIGHWAGE on EDUC and EXPER

Table: Logit Regression

Dependent variable:

HIGHWAGE

EDUC 0.35

(se=0.03)
EXPER 0.04

(se=0.01)
Constant -6.61

(se=0.46)
Ratio of Effects EDUC/EXPER: 7.54

Efron’'s R?: 0.15
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Covariates and Decision Boundary for Logit Bayes Classifier

In-Sample:
(Red denotes high-wage people)

EDUC

EXPER

Out-of-sample: For a new person with covariates x*,
predict HIGHWAGE=1 if logit(x*'3)>1/2.
That is, if x*'3>0
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Heteroskedasticity in Cross-Sections

Do we really believe that disturbance variances
are constant over space?
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“Unconditional Heteroskedasticity” is Occasionally
Relevant...

Consider IC1:
g; ~ iidN(0,0%), i=1,...N

Unconditional heteroskedasticity occurs when the unconditional
disturbance variance varies across people for some unknown reason.

Violation of IC1, in particular IC1.5:

“The ¢;'s have constant variance 2"
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... But Conditional Heteroskedasticity is Often Highly
Relevant

Consider 1C2.2:
var(g; | Xi1, ..., Xix) = o2, for all i

Conditional heteroskedasticity occurs when
2 varies systematically with xj1, ..., xjk,

gj
so that 1C2.2 is violated

e.g., Consider the regression
fine wine consumption — income
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Consequences for Estimation and Inference

— Esimation: OLS estimation remains largely OK.
Parameter estimates remain consistent and asymptotically normal.

— Inference: OLS inference is badly damaged.
Standard errors are inconsistent. t statistics do not have the t
distribution in finite samples and do not even have the N(0, 1)

distribution asymptotically.
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Consequences for Prediction

— Earlier point forecasts remain largely OK.

OLS parameter estimates remain consistent,

—

so E(yi|xj=x;") is still consistent for E(y;|x;=x").

— Earlier density (and hence interval) forecasts not OK.

It is no longer appropriate to base interval and density forecasts on
“identical ¢'s for different people”. Now we need to base them on
“different o's for different people”.
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Detecting Conditional Heteroskedasticity

» Graphical heteroskedasticity diagnostics

» Formal heteroskedasticity tests
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Graphical Diagnostics

Graph e? against x;, for various regressors (k)
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Recall Our “Final” Wage Regression

BA Eviews.
File Edit Object View Proc Quick Dpt\orls“&zjd:m‘;“}l\ilzziniw“}:le‘\.pfﬂmuwm R o
[view]proc| ovjeat] [prnt | name [ Freeze [ estimate [ Farecast [ stats  mesias |
Dependent Variable: LWAGE 3
SIS EE] Yorotloossures T
ate ime
:E:EF:EEEEEE Sample: 1 1323 3 3
" S 0 00RO O Included observations: 1323
B
oy H
R % Ooo00saQgadq Variable Coefficient Std. Error t-Statistic Prob
caleal 99909 9
not gy Il =0 (o] 0.360535 0.131792 2.735636 0.0063
snd B = = = == EDUC 0.125028 0.009188 13.60791 0.0000 = =
ed = A EXPER 0.086130 0.007016 9.424974 0.0000
g === L= EXPER2 -0.000710 8.82E-056 -8.042035 0.0000
B = = EDU_EXP -0.001905 0.000375  -5.078046 0.0000
eal A FEMALE -0.239352 0.025327  -9.450447 0.0000 — i
" @ = UNION 0.202574 0.034553 5.862629 0.0000
snd 4 R = T NONWHITE -0.094903 0.034921 -2.717655 0.0067
& A R A
RY
B g A U R-squared 0.342915 Mean dependent var 2.341995
o S g 95U Adjusted R-squared 0.339418 S.D. dependent var 0.561435
=l 4§ RS S.E. of regression 0.456313 Akaike info criterion 1.274755
Ma Ay AL Sum squared resid 273.8119 Schwarz criterion 1.306124 — I
rs=m H H § = =9| Log likelihood -835.2503 Hannan-Quinn criter. 1.286514
= = R § R R H| F-statistic 98.03775 Durbin-Watson stat 1.894273
0g = U4 U A Al Prob(F-statistic) 0.000000 i L L
905412242133127 x. diebo\di | DB
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Squared Residual vs. EDUC
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The Breusch-Pagan-Godfrey Test (BPG)

Limitation of graphing e,-2 against xj,: Purely pairwise
In contrast, BPG blends information from all regressors

BPG test:
» Estimate the OLS regression, and obtain the squared residuals
P Regress the squared residuals on all regressors
» To test the null hypothesis of no relationship, examine N-R?
from this regression. In large samples N-R? ~ X%(—l under the

null of no conditional heteroskedasticity, where K is the
number of regressors in the test regression.
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BPG Test

BA Eviews -
File Edit Object View Proc Quick Options Add-ins Window Help

13 Iwage ¢ educ exper exper2 eau_eN yiey [proc| object] [Print | Name | Freeze | [ Estimate  Forecast  stats | Resids
Heteroskedasticity Test: Breusch-Pagan-Godfrey j
[ Workfle: WAGESWFTEMP - (€] F_gatistic 5.414870 Prob. F(7,1315) 0.0000
AL Obs*R-squared 37.08628 Prob. Chi-Square(7) 0.0000
Range: 11400 — 14 gealed explained S5 49.66045 Prob. Chi-Square(7) 0.0000
Sample: 11323 - 1
Hage
gcd Test Equation:
e Dependent Variable: RESID"2
SAeduc? Method: Least Squares
&4 exper Date: 10/30/13 Time: 10:54
A exper2 Sample: 1 1323
& fem_non Included observations: 1323
& fem_uni
iyl Variable Coefficient Std. Error t-Statistic Prob
& lwage
& nonwhite
Aresid [+] -0.170309 0.097349  -1.749473 0.0804
Etable1 EDUC 0.024074 0.006787 3.547204 0.0004
Eitable1a EXPER 0.011701 0.005183 2.257616 0.0241
Eltable1b EXPER2 -5.53E-05  6.52E-05 -0.849150  0.3960
e EDU_EXP -0.000478  0.000277 1725513 0.0847
\Elt:blzmd FEMALE -0.009757 0.018708  -0.521530 0.6021
= table1ddd UNION -0.079648 0.025523 -3.120623 0.0018
o Untitied ATEE NONWHITE 0.000486 0.025794 0.018829 0.9850 _
<+, Unt ew Page

L

is x. diebo\d DB
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White's Test

Like BGP, but replace BGP's linear regression
with a more flexible (quadratic) regression

» Estimate the OLS regression, and obtain the squared residuals

P> Regress the squared residuals on all regressors, squared
regressors, and pairwise regressor cross products

» To test the null hypothesis of no relationship, examine N-R?
from this regression. In large samples N-R? ~ X%(—l under the
null.
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White's Test

BA Eviews
File Edit Object View Proc Quick Options Add-ins Window Help
15 Iwage £ educ exper exper2 edu_exp female union nonwhite

Workfl\e: WAGESWFTEMP - (c is x. diebo\d \da... - B X

[view[Proc| object] [print  save | Details /- | [ Show | Fetch  store [ Delete [ Genr| sampe

Range: 11400 -- 1400 obs Filter: *

Sample: 11323 - 1323 obs

Hage Eltable1e

Ec =i table1f

tAedu_exp [E) Equation: UNTITLED Workfile: WAGESWETEMPxUntitled\ T
S:gﬂzz [view]proc| object] [Print | Name [Freeze ] [Estimate [Forecast stats | Resias |

A exper Heteroskedasticity Test: White 3
& exper2

g;jm—zzl" F-statistic 2431488 Prob. F(29,1293) 0.0000
@A female Obs*R-squared 68.41804  Prob. Chi-Square(29) 0.0000

A lwage Scaled explained S8 91.66473 Prob. Chi-Square(29) 0.0000

&4 nonwhite

A resid -
Eitable1

Eitable1a

Eitable1b

Eltable1c

Eitable1d

Eltable1dd

Eltable1ddd

<+, Untitled [ New Page

0803289767

155 /280



Dealing with Heteroskedasticity

» Adjusting standard errors

» Adjusting density forecasts
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Adjusting Standard Errors

Using advanced methods, one can obtain estimators for standard
errors that are consistent even when heteroskedasticity is present.

“Heteroskedasticity-robust standard errors”
“White standard errors”

Before, under the IC:
V = cov(fLs) estimated by

V=s(X'X)1,
where 2 = Z,N:l e?/(N — K).
Now, under heteroskedasticity, V' estimated by

Vivhite = (X'X) 71 (X' diag (e, ..., eq) X) (X'X)

— Mechanically, it's just a simple OLS regression option.
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Final Wage Regression with Robust Standard Errors

A eviews — j — = -
Window  Help
=) Equation: UNTITLED Workfile: WAGESWFTEMP::Untitled\ - BaXx
genr resid2=resid"2 |view] proc| onject] [print [ Name| Freeze] [ Estimate | Forecast  stats | Resias |
Is resid2 ¢ educ exper exper2 edu_exp female union nonwhite| i
POl ] Dependent Variable: LWAGE m
Workfile: WAGESWFTEMP - (c/\users\francis x. diebo\dod  Mlethod: Least Squares El= =
[view[Proc| object] [print [ save | Details =/-| [show[Feten[std  Date: 10/30/13 Time: 12:42 e
Range: 11400 - 1400 obs Sample: 11323 |
Sample: 11323 - 1323 obs Included observations: 1323 .
Aage = table1dd White heteroskedasticity-consistent standard errors & covariance | 2
Elc Etable1ddd [
& edu_exp Etablete Variable Coefficient  Std. Error t-Statistic Prob.
A educ =l table1f
i Siebiein o 0380535  0.130391 2765026  0.0058
Aexper? @ table1ggg EDUC 0125028  0.009890 1264118  0.0000
@fem_non Sitable1ggg EXPER 0.066130  0.006967  9.491284  0.0000
&4 fem_uni A uni_non EXPER2 -0.000710 8.86E-05  -8.004870 0.0000
#Afemale & union EDU_EXP -0.001905 0.000412  -4.623006 0.0000
Flwage A wage FEMALE -0.238352 0.025499  -9.386559 0.0000
Sp;;;dWhlte UNION 0.202574 0.031386 6.454196 0.0000
Sresid? NONWHITE -0.094903 0.034074  -2.785164 0.0054
A resid2fit
=table1 R-squared 0.342915 Mean dependent var 2.341995
Etable1a Adjusted R-squared 0.339418 S.D. dependent var 0.561435
Eltable1b S.E. of regression 0.456313  Akaike info criterion 1.274755
Eltabletc Sum squared resid 273.8119  Schwarz criterion 1.306124
Siableld Log likelihood -835.2503  Hannan-Quinn eriter 1.286514 i
«+!_ntitled [ NewPage / F-statistic 98.03775 Durbin-Watson stat 1.894273 - [ ]+
e
is x. diebo DB
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Adjusting Density Forecasts

Recall non-operational version for Gaussian homoskedastic
disturbances:

vi | xi=x* ~ N(x*'j, 0?)

Recall operational version for Gaussian homoskedastic disturbances:
A 2
i | xi=x* ~ N(x*Bs, s%)

Now: Operational version for Gaussian heteroskedastic
disturbances:

yvi | xi=x* ~ N(x*'fs, 62

Q: Where do we get 63?
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Time Series
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Misspecification and Model Selection

Do we really believe that the fitted model matches the DGP?
No major changes in time series
Same tools and techniques...
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Non-Normality and Outliers

Do we really believe that the disturbances are Gaussian?
No major changes in time series
Same tools and techniques...
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Indicator Variables in Time Series I:
Trend
Trend is effectively a type of structural change
Do we really believe that interepts are fixed over time?

— Trend is about gradual intercept evolution
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Liquor Sales
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Log Liquor Sales

Log Sales

8.0

7.6

721

6.8 o

6.4+

3

88 90 92 094 096 098 00 02 04 06 08 10 12 14

Time

From now on we will take logs of liquor sales.
When we say “liquor sales”, logs are understood.
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Linear Trend

Trend; = B1 + B> TIME;
where TIME; = t

Simply run the least squares regression y — ¢, TIME, where

1
2

TIME =
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Various Linear Trends
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Linear Trend Estimation

Method: Least Squares
Date: 08/08/13 Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.

C 6.454290 0.017468 369.4834 0.0000

TIME 0.003809 8.98E-05 42.39935 0.0000

R-squared 0.843318 Mean dependent var 7.096188

Adjusted R-squared 0.842849 S.D. dependent var 0.402962

S.E. of regression 0.159743 Akaike info criterion -0.824561

Sum squared resid 8.523001 Schwarz criterion -0.801840

Log likelihood 140.5262 Hannan-Quinn criter. -0.815504

F-statistic 1797.705 Durbin-Watson stat 1.078573
Prob(F-statistic) 0.000000
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Residual Plot
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Indicator Variables in Time Series |l:
Seasonality

Seasonality is effectively a type of structural change

Do we really believe that interepts are fixed over seasons?
(quite apart from, and even after accounting for,
time-varying intercepts due to trend)
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Seasonal Dummies

S
Seasonals = ZﬁSSEAsst (S seasons per year)
s=1
1 if observation t falls in season s

where SEASg; = { 0 otherwise

Simply run the least squares regression y — SEAS;, ..., SEASs
(or blend: y — TIME,SEAS;, ..., SEASs)

where (e.g., in quarterly data case, assuming Q1 start and Q4 end):
SEAS, = (1,0,0,0,1,0,0,0,1,0,0,0,...,0)
SEAS, = (0,1,0,0,0,1,0,0,0,1,0,0,...,0)
SEAS; = (0,0,1,0,0,0,1,0,0,0,1,0,...,0)
SEAS, = (0,0,0,1,0,0,0,1,0,0,0,1,...,1)".
— Full set of dummies (“all categories”) and hence no intercept. B
— In CS case we dropped a category for each dummy (e.g., includeg
“UNION" but not “NONUNION") and included an intercept.
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Linear Trend with Seasonal Dummies

dbject View Proc Quick Options Add-ineWindon Help

| 20im2 e FTe e
D1D2D3D4D506 D7
Dependent Variable: LSALES
SNSRI P 0aroa/15 Time- 02:01
=] T ate: ime: 08:
i [ [ Sample: 1987M01 2014M12
Included observations: 336
0 Variable Coefficient Std. Error t-Statistic Prob.
g
| TIME 0.003779 6.24E-05 60.57536 0.0000
= D1 6.361233 0.023283 273.2148 0.0000
D2 6.304412 0.023310 270.4571 0.0000
= 6 D3 6.391653 0.023338 273.8773 0.0000
D4 6.392737 0.023365 273.6004 0.0000
44 D5 6.461768 0.023393 276.2273 0.0000
= D6 6.466819 0.023421 276.1145 0.0000
R 2 D7 6.510789 0.023449 277.6602 0.0000
A D8 6.482457 0.023477 276.1210 0.0000
g 0H D9 6.422551 0.023505 273.2406 0.0000
9 D10 6.444589 0.023533 273.8476 0.0000
4 -2 D11 6.476504 0.023562 274.8709 0.0000
A D12 6.798519 0.023591 288.1874 0.0000
B Al
= " R-squared 0.927059 Mean dependent var 7.096188
Adjusted R-squared 0.924350 S.D. dependent var 0.402962
S.E. of regression 0.110833 Akaike info criterion -1.523858
Sum squared resid 3.967734 Schwarz criterion -1.375972
Log likelihood 268.9746 Hannan-Quinn criter. -1.464786
Durbin-Watson stat 0.100500

i

-Statistic

0.57536
73.2148
70.4571
73.8773
73.6004
76.2273
76.1145
77.6602
76.1210
73.2406
73.8476
74.8709
88.1874
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Seasonal Pattern

Estimated Seasonal Factors
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Residual Plot
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Nonlinearity in Time Series

Do we really believe that trends are linear?
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Non-Linear Trend: Exponential (Log-Linear)

Trend, = 3™ T"ME:

In( Trend;) = In(B1) + B2 TIME;
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20

TREND = & EXP(02" TIME)

TREND = & EXP( 02" TIME)

20 a0 Eg | eo 100 20 a0 Ea 8o 100
TREND = -5 EXP(.027TIME) TREND = - & EXP(- D27 TIME)
20 40 80 a0 100 20 40 80 20 100

Figure: Various Exponential Trends
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Non-Linear Trend: Quadratic

Allow for gentle curvature by including TIME and TIME?:

Trend; = 1 + Bo TIME; + B3 TIME?
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TREND = 10 + FTIME + .3°TIMEZ TREND = 10 + 30" TIME - 3" TIMEZ
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Figure: Various Quadratic Trends
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Liquor Sales Quadratic Trend Estimation

Dependent Variable: LSALES
Method: Least Squares

Date: 08/08/13 Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.
Cc 6.231269 0.020653 301.7187 0.0000
TIME 0.007768 0.000283 27.44987 0.0000
TIME2 -1.17E-05 8.13E-07  -14.44511 0.0000
R-squared 0.903676 Mean dependent var 7.096188
Adjusted R-squared 0.903097 S.D. dependent var 0.402962
S.E. of regression 0.125439 Akaike info criterion -1.305106
Sum squared resid 5.239733 Schwarz criterion -1.271025
Log likelihood 222.2579 Hannan-Quinn criter. -1.291521
F-statistic 1562.036  Durbin-Watson stat 1.754412

Prob(F-statistic) 0.000000
Figure:
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Residual Plot
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Liquor Sales Quadratic Trend Estimation
with Seasonal Dummies

Dependent Variable: LSALES
Method: Least Squares

Date: 08/08/13 Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.

TIME 0.007739 0.000104 74.49828 0.0000

TIME2 -1.18E-05 2.98E-07 -39.36756 0.0000

D1 6.138362 0.011207 547.7315 0.0000

D2 6.081424 0.011218 542.1044 0.0000

D3 6.168571 0.011229 549.3318 0.0000

D4 6.169584 0.011240 548.8944 0.0000

D5 6.238568 0.011251 554.5117 0.0000

D6 6.243596 0.011261 554.4513 0.0000

D7 6.287566 0.011271 557.8584 0.0000

D8 6.259257 0.011281 554.8647 0.0000

D9 6.199399 0.011290 549.0938 0.0000

D10 6.221507 0.011300 550.5987 0.0000

D11 6.253515 0.011309 552.9885 0.0000

D12 6.575648 0.011317 581.0220 0.0000

R-squared 0.987452 Mean dependent var 7.096188

Adjusted R-squared 0.986946 S.D. dependent var 0.402962

S.E. of regression 0.046041  Akaike info criterion -3.277812

Sum squared resid 0.682555 Schwarz criterion -3.118766

Log likelihood 564.6725 Hannan-Quinn criter. -3.214412
Durbin-Watson stat 0.581383
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Residual Plot
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Serial Correlation

Do we really believe that disturbances are
uncorrelated over time?
(Not possible in cross sections, so we didn't study it before...)
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Serial Correlation is Another Type of Violation of the IC
(This time it's “correlated disturbances”.)

Consider: ¢ ~ N(0,Q)

Serial correlation is relevant in time-series environments.
It corresponds to non-diagonal €.
(Violates IC 1.6.)

Key cause: Omission of serially-correlated x's,
which produces serially-correlated ¢
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Serially Correlated Regression Disturbances

Disturbance serial correlation, or autocorrelation,
means correlation over time
— Current disturbance correlated with past disturbance(s)

Leading example
("AR(1)" disturbance serial correlation):

i =x0+¢ee
et = ¢er1+ve, |9 <1

v ~ iid N(0, ¢?)

(Extension to “AR(p)" disturbance serial correlation is immediate)
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Consequences for 5 Estimation and Inference:
As with Heteroskedasticity, Point Estimation is OK,
but Inference is Damaged

— Esimation: OLS estimation of § remains largely OK.
Parameter estimates remain consistent and asymptotically normal

— Inference: OLS inference is damaged.
Standard errors are biased and inconsistent.
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Consequences for y Prediction:
Unlike With Heteroskedasticity,
Even Point Predictions are Damaged/

Serial correlation is a bigger problem for prediction than
heteroskedasticity.

Here's the intuition:

Serial correlation in disturbances/residuals implies that the
included “x variables” have missed something that could be
exploited for improved point forecasting of y (and hence also
improved interval and density forecasting). That is, all types of

forecasts are sub-optimal when serial correlation is neglected.

Put differently:
Serial correlation in forecast errors means that you can forecast
your forecast errors! So something is wrong and can be improved..
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Some Important Language and Tools
For Characterizing Serial Correlation

“Autocovariances”: v.(7) = cov(et,et—r), T=1,2, ...
“Autocorrelations”: p-(7) = 7:(7)/7:(0), T =1,2, ...

“Partial autocorrelations”: p.(7), 7=1,2,...

p:(7) is the coefficient on £;_, in the population regression:
€t = G, &1y Et—(7—1)s Et—7

Sample autocorrelations: p.(7) = corr(et, er—7), T=1,2,...

Sample partial autocorrelations: p.(7), 7 =1,2,...

p-(T) is the coefficient on e;_; in the finite-sample regression:
€ — C, 61,y etf(‘rfl)7 €t—7
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White Noise Disturbances

Zero-mean white noise: ¢; ~ WN(0, o2) (serially uncorrelated)
iid

Independent (strong) white noise: e, ~ (0,02)

iid
Gaussian white noise: ¢, ~ N(0,02)

We write:

ee ~ WN(0, o?)
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2]

Realization of White Noise Process
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Time
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Autocorrelation

Population Autocorrelation Function
White Noise Process

1.0 4
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Partial Lutocorrelation

Population Partial Autocorrelation Function

White Neise Process
104
0.5 4
oo
054
-10 T T T T T T T
5 10 15 20 25 30 35
Displacernent
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AR(1) Disturbances

e =01+ ve, [P <1

vi ~ WN(0, o?)

194 / 280



Realizations of Two AR(1) Processes (N(0, 1) shocks)

Autoregressive Processes

L L L R L R LA L L L L L L BB B
20 40 60 80 100 120 140

195 /280



Autocorrelation

0.5 4

0.0 4

-0.54

Population Autocorrelation Function

AR(1) Process, ¢o=.4

15
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Autocorrelation

0.5

0.0

-0.5

Population Autocorrelation Function

AR(1) Process, ¢=.95
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Detecting Serial Correlation

» Graphical diagnostics

» Residual plot
> Residual scatterplot of (e; vs. e;—;)
» Residual correlogram

» Formal tests

» Durbin-Watson
» Breusch-Godfrey
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Recall Our Log-Quadratic Liquor Sales Model

Included observations: 336

Variable Coefficient  Std. Error t-Statistic Prob.

TIME 0.007739 0.000104 74.49828 0.0000

TIME2 -1.18E-05 2.98E-07 -39.36756 0.0000

D1 6.138362 0.011207 547.7315 0.0000

D2 6.081424 0.011218 542.1044 0.0000

D3 6.168571 0.011229 549.3318 0.0000

D4 6.169584 0.011240 548.8944 0.0000

D5 6.238568 0.011251 554.5117 0.0000

D6 6.243596 0.011261 554.4513 0.0000

D7 6.287566 0.011271 557.8584 0.0000

D8 6.259257 0.011281 554.8647 0.0000

D9 6.199399 0.011290 549.0938 0.0000

D10 6.221507 0.011300 550.5987 0.0000

D11 6.253515 0.011309 552.9885 0.0000

D12 6.575648 0.011317 581.0220 0.0000

R-squared 0.987452 Mean dependent var 7.096188

Adjusted R-squared 0.986946  S.D. dependent var 0.402962

S.E. of regression 0.046041 Akaike info criterion -3.277812

Sum squared resid 0.682555  Schwarz criterion -3.118766

Log likelihood 564.6725 Hannan-Quinn criter. -3.214412
Durbin-Watson stat 0.581383

Figure: Liquor Sales Log-Quadratic Trend + Seasonal Estimation
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Residual Plot
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Residual Scatterplot (e; vs. ;1)
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Residual Correlogram

Included observations: 336

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

0.707 0.707 169.30 0.000
0.689 0.379 330.75 0.000
0.729 0.371 512.06 0.000
0.569 -0.160 622.93 0.000
0.577 0.043 737.31 0.000
0.583 0.092 854.33 0.000
0.469 -0.067 930.23 0.000
0.502 0.068 1017.3 0.000
0.489 0.047 1100.3 0.000
0.361 -0.165 1145.8 0.000

I R

[
[
[
O
[
[

i

e L[]

=
-
QWO NOGORAWN-=

[
Bartlett standard error (= 1/v/T) = 1/4/336) = .055
95 % Bartlett band (= +2/v/T) = +.11
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Formal Tests: Durbin-Watson (0.59)

Simple AR(1) environment:
Yo =xB+ et

€t = Q-1+ Wt
v ~ iid N(0, o)
We want to test Hy: ¢ =0 against H; : ¢ #0

Regress y; — x; and obtain the residuals e;

Then form:

;
DW = thz(e; = ezH)2
D1 €
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Understanding the Durbin-Watson Statistic

T T
Zt:l et2 % Zt:l ef

1T 2, 15T 2 1T
T2t T 01— 2 F ) o6l

- T
% D=1 e?

-
pw — Siza(e = 1)’ T (e —ea)

Hence as T — oc:

02+ 0% —2cov(es,e-1)

DW =~ >

= 14+1-2corr(et,er—1) = 2(1—corr(es, £¢-1))
o

— DW €[0,4], DW —2as¢ —0,and DW — 0 as ¢ — 1
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Formal Tests: Breusch-Godfrey

General AR(p) environment:
Ye = x¢0 + e

Et = ¢15t—1 + ...+ ¢p€t—p —+ V¢
v ~ iid N(0, o)

We want to test Hy : (¢1, ..., ¢p) = 0 against Hy : (¢p1,...,¢p) # 0
P> Regress y; — x; and obtain the residuals e;
> Regress e; — X, €-1,...,€—p

» Examine TR?. In large samples TR? ~ X,23 under the null.
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BG for AR(1) Disturbances
(TR? = 168.5, p = 0.0000)

FEC T Included observations: 336
%] Recent Places
=) Presample missing value lagged residuals set to zero.
4 Dropbox
Variable Coefficient Std. Error t-Statistic Prob
& Libraries
[ Documents TIME 8.05E-06 7.35E-05 0.109640 0.9128
o Music TIME2 -3.01E-08 211E-07  -0.142439 0.8868
&) Pictures D1 -0.001578 0007925 -0.199158 0.8423 -
B Videos D2 0000230 0007932 0028949 09769 E
D3 -0.000228 0.007840  -0.028689 0.9771 -
D4 -0.000226 0007948  -0.028423 0.9773
o5 D5 -0.000224 0.007955  -0.028150 0.9776
= D6 -0.000222 0007862 -0.027871 09778
LS T D7 0000220  0.007969 -0.027585  0.9780
_ D8 -0.000218 0007976  -0.027293 0.9782
S Network D9 -0.000215 0.007983  -0.026995 0.9785
D10 -0.000213 0007990  -0.026630 0.9787
D11 -0.000211 0.007996  -0.026378 0.9790
D12 -0.000209 0.008002  -0.026060 0.9792
RESID(-1) 0.709791 0.039491 17.97389 0.0000
R-squared 0.501594 Mean dependent var 5.87E-17
Adiusted R-squared 0479857 SD.dependentvar 0.045138 =
m e 3 DE = none | WF = liquorwftemp
S EViews Program

Figure: BG Test Regression, AR(1)
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BG for AR(4) Disturbances
(TR? = 216.7, p = 0.0000)

thy Included observations: 336
g Presample missing value lagged residuals set to zero.
E Variable Coefficient  Std. Error {-Statistic Prob

_| TIME 174E-05 6.23E-05 0279045 07804
] 6+ TIME2 -6.48E-08 179E-07 -0.361811 07177
D1 -0.002187 0006721  -0.325305 0.7452

44 D2 -0.001492 0.006729  -0.221721 0.8247 |=
_| D3 -0.001016 0006736  -0.150781 08802
= = D4 -0.000180 0006742  -0.026771 09787
i ol oL D5 0000488 0006747 -0072302  0.9424
i U”V V'V D6 -0.000484 0.006753  -0.071596 0.9430
g o D7 -0.000479 0006759  -0.070874 09435
D8 -0.000474 0006765 -0.070136 09441
4 :; I E—— D9 -0.000470 0006771  -0.069382 0.9447
88 00 D10 -0.000465 0.006776  -0.068611 0.9453
_P D11 -0.000460 0006782  -0.067823 0.9460
] D12 -0.000455 0006787  -0.067020 0.9466
RESID(-1) 0.356563 0.055390 6437279 0.0000
RESID(-2) 0.255694 0.053824 4.750556 0.0000
) Untitied [SHeqPane RESID(-3) 0425333 0053844 7.899419 0.0000

RESID(-4) 0164177 0055567  -2.954595 00034

Path = is x. diebo’ DB

Figure: BG Test Regression, AR(4)
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BG for AR(8) Disturbances
(TR? = 219.0, p = 0.0000)

8| ur -U.uuud 14 U.uuof 56 -UuUinsZs u.Ys9s

D8 -0.000689 0.006744  -0.102103 09187

O D9 -0.000547 0.006748  -0.081066 09354

S D10 -0.000542 0.006753  -0.080187 0.9361

In D11 -0.000536 0.006759  -0.079289 0.9369

= D12 -0.000530 0.006764  -0.078372 09376

RESID(-1) 0.369859 0.056379 6.560221 0.0000

= 5 RESID(-2) 0.246228 0.059906 4.110231 0.0001

RESID(-3) 0.360805 0.061281 5.887687 0.0000

4 RESID(-4) -0.165236 0.084757  -2.551620 0.0112

RESID(-5) 0.000506 0.064799 0.007815 09938

= 29 RESID(-6) 0.097952 0.061505 1.592575 0.1123

R RESID(-7) -0.089030 0.080271  -1.477162 0.1408

A 0 RESID(-8) 0.071770 0.056707 1.265623 0.2066
g

g -2 R-squared 0.651708 Mean dependent var 5.87E-17

L Adjusted R-squared 0628414 S.D. dependent var 0.045138

= S.E. of regression 0.027515 Akaike info criterion -4.284907

A Sum squared resid 0237729 Schwarz criterion -4.034977

= Log likelihood 741.8643 Hannan-Quinn criter. -4.185278

Durbin-Watson stat 2000282
i), Untitled Stismbens Durbin-Watson stat 1.978691 E

Path = is x. diebo' DB

Figure: BG Test Regression, AR(8)
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Robust Estimation with Serial Correlation

Recall our earlier “heteroskedasticity robust s.e.'s”

We can also consider “serial correlation robust s.e.’s”

The simplest way is to include lags of y as regressors...
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Modeling Serial Correlation:
Including Lags of y as Regressors
Serial correlation in disturbances means that

the included x's don't fully account for the y dynamics.

Simple to fix by modeling the y dynamics directly:
Just include lags of y as additional regressors.

More precisely, AR(p) disturbances “fixed” by
including p lags of y and x.
(Select p using the usual SIC, etc.)

[[lustration:
Convert the DGP below to one with white noise disturbances.

Ye = B1+ Boxe + &t

€t = Qg1+ V¢
ve ~ iid N(0, o?)
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Liquor Sales: Everything Consistent With AR(4) Dynamics

Trend+seasonal residual plot
Trend+seasonal residual scatterplot
Trend+seasonal DW
Trend+seasonal BG
Trend+seasonal residual correlogram

Also trend+seasonal+AR(p) SIC:
AR(1) = —3.797

AR(2) = —3.941
AR(3) = —4.080
AR(4) = —4.086
AR(5) = —4.071
AR(6) = —4.058
AR(7) = —4.057
AR(8) = —4.040
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Trend + Seasonal Model with Four Lags of y

et [ e e | e | s e
Dependent Variable: LSALES
WMethod: | sast Squaras
Date: 03/28M6 Time: D6:25
Range. Sample (adjusted). 1987M05 2014M12
Sample: Included obsenvations: 332 after adjustments
Bc
M d1 Wariable Coefficient Std. Error t-Statistic Prob.
4 d10
A d11 TIME 0.000993 0.000303 3.274924 0.0012
£4 d12 TIME2 -1.63E-06 4.82E-07  -3.379250 0.0008
£4 d2 D1 0577182 0.240084 2.404080 0.0168
8 a3 D2 0579618 0.239820 2416882 0.0162
] gg’ D3 0.667059 0.238627 2795401 0.0055
% a5 D4 0.894665 0.237447 3767847 0.0002
8 a7 D5 0.893728 0232717 3.840401 0.0001
D6 0.827871 0.233806 3.540838 0.0005
dg
%dg D7 0.865982 0.235247 3.681158 0.0003
i figure D8 0.791626 0.236419 3348398 0.0009
il figure D9 0.739295 0.237199 316777 0.0020
figure D10 0771468 0.236858 3.257093 0.0012
L fig
i figure o1 0.830449 0.236573 3.510321 0.0005
i figure D12 1.156867 0236231 4897183 0.0000
fu figure LSALES(-1) 0.348107 0.055751 6.243965 0.0000
T figure LSALES(-2) 0.257435 0.053823 4783041 0.0000
<+ Unti LSALES(-3) 0.429234 0.053804 7.977784 0.0000
LSALES(-4) -0.161623 0.055771  -2.8908162 0.0040
R-squared 0.995335 Mean dependent var 7.107025
Adjusted R-squared 0995082 SD. dependentvar 0392974
S.E. of regression 0.027559 Akaike info criterion -4.292292
Sum squared resid 0238480 Schwarz criterion -4.085990
Log likelihood 7305205 Hannan-Quinn criter. -4.210019
Durbin-Watson stat 1.982921
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Trend + Seasonal Model with Four Lags of y
Residual Plot

(=] Equation: UNTITLED Workfile: WORKFILELIQUOR::Untitled,

[V\EWIPIU(IDhJE(t] [PrmtINamEIFrEEZE] [ESt\matE[Fme(astIStatSIRESIdS]

Workf|

Range:
Sample:
Blc
A d1
4 d10

i figure
il r\ Unti

.08

.04

“ lll Ll n i 4“ Nl ull.w I IMIL. |
i l”” [Iﬂ I'r”” ]F' I \'ll I ’F” e ”l [ W l]nr

‘0-

o

-‘04

-.08

88 90 92 94 96 98 00 02

Actual

Residual Fitted

8.0

7.6

72

r6.8

6.4

r6.0
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Trend + Seasonal Model with Four Lags of y
Residual Scatterplot




Trend + Seasonal Model with Four Lags of y
Residual Autocorrelations

W Eviews
File Edit Object View Proc Quick Options Add-ins Window Help
5] command
B Program: COD| B Equation: TABLE204 Workfile: WORKFILELIQUOR::Untitled\
{Runfll RUCRTN Ve roc| Object)| Print| Name |
View Proc|0bft s iaus v provaviues au]ubLcuc?::?ligra\:nyol']:elsllﬁlfllscglcaaula »
Range!
Sample Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob*
Bc
ad1 L I 1 0.005 0.005 0.0077 0.930
2d10 1 il 2 0.003 0.003 0.0100 0.995
zd11 i i 3 -0.057 -0.057 1.0926 0.779
2d12 i N 4 -0.009 -0.008 1.1176 0.891
8d2 ar i 5 -0.002 -0.002 1.1190 0.952
2d3 i L 6 0.017 0.014 1.2161 0.976
Bd4 i o 7 -0.025 -0.026 1.4316 0.985
|, ntitle i (il 8 0.068 0.068 2.9954 0.935
T L NIk 9 0.059 0.061 4.1934 0.898
D12 Isales] ult =l 10 -0.123 -0.128 9.4373 0.491

215 /280



Trend + Seasonal Model with Four Lags of y
Residual Histogram and Normality Test

Observations 312

a0
Mean 3.7TTE-16
Median -0.000160
20 M asirnum 0.078468

S

Minimurm -0.109856
Std, Dew. 0.026635
Skewness 0.077911
Kurtosis 3740378

=2

K>

Jarque-Bera  7.441714
Probability 0.024213
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Forecasting Time Series

It's more interesting than in cross sections...
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The “Forecasting the Right-Hand-Side Variables Problem”

For now assume known parameters.
/
Yt = XtB + €t

/
= Yi+h = Xey B+ Eth

Projecting on current information,
Yt+hit = X{L+h,tﬁ
“Forecasting the right-hand-side variables problem” (FRVP):

We don’t have x;yp+
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But FRVP is not a Problem for Us!
FRVP no problem for trends. Why?

FRVP no problem for seasonals. Why?

FRVP also no problem for autoregressive effects
(lagged dependent variables)

e.g., consider a pure AR(1)
Yt = Qyr-1+ €t
Yt+h = OYerh-1 + Etth
Yt+hit = ¢yt+h—17t

No FRVP for h = 1. There seems to be an FRVP for h > 1.
But there's not...

We build the multi-step forecast recursively.
First 1-step, then 2-step, etc.
“Wold's chain rule of forecasting”
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Interval and Density Forecasting

Assuming Gaussian shocks, we immediately have

Yt+h \ Y, Yt—15--0 N(Yt—i—h,t» U?—&-h,t)‘

We know how to get y;yp ¢ (Wold's chain rule).

The question is how to get

Uf+h,t = Vaf(et+h,t) = var(Yesn — yt+h,r)-

[Of course to make things operational we eventually replace
parameters with estimates and use N(§in¢, 67, ,).]
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Interval and Density Forecasting
(1-Step-Ahead, AR(1))

Ve =0yeo1+er e ~ WN(0,0%)

Back substitution yields
Ye =€t + Qg1+ ¢?ero + ¢35t—3 + ..
= Y41 =1+ G + $Per1 + POer 2 + .

Projecting y:41 on time-t information (e, €¢—1,...) gives:

Vi1t = Q¢ + ¢25t—1 + ¢35t—2 + ...
Corresponding 1-step-ahead error (zero-mean, unforecastable):

€t+1,t = Yt+1 — Yt+1,t = Et+1

with variance
2 2
Oir1,e = var(ey1e) =0
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Interval and Density Forecasting
(h-Step-Ahead, AR(p))

Ve = O1ye-1+ oy 2+ .+ OpYrptEr  Er ~ WN(0702)
Back substitution yields
Ve =€t + bies—1 + bocr_o + bzer—3 + ...
= Yi+h = Etyh+bretpp_1+...+Fbp_16¢t41+bper +bpypicr—1+...

(Note that the b’s are functions of the ¢'s.)
Projecting y;1p on time-t information (¢, €¢—1,...) gives:

Yi+ht = bret + bpp1€t—1 + bpioer—2 + ...
Corresponding h-step-ahead error (zero-mean, unforecastable):
€tt+ht = Ye+h — Yerht = Et+h + b1€¢tyn_1+ ... + br_18011
with variance (non-decreasing in h):

Tt ihe = var(erine) = 0°(L+ b + ... + bp_1)
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Liquor Sales History and
1- Through 12-Month-Ahead Point and Interval Forecasts
From Trend + Seasonal Model with Four Lags of y

8.0
7.8

7.6

History and Forecast

14

T2
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8.0,
1.2

0 © ;
= o= -

uoneIzieay pue seiaIod “LIoisTy

Now With Realization Superimposed...
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SIC Estimates of Out-of-Sample Forecast Error Variance)

LSALES; — ¢, TIME;
SIC =0.45

LSALES, — ¢, TIME;, TIME?
SIC =0,28

LSALES, — TIME,, TIME?, D; 1, ..., D:.12
SIC = 0.04

LSALES, — TIME,, TIME2, Dy 1, ..., De12, LSALES,_1, ..., LSALES,_4
SIC = 0.02

(We report exponentiated SIC's because the software actually reports In(SIC)) '
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Structural Change in Time Series:
Evolution or Breaks in Any or all Parameters

Do we really believe that parameters are fixed over time?
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Structural Change
Single Sharp Break, Exogenously Known

For simplicity of exposition, consider a bivariate regression:

— B+ Bixe +ee, i=1,..,T*
& B+ B3xt+er, t=T"+1,..,T

Let

0, t=1,....T*
Dt_{ 1, t=T*+1,...T

Then we can write the model as:
ve = (B1 + (Bf — B1)D:) + (B3 + (85 — B3)De)xe + e
We run:
Yt = €, D¢, Xty Dy - Xt

Use regression to test for structural change (F test)
Use regression to accommodate structural change if present.
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Structural Change
Single Sharp Break, Exogenously Known, Continued

The “Chow test” is what we're really calculating:

(e — (eje1 + e4e2)) /K

h —
Chow = (efer 1 epea) /(T — 2K)

Distributed F under the no-break null (and the rest of the IC)
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Structural Change
Sharp Breakpoint, Endogenously Identified

MaxChow =  max  Chow(9),

Tmin <0 <Tmax

where § denotes potential break location as fraction of sample
(e.g., we might take 0pmin = .15 and dmax = .85)

The null distribution of MaxChow has been tabulated.
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Recursive Parameter Estimates

For generic parameter 3, calculate and examine

Bl:t
fort=1,.., T
— Note that you have to leave room for startup.

That is, you can't really start at t = 1.
Why?
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Recursive Residuals

At each t, t =1,..., T — 1 (leaving room for startup),
compute a 1-step forecast,

K
)7t+1,t = E Bk,l:txk,tJrl
k=1

The corresponding forecast errors, or recursive residuals, are
ét+1,t = Yt+1 — )A/t+1,t
Under the IC (including structural stability),
8 N(0, 2
€1t ™~ ( N rt+l,t)

_ / Iy —1
where riy 1 = 14 x{, 1 (X{X{) ™ xeq1
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Standardized Recursive Residuals and CUSUM

i1t
)]
O.\/rt+1,t

t=1,..., T —1 (leaving room for startup)

Wt—i—l,t =

Under the IC,
VII\/t+1’t ~ IIdN(O, 1)
Then

t*
CUSUMt* = Z Witilt, th = ]., vy T-1

t=1
(leaving room for startup)

is just a sum of iid N(0,1)’s,
and its 95% bounds have been tabulated
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Recursive Analysis, Constant-Parameter DGP

150

=50

a0

50 100 150 200

[—— Recusive C(1) Estimates  ----+25E]

50 100 150 200

—— CUSUM_---- 5% Significancs |
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Recursive Analysis, Breaking-Parameter DGP

00 4
600 3
400 3
%
200
o M .
200 k]
0 50 100 1% 200 250 50 100 150 200
X | ——Reomsive C() Entanates _ ---- 42 8|

50 100 150 200 50 100 150 200

—— Reamsive Residmale --—-%25SE —— CUSUM_——- 5% Sigficance |
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Liquor Sales Model: Recursive Parameter Estimates

vy, Trend Panmeters 3
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Liquor Sales Model: Recursive Residuals With Two
Standard Error Bands

-------------------------------------

Recursive Residuals
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Liquor Sales Model: CUSUM

650
e )

o [ 3

-20 4

40 4

........
_______

-60
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Vector Autoregressions

What if we have more than one time series?
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Basic Framework
e.g., bivariate (2-variable) VAR(1)

Yig = C1+énuyii—1 + d12y20-1 + €1
Y20 = C2+ Pa1y1e-1 + Paoy2ti-1 + €2
e1r ~ WN(0, o%)
2y ~ WN(0, 03)

cov(ert, €24) = 012

e Can extend to N-variable VAR(p)

e Estimation by OLS (as before)

e Can include trends, seasonals, etc. (as before)

e Forecasts via Wold's chain rule (as before)

e Order selection by information criteria (as before)
e Can do predictive causality analysis (coming)
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U.S. Housing Starts and Completions, 1968.01-1996.06

Completions
L2.0

Starts

suogajdwo)

Titme
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Starts Sample Autocorrelations

0.3 =

0.6 =

0.24

Starts Autocorrelation

0.0
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Starts Sample Partial Autocorrelations

Starts Partial Autocorrelabon
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0.44

0.24

n.o

-0.2

a m_M ]
DDDDD D DDDD= = =W

4

6

3

10 12 14

Displacement

16

18

20 22 24
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Completions Sample Autocorrelations
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Completions Sample Partial Autocorrelations

0.8
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Starts and Completions: Sample Cross Correlations

0.6 -
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0.24 -‘
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VAR Starts Equation

VAR Starts Equation

LS // Dependent Variable is STARTS
Sample(adjusted): 1968:05 1991:12
Included observations: 284 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

c 0.146871 0.044235 3.320264 0.0010
STARTS(-1) 0.659939 0.061242 10.77587 0.0000
STARTS(-2) 0.229632 0.072724 3.157587 0.0018
STARTS(-3) 0.142859 0.072655 1.966281 0.0503
STARTS(-4) 0.007806 0.066032 0.118217 0.9060
COMPS(-1) 0.0316l1 0.102712 0.307759 0.7585
COMPS(-2) -0.120781 0.103847 -1.163069 0.2458
COMPS(-3) -0.020601 0.100946 -0.204078 0.8384
COMPS(-4) -0.027404 0.094569 -0.289779 0.7722

R-squared 0.895566 Mean dependent var 1.574771
Adjusted R-squared  0.892528 S.D. dependent var 0.382362
S.E. of regression 0.125350 Akaike info criterion -4,122118
Sum squared resid 4.320952 Schwarz criterion -4.006482
Log likelihood 191.3622 F-statistic 294.7796
Durbin-Watson stat  1.991908 Prob(F-statistic) 0.000000
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VAR Starts Equations Residual Plot

0072 74 76 78 80 82 B4 86 BE 90

Besidual ------- Actual ———— Fitted
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VAR Starts Equation Residual Sample Autocorrelations
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VAR Starts Equation Residual Sample Partial
Autocorrelations
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VAR Completions Equation

L 1 Dependent Vanable 15 CORMES
Sample(adiusted): 1065:05 1991:12
Included observations: 284 after adjusting endpoints

Variable Coefficient

Std. Error t-Statistic

cC 0.045347 0.025754
STARTS(-1) 0.074724 0.035711
STARTS(-Z) 0.040047 0.04240a
STARTS(-3)  0.047145 0.0423668
STARTS(-4) 0.082331 0.038504
COMPS(-1) 0236774 0.0598593
COMPE(-2) 0.206172 0.060554
COMPE{-3)  0.120998 0.053863
COMPE(-4) 0.156729 0.055144
R-squared 0.936835

Adjusted R-squared  0.334993
3.E. of regression 0.073093
Sum squared resid 1.469205
Log likelihood 3445453
Durbin-Watson stat 2013370

1758045
2.092461
0944377
1112805
2138238
3953313
3404742
2055593
2842160

Proh.

0.0739
0.0373
0.3458
0.2668
0.0334
0.0001
0.0008
0.0408
0.0043

Mean dependent var
5.D. dependent var 0286639
Aleaike info criterion

Schwarz criterion
F-statistic
Prob(F-statistic)

1547958

-5. 200872
-5.085236
508.8375
0.000000
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VAR Completions Equation Residual Plot

ot

251 /280



VAR Completions Equation Residual Sample
Autocorrelations
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VAR Completions Equation Residual Sample Partial
Autocorrelations
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Predictive Causality Analysis

Table §
Housing Starts and Completions
Causality Tests

Sarnple: 1965:01 1991:12

Lags: 4

Chs: 284

Mull Hypothesis: F-Statistic  Probability
STARTS does not Canze COMPS 26,2658 0.0000a
COMPS does not Canse STARTS 2.23878 0.08511
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Starts History and Forecast

History and Forecast
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...Now With Starts Realization

History, Forecast, and Realization
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256/ 280



Completions History and Forecast

History and Forecast
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...Now With Completions Realization

History, Farecast, and Realization
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Heteroskedasticity in Time Series

Do we really believe that
disturbance variances are constant over time?
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Dynamic Volatility is the Key to Finance and Financial
Economics

» Risk management
» Portfolio allocation
> Asset pricing

> Hedging

> Trading
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Financial Asset Returns
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Figure: Time Series of Daily NYSE Returns.
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Returns are Approximately Serially Uncorrelated
.08 4
06 4
.04 Ul on -

.02 4

ol _ HH Hﬂﬂ o= uﬂ UHHHU

SMMET e

e st e ST s

Autocormelation

- 06 T T T T T T

Displacement

Figure: Correlogram of Daily NYSE Returns.

So returns are approximately white noise. But...
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Returns are not Unconditionally Gaussian...

1200
Series R
M Sample1 3461
L Obssrafions 3461
B0 4 Mesn 0.000522
Median 0000640
S o0 Madmum 0047340
3 hinimum -0.083910
Std. Dew 0.00854
400 Skewnesz  -0.505540
Kurtosis 5535016
200
Jargue-Bera 4365 446
0 P robakility 0.000000

T | y T T
-0.030 0.025 0.000 0.025 0.050

Fetum

Figure: Histogram and Statistics for Daily NYSE Returns.
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Unconditional Volatility Measures

Variance: 02 = E(r; — p)? (or standard deviation: o)
Kurtosis: K = E(r —p)*/o*

Mean Absolute Deviation: MAD = E|r; — p|
Interquartile Range: IQR = 75% — 25%

Outlier probability: P|ry — u| > 50 (for example)
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... Returns are Not Homoskedastic
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Figure: Time Series of Daily Squared NYSE Returns.
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Indeed Returns are Highly Conditionally Heteroskedastic...

16 S
241~
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Figure: Correlogram of Daily Squared NYSE Returns.
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Standard Models (e.g., AR(1)) Fail to Capture the
Conditional Heteroskedasticity...

re=¢ri_1+er, e~ iidN(, o?)
Equivalently, r;|Q;—1 ~ N(¢re—1,02)
Conditional mean:

E(ry | Q¢—1) = ¢re—1 (varies)

Conditional variance:
var(r | Q¢—1) = 02 (constant)
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..So Introduce Special Heteroskedastic Disturbances
re=¢re_1+er, et~ iidN(, o?)

Equivalently, r; | Q:—1 ~ N(¢ri_1, o2)

Now consider:
af =w+ ozrtz_l + ﬁaf_l
w>0, a>0, >0 a+8<1

“GARCH(1,1) Process”

E(rt|Qt—1) = ¢pre—1  (varies)

var(re | Qi—1) = w4 ar? | + Bo2 ;  (varies)

For modeling daily asset returns we can simply use:
re | Qe—1 ~ N(O, U?)
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GARCH(1,1) and “Exponential Smoothing"

GARCH(1,1):

2 2 2
oy =w+tar{_;+ foi_q

Solving backward:
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Unified Framework

» Conditional variance dynamics (of course, by construction)

» Conditional variance dynamics produce unconditional
leptokurtosis, even in our conditionally Gaussian setup
(So conditional variance dynamics and unconditional fat tails
are intimately related)

» Returns are non-Gaussian weak white noise
(Serially uncorrelated but nevertheless dependent, due to
conditional variance dynamics — today's conditional variance
depends on the past.)
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Extension: Regression with GARCH Disturbances
(GARCH-M)

Standard GARCH regression:
re=xiB+er

e¢|Qe—1 ~ N(O, J?)

GARCH-in mean (GARCH-M) regression:
re=x;+70c + et

5t|Qt—1 ~ N(07 U?)
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Extension: Fat-Tailed Conditional Densities
(t-GARCH)
If r is conditionally Gaussian, then
Qi1 = N(0,02)
or

Tt jid N(0, 1)

Ot

But often with high-frequency data,

r, . .
o id fat—tailed
Ot

So take:

It ol ty
o iid —4
o std(t4)

and treat d as another parameter to be estimated
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Extension: Asymmetric Response and the Leverage Effect
(Threshold GARCH)

Standard GARCH: 02 = w + ar? | + 302,
Threshold GARCH: 02 = w + ar? | +~r?2 ;Di_1 + Bo? |

Dt:{ 1Ifrt<0

0 otherwise
positive return (good news): « effect on volatility
negative return (bad news): « + v effect on volatility

~v # 0: Asymetric news response
v > 0: “Leverage effect”
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GARCH(1,1) MLE for Daily NYSE Returns

Workfile: FCSTI4FINALTZED - (c\users\francis x. diebo\docume;

[view[Proc| object [ print [ save | Details=/- | [show| Feten stare| Del

Range: 14000 -- 4000 obs

Sample: 1 3461 -- 3461 obs
Elc = r2arb
M ecsdrgarch11 & r2zsmooth
A ecvrgarch11 &4 r2sgsmooth
A fest = rarchb
®1fig1410 4 resid
®fig1411 = rgarch11
i figure141 & se
i figure1410 table141
il figure1411 table142
wl figure142 table143
& figure143 & viest
i figure144 M yhat
= figure145

figure146
& figure147
i figure148
i figure149
& history
AT
Er2

(=] Equation: UNTITLED Workfile: FCST14FINALIZED::Section_4\ il
[ViewIPro:IOme:t] [PrinthameIFreeze] lEstimatelFore:astlStatisesids]
Dependent Variable: R
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 12/02M12 Time: 07:58
Sample: 1 3461
Included observations: 3461
Convergence achieved after 16 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID{-1)*2 + C(4)*GARCH(-1)
Variable Coefficient 8td. Error z-Statistic Prob
C 0.000641 0.000127 5.039437 0.0000
Variance Equation
C 1.06E-06 1.49E-07 7.127979 0.0000

RESID(-1}*2 0.067408 0.004959 1359218 0.0000

GARCH(-1) 0.919717 0.006128 150.0893 0.0000
R-squared -0.000193 Mean dependent var 0.000522
Adjusted R-squared -0.000193 S.D. dependentvar 0.008541
SE ofregression 0008542 Akaike info criterion -6.868008
Sum squared resid 0.252471 Schwarz criterion -6.860901
Log likelihood 11889.09 Hannan-Quinn criter. -6.865470
Durbin-Watson stat 1.861386

<+l Section 4 { NewPage |
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“Fancy” GARCH(1,1) MLE

Dependent Variable: R

Method: ML - ARCH (Marquardt) - Student's t distribution

Date: 04/10/12 Time: 13:48

Sample (adjusted): 2 3461

Included observations: 3460 after adjustments

Convergence achieved after 19 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = C(4) + C(5)*RESID(-1)"2 + C(6)*RESID(-1)"2*(RESID(-1)<0)
+ C(7)*GARCH(-1)

Variable Coefficient Std. Error  z-Statistic Prob.
@SQRT(GARCH) 0.083360 0.053138 1.568753 0.1167
C 1.28E-05 0.000372 0.034443 0.9725
R(-1) 0.073763 0.017611  4.188535 0.0000

Variance Equation

c 1.03E-06  2.23E-07  4.628790  0.0000
RESID(-1)"2 0.014945  0.009765 1530473  0.1259
RESID(-1)"2*(RESID(-
1)<0) 0.094014  0.014945  6.290700  0.0000
GARCH(-1) 0.922745  0.009129  101.0741  0.0000
T-DIST. DOF 5531579  0.478432 1156188  0.0000
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Fitted GARCH Volatility
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Figure: Estimated Conditional Standard Deviation, Daily NYSE Returns.
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A Useful Specification Diagnostic

re|Qe—1 ~ N(0,02)

Tt jid N(0, 1)

Ot

Infeasible: examine ;—’-‘t

. iid? Gaussian?
Feasible: examine (% iid? Gaussian?

Key deviation from iid is volatility dynamics. So examine

2
correlogram of squared standardized returns, (5—2)
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GARCH Specification Diagnostic
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Figure: Correlogram of Squared Standardized Returns
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GARCH Volatility Forecast
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Figure: Conditional Standard Deviation, History and Forecast
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Volatility Forecasts Feed Into Return Density Forecasts

In earlier linear (AR) environment we wrote:

Yern|Q ~ N(Yerne, o5)

(h-step forecast error variance depended only on h, not t)

Now we have:

Yern|Qe ~ N(}’H—h,h U%—i—h,t)

(h-step forecast error variance now depends on both h and t)
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