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Introduction
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Numerous Communities Use Econometrics

Economists, statisticians, analysts, ”data scientists” in:

I Finance (Commercial banking, retail banking, investment
banking, insurance, asset management, real estate, ...)

I Traditional Industry (manufacturing, services, advertising,
brick-and-mortar retailing, ...)

I e-Industry (Google, Amazon, eBay, Uber, Microsoft, ...)

I Consulting (financial services, litigation support, ...)

I Government (treasury, agriculture, environment, commerce,
...)

I Central Banks and International Organizations (FED, IMF,
World Bank, OECD, BIS, ECB, ...)
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Econometrics is Special

Econometrics is not just “statistics using economic data”. Many
properties and nuances of economic data require knowledge of
economics for sucessful analysis.

I Emphasis on predictions, guiding decisions

I Observational data

I Structural change

I Volatility fluctuations (”heteroskedasticity”)

I Even trickier in time series: Trend, Seasonality, Cycles (”serial
correlation”)
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Let’s Elaborate on the “Emphasis on Predictions Guiding
Decisions”...

Q: What is econometrics about, broadly?

A: Helping people to make better decisions
I Consumers

I Firms

I Investors

I Policy makers

I Courts

Forecasts guide decisions.

Good forecasts promote good decisions.

Hence prediction holds a distinguished place in econometrics,
and it will hold a distinguished place in this course.
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Types/Arrangements of Economic Data

– Cross section

Standard cross-section notation: i = 1, ...,N

– Time series

Standard time-series notation: t = 1, ...,T

Much of our discussion will apply to both cross-section and
time-series environments, but still we have to pick a notation.
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A Few Leading Econometrics Web Data Resources
(Clickable)

Indispensible:

I Resources for Economists (AEA)

I FRED (Federal Reserve Economic Data)

More specialized:

I National Bureau of Economic Research

I FRB Phila Real-Time Data Research Center

I Many more
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A Few Leading Econometrics Software Environments
(Clickable)

I High-Level: EViews, Stata

I Mid-Level: R (also CRAN; RStudio; R-bloggers), Python (also
Anaconda), Julia

I Low-Level: C, C++, Fortran

“High-level” does not mean “best”, and “low-level” does not
mean worst. There are many issues.
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Graphics Review
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Graphics Help us to:

I Summarize and reveal patterns in univariate cross-section
data. Histograms and density estimates are helpful for learning
about distributional shape. Symmetric, skewed, fat-tailed, ...

I Summarize and reveal patterns in univariate time-series data.
Time Series plots are useful for learning about dynamics.
Trend, seasonal, cycle, outliers, ...

I Summarize and reveal patterns in multivariate data
(cross-section or time-series). Scatterplots are useful for
learning about relationships. Does a relationship exist? Is it
linear or nonlinear? Are there outliers?
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Histogram Revealing Distributional Shape:
1-Year Government Bond Yield
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Time Series Plot Revealing Dynamics:
1-Year Goverment Bond Yield
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Scatterplot Revealing Relationship:
1-Year and 10-Year Government Bond Yields
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Some Principles of Graphical Style

I Know your audience, and know your goals.

I Appeal to the viewer.

I Show the data, and only the data, withing the bounds of
reason.
I Avoid distortion. The sizes of effects in graphics should match

their size in the data. Use common scales in multiple
comparisons.

I Minimize, within reason, non-data ink. Avoid chartjunk.
I Third, choose aspect ratios to maximize pattern revelation.

Bank to 45 degrees.
I Maximize graphical data density.

I Revise and edit, again and again (and again). Graphics
produced using software defaults are almost never satisfactory.
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Probability and Statistics Review
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Moments, Sample Moments and Their Sampling
Distributions

I Discrete random variable, y

I Discrete probability distribution p(y)

I Continuous random variable y

I Probability density function f (y)
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Population Moments: Expectations of Powers of R.V.’s

Mean measures location:

µ = E (y) =
∑
i

piyi (discrete case)

µ = E (y) =

∫
y f (y) dy (continuous case)

Variance, or standard deviation, measures dispersion, or scale:

σ2 = var(y) = E (y − µ)2.

– σ easier to interpret than σ2. Why?
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More Population Moments

Skewness measures skewness (!)

S =
E (y − µ)3

σ3
.

Kurtosis measures tail fatness relative to a Gaussian distribution.

K =
E (y − µ)4

σ4
.

19 / 280



Covariance and Correlation

Multivariate case: Joint, marginal and conditional distributions
f (x , y), f (x), f (y), f (x |y), f (y |x)

Covariance measures linear dependence:

cov(y , x) = E [(y − µy )(x − µx)].

So does correlation:

corr(y , x) =
cov(y , x)

σyσx
.

Correlation is often more convenient. Why?
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Sampling and Estimation

Sample : {yi}Ni=1 ∼ iid f (y)

Sample mean:

ȳ =
1

N

N∑
i=1

yi

Sample variance:

σ̂2 =

∑N
i=1(yi − ȳ)2

N

Unbiased sample variance:

s2 =

∑N
i=1(yi − ȳ)2

N − 1
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More Sample Moments

Sample skewness:

Ŝ =
1
N

∑N
i=1(yi − ȳ)3

σ̂3

Sample kurtosis:

K̂ =
1
N

∑N
i=1(yi − ȳ)4

σ̂4
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Still More Sample Moments

Sample covariance:

ĉov(y , x) =
1

N

N∑
i=1

[(yi − ȳ)(xi − x̄)]

Sample correlation:

ĉorr(y , x) =
ĉov(y , x)

σ̂y σ̂x

23 / 280



Exact Finite-Sample Distribution of the Sample Mean
(Requires iid Normality)

Simple random sampling : yi ∼ iid N(µ, σ2), i = 1, ...,N

ȳ is unbiased and normally distributed with variance σ2/N.

ȳ ∼ N

(
µ,
σ2

N

)
,

and we estimate σ2 using s2, where

s2 =

∑N
i=1(yi − ȳ)2

N − 1
.

µ ∈
[
ȳ ± t1−α

2
(N − 1)

s√
N

]
w .p. 1− α

µ = µ0 =⇒ ȳ − µ0
s√
N

∼ t1−α
2

(N − 1)

where “t1−α
2

(N − 1)” denotes the appropriate critical value of the Student’s t
density with N − 1 degrees of freedom
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Large-Sample Distribution of the Sample Mean
(Requires iid, but not Normality)

Simple random sampling : yi ∼ iid (µ, σ2), i = 1, ...,N

ȳ is consistent and asymptotically normally distributed with variance v .

ȳ
a
∼ N(µ, v),

and we estimate v using v̂ = s2/N, where

s2 =

∑N
i=1(yi − ȳ)2

N − 1
.

This is an approximate (large-sample) result, due to the central limit theorem.
The “a” is for “asymptotically”, which means “as N →∞”.

As N →∞, µ ∈
[
ȳ ± z1−α

2

s√
N

]
w .p. 1− α

As N →∞, µ = µ0 =⇒ ȳ − µ0
s√
N

∼ N(0, 1)
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Wages: Distributions
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Wages: Sample Statistics

WAGE log WAGE

Sample Mean 12.19 2.34
Sample Median 10.00 2.30
Sample Maximum 65.00 4.17
Sample Minimum 1.43 0.36
Sample Std. Dev. 7.38 0.56
Sample Skewness 1.76 0.06
Sample Kurtosis 7.93 2.90
Jarque-Bera 2027.86 1.26

(p = 0.00) (p = 0.53)
t(H0 : µ = 12) 0.93 -625.70

(p = 0.36) (p = 0.00)
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Regression
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Regression

A. As curve fitting. “Tell a computer how to draw a line through a
scatterplot”. (Well, sure, but there must be more...)

B. As a probabilistic framework for optimal prediction.
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Regression as Curve Fitting
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Distributions of Log Wage, Education and Experience
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Scatterplot: Log Wage vs. Education
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Curve Fitting

Fit a line:

yi = β1 + β2xi

Solve:

min
β1,β2

N∑
i=1

(yi − β1 − β2xi )
2

“least squares” (LS, or OLS)

“quadratic loss”
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Actual Values, Fitted Values and Residuals

Actual values: yi , i = 1, ...,N

Least-squares fitted parameters: β̂1 and β̂2

Fitted values: ŷi = β̂1 + β̂2xi , i = 1, ...,N,

(“hats” denote fitted things...)

Residuals: ei = yi − ŷi , i = 1, ...,N.
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Log Wage vs. Education with Superimposed Regression
Line

̂LWAGE = 1.273 + .081EDUC
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Multiple Linear Regression (K RHS Variables)

Solve:

min
β1,...,βK

N∑
i=1

(yi − β1 − β2xi2 − ...− βKxiK )2

Fitted hyperplane:

ŷi = β̂1 + β̂2xi2 + ...+ β̂KxiK

More compactly:

ŷi =
K∑

k=1

β̂kxik ,

where xi1 = 1 for all i .

Wage dataset:

̂LWAGE = .867 + .093EDUC + .013EXPER
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Regression as a Probability Model
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An Ideal Situation (“The Ideal Conditions”, or IC)
1. The data-generating process (DGP) is:

yi = β1 + β2xi2 + ...+ βKxiK + εi

εi ∼ iidN(0, σ2)

i = 1, ...,N,

and the fitted model matches it exactly.
1.1 The fitted model is correctly specified
1.2 The disturbances are Gaussian
1.3 The coefficients (βk ’s) are fixed
1.4 The relationship is linear
1.5 The εi ’s have constant unconditional variance σ2

1.6 The εi ’s are uncorrelated

2. εi is independent of (xi1, ..., xiK ), for all i
2.1 E (εi | xi1, ..., xiK ) = 0, for all i
2.2 var(εi | xi1, ..., xiK ) = σ2, for all i

(Written here for cross sections. Slight changes in 2.1, 2.2 for time
series.)
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Some Concise Matrix Notation
(Useful for Notation, Estimation, Inference)

You already understand matrix (“spreadsheet”) notation,
although you may not know it.

y =


y1
y2
...

yN

 X =


1 x12 x13 . . . x1K
1 x22 x23 . . . x2K
...
1 xN2 xN3 . . . xNK

 β =


β1
β2
...
βK

 ε =


ε1
ε2
...
εN


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Elementary Matrices and Matrix Operations

0 =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


Transposition: A′ij = Aji

Addition: For A and B n ×m, (A + B)ij = Aij + Bij

Multiplication: For A n ×m and B m × p, (AB)ij =
∑m

k=1 AikBkj .

Inversion: For non-singular A n × n, A−1 satisfies
A−1A = AA−1 = I . Many algorithms exist for calculation.
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The DGP in Matrix Form, Written Out


y1
y2
...

yN

 =


1 x12 x13 . . . x1K
1 x22 x23 . . . x2K
...
1 xN2 xN3 . . . xNK



β1
β2
...
βK

+


ε1
ε2
...
εN



ε1
ε2
...
εN

 ∼ N




0
0
...
0

 ,


σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2




y = Xβ + ε

ε ∼ N(0, σ2I )
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Three Notations

Original form:

yi = β1 + β2xi2 + ...+ βKxiK + εi , εi ∼ iidN(0, σ2)

i = 1, 2, ...,N

Intermediate form:

yi = x ′iβ + εi , εi ∼ iidN(0, σ2)

i = 1, 2, ...,N

Full matrix form:

y = Xβ + ε, ε ∼ N(0, σ2I )
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Ideal Conditions Redux

We used to write this: The DGP is

yi = β1 + β2xi2 + ...+ βKxiK + εi , εi ∼ iidN(0, σ2),

and the fitted model matches it exactly, and

εi is independent of (xi1, ..., xiK ), for all i

Now, equivalently, we write this: The DGP is

y = Xβ + ε, ε ∼ N(0, σ2I )

and the fitted model matches it exactly, and

εi is independent of xi , for all i
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The OLS Estimator in Matrix Notation

As before, the LS estimator solves:

min
β1,...,βK

(
N∑
i=1

(yi − β1 − β2xi2 − ...− βKxiK )2

)

Now, in matrix notation:

min
β

(
(y − Xβ)′(y − Xβ)

)

It can be shown that the solution is:

β̂LS = (X ′X )−1X ′y
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Large-Sample Distribution of β̂LS

Under the IC

β̂LS is consistent and asymptotically normally distributed with
covariance matrix V ,

β̂LS

a
∼ N (β, V ) ,

we estimate V using V̂ = s2(X ′X )−1, where

s2 =

∑N
i=1 e2i

N − K
.

Note the precise parallel with the large-sample distribution of the
sample mean.
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Sample Mean, Regression on an Intercept, and Properties
of Residuals

– Sample mean is just LS regression on nothing but an intercept.
(Why?)

– Intercept picks up a “level effect”

– Regression generalizes the sample mean to include predictors
other than just a constant

– If an intercept is included in a regression,
the residuals must sum to 0 (Why?)
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Conditional Moment Implications of the IC

Conditional mean:

E (yi | xi=x∗) = x∗′β

Conditional variance:

var(yi | xi=x∗) = σ2

Full conditional density:

yi | xi=x∗ ∼ N(x∗′β, σ2)

Why All the Talk About Conditional Moment Implications?
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“Point Prediction”

A major goal in econometrics is predicting y . The question is “If a
new person i arrives with characteristics xi=x∗, what is my best
prediction of her yi? The answer is E (yi | xi=x∗) = x∗′β.

“The conditional mean is the minimum MSE point predictor”

Non-operational version (remember, in reality we don’t know β):
E (yi | xi = x∗)=x∗′β

Operational version (use β̂LS):
̂E (yi | xi=x∗) = x∗′β̂LS (regression fitted value at xi=x∗)

– LS delivers operational optimal predictor with great generality

– Follows immediately from the LS optimization problem
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“Interval Prediction”

Non-operational (in reality we don’t know β or σ):

yi ∈ [x∗′β ± 1.96σ] w .p. 0.95

Operational:

yi ∈ [x∗′β̂LS ± 1.96 s] w .p. 0.95

(Notice that, as is common, this operational interval forecast
ignores parameter estimation uncertainty, or equivalently, assumes
a large sample, so that that the interval is based on the standard
normal distribution rather than Student’s t.)
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“Density Prediction”

Non-operational version:

yi | xi=x∗ ∼ N(x∗′β, σ2)

Operational version:

yi | xi=x∗ ∼ N(x∗′β̂LS , s2)

(This operational density forecast also ignores parameter
estimation uncertainty, or equivalently, assumes a large sample, as
will all of our interval and density forecasts moving forward.)
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“Typical” Regression Analysis of Wages, Education and
Experience

Figure: Wage Regression Output

51 / 280



“Top Matter”: Background Information

I Dependent variable

I Method

I Date

I Sample

I Included observations
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“Middle Matter”: Estimated Regression Function

I Variable

I Coefficient – appropriate element of (X ′X )−1X ′y

I Standard error – appropriate diagonal element of
√

s2(X ′X )−1

I t-statistic – coefficient divided by standard error

I p-value
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Predictive Perspectives

– OLS coefficient signs and sizes give the weights put on the
various x variables in forming the best in-sample prediction of y .

– The standard errors, t statistics, and p-values let us do statistical
inference as to which regressors are most relevant for predicting y .
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“Bottom Matter: Statistics”

There are many...

55 / 280



Regression Statistics: Mean dependent var 2.342

ȳ =
1

N

N∑
i=1

yi
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Predictive Perspectives

The sample, or historical, mean of the dependent variable, ȳ , an
estimate of the unconditional mean of y , is a naive benchmark

forecast. It is obtained by regressing y on an intercept alone – no
conditioning on other regressors.
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Regression Statistics: S.D. dependent var .561

SD =

√∑N
i=1(yi − ȳ)2

N − 1
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Predictive Perspectives

– The sample standard deviation of y is a measure of the in-sample
accuracy of the unconditional mean forecast ȳ .
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Regression Statistics: Sum squared resid 319.938

SSR =
N∑
i=1

e2i

– Optimized value of the LS objective; will appear in many places.
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Predictive Perspectives

– The OLS fitted values, ŷi = x ′i β̂, are effectively in-sample
regression predictions.

– The OLS residuals, ei = yi − ŷi , are effectively in-sample
prediction errors corresponding to use of the regression predictions.

SSR measures “total” in-sample predictive accuracy

“squared-error loss”

“quadratic loss”

SSR is closely related to in-sample MSE :

MSE =
1

N
SSR =

1

N

N∑
i=1

e2i

(“average” in-sample predictive accuracy)
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Regression Statistics: F -statistic 199.626

F =
(SSRres − SSR)/(K − 1)

SSR/(N − K )
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Predictive Perspectives

– The F statistic effectively compares the accuracy of the
regression-based forecast to that of the unconditional-mean

forecast.

– Helps us assess whether the x variables, taken as a set, have
predictive value for y .

– Contrasts with the t statistics, which assess predictive value of
the x variables one at a time.
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Regression Statistics: S.E. of regression .492

s2 =

∑N
i=1 e2i

N − K

SER =
√

s2 =

√∑N
i=1 e2i

N − K
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Predictive Perspectives

s2 is just SSR scaled by N − K , so again, it’s a measure of the
in-sample accuracy of the regression-based forecast.

Like MSE, but corrected for degrees of freedom.
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Regression Statistics:
R-squared .232, Adjusted R-squared .231

R2 = 1−
1
N

∑N
i=1 e2i

1
N

∑N
i=1(yi − ȳ)2

R̄2 = 1−
1

N−K
∑N

i=1 e2i
1

N−1
∑N

i=1(yi − ȳ)2

“What percent of variation in y is explained by variation in x?”
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Predictive Perspectives

R2 and R̄2 effectively compare the in-sample accuracy of
conditional-mean and unconditional-mean forecasts.

R2 is not corrected for d.f. and has MSE on top:

R2 = 1−
1
N

∑N
i=1 e2i

1
N

∑N
i=1(yi − ȳ)2

R̄2 is corrected for d.f. and has s2 on top:

R̄2 = 1−
1

N−K
∑N

i=1 e2i
1

N−1
∑N

i=1(yi − ȳ)2
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R2
k and “Multicollinearity”

(not shown in the computer output)

Perfect multicollinearity (Big problem for LS!):
One x a perfect linear combination of others. X ′X singular.

Imperfect multicollinearity (Not a big problem for LS):
One x correlated with a linear combination of others.

We often measure the strength of multicollinearity by “R2
k”, the

R2 from a regression of xk on all other regressors.

It can be shown that:

var(β̂k) = f

 σ2︸︷︷︸
+

, σ2xk︸︷︷︸
−

, R2
k︸︷︷︸

+


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Predictive Perspectives

– Multollinearity makes it hard to identify the contributions of the
individual x ’s to the overall predictive relationship.

(Low t-stats)

– But we still might see evidence of a
strong overall predictive relationship.

(High F -stat)
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Regression Statistics: Log likelihood -938.236

Understanding this requires some background / detail:

I Likelihood – joint density of the data (the yi ’s)

I Maximum-likelihood estimation – natural estimation strategy:
find the parameter configuration that maximizes the likelihood
of getting the yi ’s that you actually did get.

I Log likelihood – will have same max as the likelihood (why?)
but it’s more important statistically

I Hypothesis tests are based on log likelihood
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Detail: Maximum-Likelihood Estimation

Linear regression DGP (under the IC) implies that:

yi |xi ∼ iidN(x ′iβ, σ
2),

so that
f (yi |xi ) = (2πσ2)

−1
2 e

−1
2σ2

(yi−x ′i β)
2

Now by independence of the εi ’s and hence yi ’s,

L = f (y1, ..., yN |xi ) = f (y1|x1)···f (yN |xN) =
N∏
i=1

(2πσ2)
−1
2 e

−1
2σ2

(yi−x ′i β)
2
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Detail: Log Likelihood

ln L = ln
(

(2πσ2)
−N
2

)
− 1

2σ2

N∑
i=1

(yi − x ′iβ)2

=
−N

2
ln(2π)− N

2
ln
(
σ2
)
− 1

2σ2

N∑
i=1

(yi − x ′iβ)2

– Log turns the product into a sum and eliminates the exponential

– The β vector that maximizes the likelihood is the β vector that
minimizes the sum of squared residuals

– Additive constant −N2 ln(2π) can be dropped

– “MLE and OLS coincide for linear regression under the IC”
(Normality, in particular, is crucial)
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Detail: Likelihood-Ratio Tests

It can be shown that, under the null hypothesis (that is, if the
restrictions imposed under the null are true):

−2(ln L0 − ln L1)
a
∼ χ2

d ,

where ln L0 is the maximized log likelihood under the restrictions
imposed by the null hypothesis, ln L1 is the unrestricted log
likelihood, and d is the number of restrictions imposed under the
null hypothesis.

– t and F tests are likelihood ratio tests under a normality
assumption, which of course is part of the IC. That’s why they can
be written in terms of minimized SSR’s in addition to maximized
ln L’s.
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Predictive Perspectives

I Gaussian L is intimately related to SSR

I Therefore L is closely related to prediction (and measuring
predictive accuracy) as well

I Small SSR ⇐⇒ large L
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Regression Statistics: Schwarz criterion 1.435
Akaike info criterion 1.422

We’ll get there shortly...
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Regression Statistics: Durbin-Watson stat. 1.926

We’ll get there in six weeks...
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Residual Scatter

Figure: Wage Regression Residual Scatter
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Residual Plot

Figure: Wage Regression Residual Plot
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Predictive Perspectives

– The LS fitted values, ŷi = x ′i β̂, are effectively best in-sample
predictions.

– The LS residuals, ei = yi − ŷi , are effectively in-sample prediction
errors corresponding to use of the best predictor.

– Residual plots are useful for visually flagging violations of the IC
that can impact forecasting.

For example:

1. The true DGP may be nonlinear

2. ε may be non-Gaussian

3. ε may have non-constant variance
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Misspecification and Model Selection

Do we really believe that the fitted model matches the DGP?
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Regression Statistics:
Akaike info criterion 1.422, Schwarz criterion 1.435

SSR versions:

AIC = e
2K
N

∑N
i=1 e2i
N

SIC = N(K
N )
∑N

i=1 e2i
N

More general lnL versions:

AIC = −2lnL + 2K

SIC = −2lnL + KlnN
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Penalties
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Predictive Perspectives

– Estimate out-of-sample forecast accuracy (which is what we
really care about) on the basis of in-sample forecast accuracy. (We

want to select a forecasting model that will perform well for
out-of-sample forecasting, quite apart from its in-sample fit.)

– We proceed by inflating the in-sample mean-squared error
(MSE ), in various attempts to offset the deflation from regression

fitting, to obtain a good estimate of out-of-sample MSE .

MSE =

∑N
i=1 e2i
N

s2 =

(
N

N − K

)
MSE

SIC =
(

N(K
N )
)

MSE

“Oracle property”
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Non-Normality and Outliers

Do we really believe that the disturbances are Gaussian?
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What We’ll Do

– Problems caused by non-normality and outliers
(Large sample estimation results don’t change,

LS results can be distorted or fragile, and
density prediction changes)

– Detecting non-normality, outliers, and influential observations
(JB test, residual histogram, residual QQ plot,

residual plot and scatterplot, leave-one-out plot, ...)

– Dealing with non-normality, outliers, and influential observations
(LAD regression, simulation-based density forecasts, ...)
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Large-Sample Distribution of β̂LS

Under the Ideal Conditions (Except Normality)

β̂LS is consistent and asymptotically normally distributed with
covariance matrix V ,

β̂LS

a
∼ N (β, V ) ,

and we estimate V using V̂ = s2(X ′X )−1, where

s2 =

∑N
i=1 e2i

N − K

No change from asymptotic result under IC!
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So why worry about normality?

– Non-normality and resulting outliers
can distort finite-sample estimates

– Interval and density prediction change fundamentally
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Jarque-Bera Normality Test

– Sample skewness and kurtosis, Ŝ and K̂

– Jarque-Bera test. Under normality we have:

JB =
N

6

(
Ŝ2 +

1

4
(K̂ − 3)2

)
∼ χ2

2

– Many more
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Recall Our OLS Wage Regression

Figure: Wage Regression Output
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OLS Residual Histogram and Statistics
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QQ Plots

I We introduced histograms earlier...

I ...but if interest centers on the tails of distributions, QQ plots
often provide sharper insight as to the agreement or
divergence between the actual and reference distributions

I QQ plot is quantiles of the standardized data against quantiles
of a standardized reference distribution (e.g., normal)

I If the distributions match, the QQ plot is the 45 degree line

I To the extent that the QQ plot does not match the 45 degree
line, the nature of the divergence can be very informative, as
for example in indicating fat tails
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OLS Wage Regression Residual QQ Plot
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Residual Scatter

Figure: Wage Regression Residual Scatter
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OLS Residual Plot
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Leave-One-Out Plot

Consider:(
β̂(−i) − β̂

)
, i = 1, ...N

“Leave-one-out plot”
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Wage Regression
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Robust Estimation: Least Absolute Deviations (LAD)

The LAD estimator, β̂LAD , solves:

minβ

N∑
i=1

|εi |

– Not as simple as OLS, but still simple

x ′i β̂OLS is an estimate of E (yi |xi )
“OLS fits the conditional mean function”

x ′i β̂LAD is an estimate of median(yi |xi )
“LAD fits the conditional median function”

– The two are equal with symmetric disturbances, but not with
asymmetric disturbances, in which case the median is a more
robust measure of central tendency of the conditional density
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LAD Wage Regression Estimation
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Digging into Prediction (Much) More Deeply (Again)

The environment is:

yi = x ′iβ + εi , i = 1, ...,N,

subject to the IC, except that we allow

εi ∼ iid D(0, σ2)
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Simulation Algorithm for
Feasible Density Prediction With Normality

Consider a density forecast for a person t
with characteristics xi=x∗i .

1. Take R draws from N(0, s2).

2. Add x∗i
′β̂ to each disturbance draw.

3. Form a density forecast by making a histogram for the output
from step 2.

[If desired, form an interval forecast (95%, say) by sorting the
output from step 2 to get the empirical cdf, and taking the left
and right interval endpoints as the the 2.5% and 97.5% values.]

As R →∞ and N →∞, all error vanishes.
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Now: Simulation Algorithm for
Feasible Density Prediction Without Normality

1. Take R disturbance draws by assigning probability 1/N to
each regression residual and sampling with replacement.

2. Add x∗i
′β̂ to each draw.

3. Form a density forecast by fitting a density to the output from
step 2.

[If desired, form a 95% interval forecast by sorting the output from
step 2, and taking the left and right interval endpoints as the the

.025% and .975% values.]

As R →∞ and N →∞, all error vanishes.
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Indicator Variables in Cross Sections:
Group Effects

Effectively a type of structural change in cross sections
(Different intercepts for different groups of people)

Do we really believe that intercepts are identical across groups?
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Dummy Variables for Group Effects

A dummy variable, or indicator variable, is just a 0-1 variable that
indicates something, such as whether a person is female:

FEMALEi =

{
1 if person i is female

0 otherwise

(It really is that simple.)

“Intercept dummies”
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Histograms for Wage Covariates

Notice that the sample mean of an indicator variable is the
fraction of the sample with the indicated attribute.
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Recall Basic Wage Regression on Education and Experience

LWAGE → C ,EDUC ,EXPER
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Basic Wage Regression Results
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Introducing Sex, Race, and Union Status
in the Wage Regression

Now:

LWAGE → C ,EDUC ,EXPER,FEMALE ,NONWHITE ,UNION

The estimated intercept corresponds to the “base case” across all
dummies (i.e., when all dummies are simultaneously 0), and the

estimated dummy coefficients give the estimated extra effects (i.e.,
when the respective dummies are 1).
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Wage Regression on Education, Experience, and Group
Dummies

108 / 280



Predictive Perspectives

Basic Wage Regression
– Conditions only on education and experience.

– Intercept is a mongrel combination of those for
men, women; white, non-white; union, non-union.

– Comparatively sparse “information set”.
Forecasting performance could be improved.

Wage Regression With Dummies
– Conditions on education, experience,

and sex, race, and union status.
– Now we have different, “customized”, intercepts

by sex, race, and union status.
– Comparatively rich information set.

Forecasting performance should be better.
e.g., knowing that someone is female, non-white, and non-union
would be very valuable (in addition to education and experience)

for predicting her wage!
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Nonlinearity

Do we really believe that the relationship is linear?
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Anscombe’s Quartet
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Anscombe’s Quartet: Regressions
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Anscombe’s Quartet Graphics: Dataset 1

Anscombe’s Quartet: Graphics

Figure: Anscombe’s Quartet: Graphs
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Anscombe’s Quartet Graphics: Dataset 2

Anscombe’s Quartet: Graphics

Figure: Anscombe’s Quartet: Graphs

114 / 260
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Anscombe’s Quartet Graphics: Dataset 3

Anscombe’s Quartet: Graphics

Figure: Anscombe’s Quartet: Graphs

114 / 260
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Anscombe’s Quartet Graphics: Dataset 4

Anscombe’s Quartet: Graphics

Figure: Anscombe’s Quartet: Graphs
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Log-Log Regression

lnyi = β1 + β2lnxi + εi

For close yi and xi , (ln yi − ln xi ) · 100 is approximately the percent
difference between yi and xi . Hence the coefficients in log-log

regressions give the expected percent change in y for a one-percent
change in x . That is, they give the elasticity of y with respect to x .

Example: Cobb-Douglas production function

yi = ALαi Kβ
i exp(εi )

lnyi = lnA + αlnLi + βlnKi + εi

We expect an α% increase in output
in response to a 1% increase in labor input
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Log-Lin Regression

lnyi = βxi + ε

The coefficients in log-lin regressions give the expected percentage
change in y for a one-unit (not 1%!) change in x .

Example: LWAGE regression
Coefficient on education gives the expected percent change in

WAGE arising from one more year of education.
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Intrinsically Non-Linear Models

One example is the “S-curve” model,

y =
1

a + br x

(0 < r < 1)

– No way to transform to linearity

– Minimize the sum of squared errors numerically
“Nonlinear least squares”

β̂NLS
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Taylor Series Expansions

Really no such thing as an intrinsically non-linear model...

In the bivariate case we can think of the relationship as

yi = g(xi , εi )

or slightly less generally as

yi = f (xi ) + εi
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Taylor Series, Continued

Consider Taylor series expansions of f (xi ).
The linear (first-order) approximation is

f (xi ) ≈ β1 + β2xi ,

and the quadratic (second-order) approximation is

f (xi ) ≈ β1 + β2xi + β3x2
i .

In the multiple regression case, Taylor approximations also involve
interaction terms. Consider, for example, yi = f (xi2, xi3). Then:

yi = f (xi2, xi3) ≈ β1 +β2xi2 +β3xi3 +β4x2
i2 +β5x2

i3 +β6xi2xi3 + ....
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A Key Insight

The ultimate point is that so-called “intrinsically non-linear”
models are themselves linear when viewed from the series-expansion

perspective. In principle, of course, an infinite number of series
terms are required, but in practice nonlinearity is often quite gentle

(e.g., quadratic) so that only a few series terms are required.

– So omitted non-linearity is ultimately
an omitted-variables problem
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Predictive Perspectives

– One can always fit a linear model

– But if DGP is nonlinear, then potentially-important Taylor terms
are omitted, potentially severely degrading forecasting performance

– Just see the earlier Dataset 2 Anscombe graph!

123 / 280



Assessing Non-Linearity
(i.e., deciding on higher-order Taylor terms)

Use SIC as always.

Use t’s and F as always.
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Linear Wage Regression (Actually Log-Lin)

Figure: Basic Linear Wage Regression
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Quadratic Wage Regression

Figure: Quadratic Wage Regression
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Quadratic Wage Regression with Dummy Interactions

Figure: Wage Regression with Continuous Non-Linearities and
Interactions, and Discrete Interactions
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Final Specification

Figure: “Final” Wage Regression
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Discrete Response Models

What if the dependent variable is binary?

– Ultimately violates the IC in multiple ways...

(Nonlinear, non-Gaussian)
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Many Names

“discrete response models”

“qualitative response models”

“limited dependent variable models”

“binary (binomial) response models”

“classification models”

“logistic regression models” (a leading case)

– Another appearance of a dummy variable,
but the dummy is on the left
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Framework

Left-hand-side variable is yi = Ii (z), where the “indicator variable”
Ii (z) indicates whether event z occurs; that is,

Ii (z) =

{
1 if event z occurs
0 otherwise.

The usual linear regression setup,

E (yi |xi ) = x ′iβ

becomes

E (Ii (z) | xi ) = x ′iβ.

A key insight, however, is that

E (Ii (z) | xi ) = P(Ii (z)=1 | xi ),
so the setup is really

P(Ii (z)=1 | xi ) = x ′iβ. (1)

– Leading examples: recessions, bankruptcies, loan or credit card
defaults, financial market crises, consumer choices, ...
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The “Linear Probability Model”

How to “fit a line” when the LHS variable is binary?

The linear probability model (LPM) does it by brute-force OLS
regression Ii (z)→ xi .

Problem: The LPM fails to constrain the fitted probabilities to be
in the unit interval.
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Squashing Functions

Solution: Run x ′iβ through a monotone “squashing function,”
F (·), that keeps P(Ii (z)=1 | xi ) in the unit interval.

More precisely, move to models with

E (yi |xi ) = P(Ii (z)=1 | xi ) = F (x ′iβ),

where F (·) is monotone increasing,
with limw→∞F (w) = 1 and limw→−∞F (w) = 0.
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The Logit Model

In the “logit” model, the squashing function F (·)
is the logistic function,

F (w) = logit(w) =
ew

1 + ew
=

1

1 + e−w
,

so the logit model is

P(Ii (z)=1 | xi ) =
ex
′
i β

1 + ex
′
i β
.

– Logit is a nonlinear model for the event probability.
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Logit as a Linear Model for the Log Odds

Consider a linear model for log odds

ln

(
P(Ii (z) = 1 | xi )

1− P(Ii (z) = 1 | xi )

)
= x ′iβ.

Solving the log odds for P(Ii (z) = 1 | xi ) yields the logit model,

P(Ii (z) = 1 | xi ) =
1

1 + e−x
′
i β

=
ex
′
i β

1 + ex
′
i β
.

So logit is just linear regression for log odds.
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Logit Estimation

The likelihood function can be derived, and the model can be
estimated by numerical maximization of the likelihood function.

For linear regression we had:

yi |xi ∼ N(x ′iβ, σ
2),

from which we derived the likelihood and the MLE.

For the linear probability model we have:

yi |xi ∼ Bernoulli
(
x ′iβ
)
.

For logit we have:

yi |xi ∼ Bernoulli

(
ex
′
i β

1 + ex
′
i β

)
.
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Logit RHS Variable Effects

Note that the individual RHS variable effects, ∂E (yi |xi )/∂xik , are
not simply given by the βk ’s as in standard linear regression.

Instead we have

∂E (yi |xi )
∂xik

=
∂F (x ′iβ)

∂xik
= f (x ′iβ)βk ,

where f (x) = dF (x)/dx . So the marginal effect is not simply βk ;
instead it is βk weighted by f (x ′iβ), which depends on all βk ’s and

xik ’s, k = 1, ...,K .

– However, signs of the βk ’s are the signs of the effects,
because f must be positive.

(Recall that F is monotone increasing.)

– In addition, ratios of βk ’s do give ratios of effects,
because the f ’s cancel.
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Logit R2

Recall that traditional R2 for continuous LHS variables is

R2 = 1−
∑

(yi − ŷi )
2∑

(yi − ȳi )2
.

For binary regression we proceed similarly:

R2 = 1−
∑

(yi − P̂(Ii (z) = 1|xi ))2∑
(yi − ȳi )2

.

“Efron’s R2”
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The Logit Classifier

– Classification maps probabilities into 0-1 classifications.
“Bayes classifier” uses a cutoff of .5.

– Decision boundary:
Suppose we use a Bayes classifier.

We predict 1 when logit(x ′iβ)>1/2. But that’s the same as
predicting 1 when x ′iβ>0 since logit(0)=1/2. If there are 2 xi

variables (potentially plus an intercept), then the condition x ′iβ=0
defines a line in R2. Points on one side will be classified as 0, and

points on the other side will be classified as 1. That line is the
“decision boundary”.

– In higher dimensions the decision boundary
will be a plane or hyperplane.

– Note the “linear decision boundary”. We can generalize to
nonlinear decision boundaries in various ways.
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Example: High-Wage Individuals

We now use a new wage data set that contains education and
experience data for each person, but not wage data. Instead it
contains only an indicator for whether the person is “high-wage” or
“low-wage”. (The binary indicator HIGHWAGEi=1 if the hourly
wage of person i is ≥ 15.)

– 357 people with HIGHWAGEi=1

– 966 people with HIGHWAGEi=0

We will fit a logit model using education and experience and see
how it performs as a Bayes classifier.
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Logit Regression of HIGHWAGE on EDUC and EXPER

Table: Logit Regression

Dependent variable:

HIGHWAGE

EDUC 0.35
(se=0.03)

EXPER 0.04
(se=0.01)

Constant -6.61
(se=0.46)

Ratio of Effects EDUC/EXPER: 7.54
Efron’s R2: 0.15
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Covariates and Decision Boundary for Logit Bayes Classifier

In-Sample:
(Red denotes high-wage people)

0 10 20 30 40 50

5
10

15
20

EXPER

E
D

U
C

Out-of-sample: For a new person with covariates x∗,
predict HIGHWAGE =1 if logit(x∗′β̂)>1/2.

That is, if x∗′β̂>0
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Heteroskedasticity in Cross-Sections

Do we really believe that disturbance variances
are constant over space?
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“Unconditional Heteroskedasticity” is Occasionally
Relevant...

Consider IC1:

εi ∼ iidN(0, σ2), i = 1, ...,N

Unconditional heteroskedasticity occurs when the unconditional
disturbance variance varies across people for some unknown reason.

Violation of IC1, in particular IC1.5:

“The εi ’s have constant variance σ2”
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... But Conditional Heteroskedasticity is Often Highly
Relevant

Consider IC2.2:

var(εi | xi1, ..., xiK ) = σ2, for all i

Conditional heteroskedasticity occurs when
σ2i varies systematically with xi1, ..., xiK ,

so that IC2.2 is violated

e.g., Consider the regression
fine wine consumption→ income
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Consequences for Estimation and Inference

– Esimation: OLS estimation remains largely OK.
Parameter estimates remain consistent and asymptotically normal.

– Inference: OLS inference is badly damaged.
Standard errors are inconsistent. t statistics do not have the t
distribution in finite samples and do not even have the N(0, 1)

distribution asymptotically.
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Consequences for Prediction

– Earlier point forecasts remain largely OK.

OLS parameter estimates remain consistent,

so ̂E (yi |xi=x∗i ) is still consistent for E (yi |xi=x∗i ).

– Earlier density (and hence interval) forecasts not OK.

It is no longer appropriate to base interval and density forecasts on
“identical σ’s for different people”. Now we need to base them on

“different σ’s for different people”.
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Detecting Conditional Heteroskedasticity

I Graphical heteroskedasticity diagnostics

I Formal heteroskedasticity tests
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Graphical Diagnostics

Graph e2i against xik , for various regressors (k)
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Recall Our “Final” Wage Regression
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Squared Residual vs. EDUC
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The Breusch-Pagan-Godfrey Test (BPG)

Limitation of graphing e2i against xik : Purely pairwise

In contrast, BPG blends information from all regressors

BPG test:

I Estimate the OLS regression, and obtain the squared residuals

I Regress the squared residuals on all regressors

I To test the null hypothesis of no relationship, examine N·R2

from this regression. In large samples N·R2 ∼ χ2
K−1 under the

null of no conditional heteroskedasticity, where K is the
number of regressors in the test regression.

152 / 280



BPG Test
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White’s Test

Like BGP, but replace BGP’s linear regression
with a more flexible (quadratic) regression

I Estimate the OLS regression, and obtain the squared residuals

I Regress the squared residuals on all regressors, squared
regressors, and pairwise regressor cross products

I To test the null hypothesis of no relationship, examine N·R2

from this regression. In large samples N·R2 ∼ χ2
K−1 under the

null.
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White’s Test
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Dealing with Heteroskedasticity

I Adjusting standard errors

I Adjusting density forecasts
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Adjusting Standard Errors
Using advanced methods, one can obtain estimators for standard
errors that are consistent even when heteroskedasticity is present.

“Heteroskedasticity-robust standard errors”
“White standard errors”

Before, under the IC:
V = cov(β̂LS) estimated by

V̂ = s2(X ′X )−1,

where s2 =
∑N

i=1 e2i /(N − K ).

Now, under heteroskedasticity, V estimated by

V̂White = (X ′X )−1
(
X ′diag(e21 , ..., e

2
N)X

)
(X ′X )−1

– Mechanically, it’s just a simple OLS regression option.
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Final Wage Regression with Robust Standard Errors
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Adjusting Density Forecasts

Recall non-operational version for Gaussian homoskedastic
disturbances:

yi | xi=x∗ ∼ N(x∗′β, σ2)

Recall operational version for Gaussian homoskedastic disturbances:

yi | xi=x∗ ∼ N(x∗′β̂LS , s2)

Now: Operational version for Gaussian heteroskedastic
disturbances:

yi | xi=x∗ ∼ N(x∗′β̂LS , σ̂
2
∗)

Q: Where do we get σ̂2∗?
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Time Series
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Misspecification and Model Selection

Do we really believe that the fitted model matches the DGP?
No major changes in time series

Same tools and techniques...
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Non-Normality and Outliers

Do we really believe that the disturbances are Gaussian?
No major changes in time series

Same tools and techniques...
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Indicator Variables in Time Series I:
Trend

Trend is effectively a type of structural change

Do we really believe that interepts are fixed over time?

– Trend is about gradual intercept evolution
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Liquor Sales
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Log Liquor Sales

From now on we will take logs of liquor sales.
When we say “liquor sales”, logs are understood.
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Linear Trend

Trendt = β1 + β2TIMEt

where TIMEt = t

Simply run the least squares regression y → c,TIME , where

TIME =



1
2
3
...

T−1
T


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Various Linear Trends
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Linear Trend Estimation

Dependent Variable: LSALES
Method: Least Squares
Date: 08/08/13   Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.  

C 6.454290 0.017468 369.4834 0.0000
TIME 0.003809 8.98E-05 42.39935 0.0000

R-squared 0.843318     Mean dependent var 7.096188
Adjusted R-squared 0.842849     S.D. dependent var 0.402962
S.E. of regression 0.159743     Akaike info criterion -0.824561
Sum squared resid 8.523001     Schwarz criterion -0.801840
Log likelihood 140.5262     Hannan-Quinn criter. -0.815504
F-statistic 1797.705     Durbin-Watson stat 1.078573
Prob(F-statistic) 0.000000
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Residual Plot
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Indicator Variables in Time Series II:
Seasonality

Seasonality is effectively a type of structural change

Do we really believe that interepts are fixed over seasons?
(quite apart from, and even after accounting for,

time-varying intercepts due to trend)

170 / 280



Seasonal Dummies

Seasonal s =
S∑

s=1

βsSEASst (S seasons per year)

where SEASst =

{
1 if observation t falls in season s

0 otherwise

Simply run the least squares regression y → SEAS1, ...,SEASS

(or blend: y → TIME ,SEAS1, ...,SEASS)

where (e.g., in quarterly data case, assuming Q1 start and Q4 end):
SEAS1 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, ..., 0)′

SEAS2 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, ..., 0)′

SEAS3 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, ..., 0)′

SEAS4 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, ..., 1)′.
– Full set of dummies (“all categories”) and hence no intercept.

– In CS case we dropped a category for each dummy (e.g., included
“UNION” but not “NONUNION”) and included an intercept.
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Linear Trend with Seasonal Dummies
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Seasonal Pattern
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Residual Plot
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Nonlinearity in Time Series

Do we really believe that trends are linear?
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Non-Linear Trend: Exponential (Log-Linear)

Trendt = β1eβ2TIMEt

ln(Trendt) = ln(β1) + β2TIMEt
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Figure: Various Exponential Trends
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Non-Linear Trend: Quadratic

Allow for gentle curvature by including TIME and TIME 2:

Trendt = β1 + β2TIMEt + β3TIME 2
t
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Figure: Various Quadratic Trends
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Liquor Sales Quadratic Trend Estimation

Dependent Variable: LSALES
Method: Least Squares
Date: 08/08/13   Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.  

C 6.231269 0.020653 301.7187 0.0000
TIME 0.007768 0.000283 27.44987 0.0000

TIME2 -1.17E-05 8.13E-07 -14.44511 0.0000

R-squared 0.903676     Mean dependent var 7.096188
Adjusted R-squared 0.903097     S.D. dependent var 0.402962
S.E. of regression 0.125439     Akaike info criterion -1.305106
Sum squared resid 5.239733     Schwarz criterion -1.271025
Log likelihood 222.2579     Hannan-Quinn criter. -1.291521
F-statistic 1562.036     Durbin-Watson stat 1.754412
Prob(F-statistic) 0.000000

Figure:
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Residual Plot
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Liquor Sales Quadratic Trend Estimation
with Seasonal Dummies

Dependent Variable: LSALES
Method: Least Squares
Date: 08/08/13   Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.  

TIME 0.007739 0.000104 74.49828 0.0000
TIME2 -1.18E-05 2.98E-07 -39.36756 0.0000

D1 6.138362 0.011207 547.7315 0.0000
D2 6.081424 0.011218 542.1044 0.0000
D3 6.168571 0.011229 549.3318 0.0000
D4 6.169584 0.011240 548.8944 0.0000
D5 6.238568 0.011251 554.5117 0.0000
D6 6.243596 0.011261 554.4513 0.0000
D7 6.287566 0.011271 557.8584 0.0000
D8 6.259257 0.011281 554.8647 0.0000
D9 6.199399 0.011290 549.0938 0.0000

D10 6.221507 0.011300 550.5987 0.0000
D11 6.253515 0.011309 552.9885 0.0000
D12 6.575648 0.011317 581.0220 0.0000

R-squared 0.987452     Mean dependent var 7.096188
Adjusted R-squared 0.986946     S.D. dependent var 0.402962
S.E. of regression 0.046041     Akaike info criterion -3.277812
Sum squared resid 0.682555     Schwarz criterion -3.118766
Log likelihood 564.6725     Hannan-Quinn criter. -3.214412
Durbin-Watson stat 0.581383
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Residual Plot
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Serial Correlation

Do we really believe that disturbances are
uncorrelated over time?

(Not possible in cross sections, so we didn’t study it before...)
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Serial Correlation is Another Type of Violation of the IC
(This time it’s “correlated disturbances”.)

Consider: ε ∼ N(0,Ω)

Serial correlation is relevant in time-series environments.
It corresponds to non-diagonal Ω.

(Violates IC 1.6.)

Key cause: Omission of serially-correlated x ’s,
which produces serially-correlated ε
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Serially Correlated Regression Disturbances

Disturbance serial correlation, or autocorrelation,
means correlation over time

– Current disturbance correlated with past disturbance(s)

Leading example
(“AR(1)” disturbance serial correlation):

yt = x ′tβ + εt

εt = φεt−1 + vt , |φ| < 1

vt ∼ iid N(0, σ2)

(Extension to “AR(p)” disturbance serial correlation is immediate)
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Consequences for β Estimation and Inference:
As with Heteroskedasticity, Point Estimation is OK,
but Inference is Damaged

– Esimation: OLS estimation of β remains largely OK.
Parameter estimates remain consistent and asymptotically normal

– Inference: OLS inference is damaged.
Standard errors are biased and inconsistent.
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Consequences for y Prediction:
Unlike With Heteroskedasticity,
Even Point Predictions are Damaged/

Serial correlation is a bigger problem for prediction than
heteroskedasticity.

Here’s the intuition:

Serial correlation in disturbances/residuals implies that the
included “x variables” have missed something that could be
exploited for improved point forecasting of y (and hence also
improved interval and density forecasting). That is, all types of
forecasts are sub-optimal when serial correlation is neglected.

Put differently:
Serial correlation in forecast errors means that you can forecast

your forecast errors! So something is wrong and can be improved...
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Some Important Language and Tools
For Characterizing Serial Correlation

“Autocovariances”: γε(τ) = cov(εt , εt−τ ), τ = 1, 2, ...

“Autocorrelations”: ρε(τ) = γε(τ)/γε(0), τ = 1, 2, ...

“Partial autocorrelations”: pε(τ), τ = 1, 2, ...

pε(τ) is the coefficient on εt−τ in the population regression:
εt → c , εt−1, ..., εt−(τ−1), εt−τ

Sample autocorrelations: ρ̂ε(τ) = ĉorr(et , et−τ ), τ = 1, 2, ...

Sample partial autocorrelations: p̂ε(τ), τ = 1, 2, ...

p̂ε(τ) is the coefficient on et−τ in the finite-sample regression:
et → c , et−1, ..., et−(τ−1), et−τ
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White Noise Disturbances

Zero-mean white noise: εt ∼WN(0, σ2) (serially uncorrelated)

Independent (strong) white noise: εt

iid
∼ (0, σ2)

Gaussian white noise: εt

iid
∼ N(0, σ2)

We write:

εt ∼WN(0, σ2)
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AR(1) Disturbances

εt = φεt−1 + vt , |φ| < 1

vt ∼WN(0, σ2)
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Realizations of Two AR(1) Processes (N(0, 1) shocks)
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Detecting Serial Correlation

I Graphical diagnostics
I Residual plot
I Residual scatterplot of (et vs. et−τ )
I Residual correlogram

I Formal tests
I Durbin-Watson
I Breusch-Godfrey
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Recall Our Log-Quadratic Liquor Sales ModelDependent Variable: LSALES
Method: Least Squares
Date: 08/08/13   Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.  

TIME 0.007739 0.000104 74.49828 0.0000
TIME2 -1.18E-05 2.98E-07 -39.36756 0.0000

D1 6.138362 0.011207 547.7315 0.0000
D2 6.081424 0.011218 542.1044 0.0000
D3 6.168571 0.011229 549.3318 0.0000
D4 6.169584 0.011240 548.8944 0.0000
D5 6.238568 0.011251 554.5117 0.0000
D6 6.243596 0.011261 554.4513 0.0000
D7 6.287566 0.011271 557.8584 0.0000
D8 6.259257 0.011281 554.8647 0.0000
D9 6.199399 0.011290 549.0938 0.0000

D10 6.221507 0.011300 550.5987 0.0000
D11 6.253515 0.011309 552.9885 0.0000
D12 6.575648 0.011317 581.0220 0.0000

R-squared 0.987452     Mean dependent var 7.096188
Adjusted R-squared 0.986946     S.D. dependent var 0.402962
S.E. of regression 0.046041     Akaike info criterion -3.277812
Sum squared resid 0.682555     Schwarz criterion -3.118766
Log likelihood 564.6725     Hannan-Quinn criter. -3.214412
Durbin-Watson stat 0.581383

Figure: Liquor Sales Log-Quadratic Trend + Seasonal Estimation
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Residual Plot
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Residual Scatterplot (et vs. et−1)
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Residual Correlogram

Bartlett standard error (= 1/
√

T ) = 1/
√

336) = .055

95 % Bartlett band (= ±2/
√

T ) = ±.11
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Formal Tests: Durbin-Watson (0.59)

Simple AR(1) environment:

yt = x ′tβ + εt

εt = φεt−1 + vt

vt ∼ iid N(0, σ2)

We want to test H0 : φ = 0 against H1 : φ 6= 0

Regress yt → xt and obtain the residuals et

Then form:

DW =

∑T
t=2(et − et−1)2∑T

t=1 e2t
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Understanding the Durbin-Watson Statistic

DW =

∑T
t=2(et − et−1)2∑T

t=1 e2t
=

1
T

∑T
t=2(et − et−1)2

1
T

∑T
t=1 e2t

=
1
T

∑T
t=2 e2t + 1

T

∑T
t=2 e2t−1 − 2 1

T

∑T
t=2 etet−1

1
T

∑T
t=1 e2t

Hence as T →∞:

DW ≈ σ2 + σ2 − 2cov(εt , εt−1)

σ2
= 1+1−2corr(εt , εt−1) = 2(1−corr(εt , εt−1))

=⇒ DW ∈ [0, 4], DW → 2 as φ→ 0, and DW → 0 as φ→ 1
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Formal Tests: Breusch-Godfrey

General AR(p) environment:

yt = x ′tβ + εt

εt = φ1εt−1 + ...+ φpεt−p + vt

vt ∼ iid N(0, σ2)

We want to test H0 : (φ1, ..., φp) = 0 against H1 : (φ1, ..., φp) 6= 0

I Regress yt → xt and obtain the residuals et

I Regress et → xt , et−1, ..., et−p

I Examine TR2. In large samples TR2 ∼ χ2
p under the null.
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BG for AR(1) Disturbances
(TR2 = 168.5, p = 0.0000)

Figure: BG Test Regression, AR(1)
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BG for AR(4) Disturbances
(TR2 = 216.7, p = 0.0000)

Figure: BG Test Regression, AR(4)
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BG for AR(8) Disturbances
(TR2 = 219.0, p = 0.0000)

Figure: BG Test Regression, AR(8)
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Robust Estimation with Serial Correlation

Recall our earlier “heteroskedasticity robust s.e.’s”

We can also consider “serial correlation robust s.e.’s”

The simplest way is to include lags of y as regressors...
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Modeling Serial Correlation:
Including Lags of y as Regressors

Serial correlation in disturbances means that
the included x ’s don’t fully account for the y dynamics.

Simple to fix by modeling the y dynamics directly:
Just include lags of y as additional regressors.

More precisely, AR(p) disturbances “fixed” by
including p lags of y and x .

(Select p using the usual SIC , etc.)

Illustration:
Convert the DGP below to one with white noise disturbances.

yt = β1 + β2xt + εt

εt = φεt−1 + vt

vt ∼ iid N(0, σ2)
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Liquor Sales: Everything Consistent With AR(4) Dynamics

Trend+seasonal residual plot
Trend+seasonal residual scatterplot

Trend+seasonal DW
Trend+seasonal BG

Trend+seasonal residual correlogram

Also trend+seasonal+AR(p) SIC:
AR(1) = −3.797
AR(2) = −3.941
AR(3) = −4.080
AR(4) = −4.086
AR(5) = −4.071
AR(6) = −4.058
AR(7) = −4.057
AR(8) = −4.040
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Trend + Seasonal Model with Four Lags of y
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Trend + Seasonal Model with Four Lags of y
Residual Plot

213 / 280



Trend + Seasonal Model with Four Lags of y
Residual Scatterplot
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Trend + Seasonal Model with Four Lags of y
Residual Autocorrelations
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Trend + Seasonal Model with Four Lags of y
Residual Histogram and Normality Test
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Forecasting Time Series

It’s more interesting than in cross sections...
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The “Forecasting the Right-Hand-Side Variables Problem”

For now assume known parameters.

yt = x ′tβ + εt

=⇒ yt+h = x ′t+hβ + εt+h

Projecting on current information,

yt+h,t = x ′t+h,tβ

“Forecasting the right-hand-side variables problem” (FRVP):

We don’t have xt+h,t
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But FRVP is not a Problem for Us!

FRVP no problem for trends. Why?

FRVP no problem for seasonals. Why?

FRVP also no problem for autoregressive effects
(lagged dependent variables)

e.g., consider a pure AR(1)

yt = φyt−1 + εt

yt+h = φyt+h−1 + εt+h

yt+h,t = φyt+h−1,t

No FRVP for h = 1. There seems to be an FRVP for h > 1.
But there’s not...

We build the multi-step forecast recursively.
First 1-step, then 2-step, etc.

“Wold’s chain rule of forecasting”
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Interval and Density Forecasting

Assuming Gaussian shocks, we immediately have

yt+h | yt , yt−1, ... ∼ N(yt+h,t , σ
2
t+h,t).

We know how to get yt+h,t (Wold’s chain rule).

The question is how to get

σ2t+h,t = var(et+h,t) = var(yt+h − yt+h,t).

[Of course to make things operational we eventually replace
parameters with estimates and use N(ŷt+h,t , σ̂

2
t+h,t).]
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Interval and Density Forecasting
(1-Step-Ahead, AR(1))

yt = φyt−1 + εt εt ∼ WN(0, σ2)

Back substitution yields

yt = εt + φεt−1 + φ2εt−2 + φ3εt−3 + ...

=⇒ yt+1 = εt+1 + φεt + φ2εt−1 + φ3εt−2 + ...

Projecting yt+1 on time-t information (εt , εt−1, ...) gives:

yt+1,t = φεt + φ2εt−1 + φ3εt−2 + ...

Corresponding 1-step-ahead error (zero-mean, unforecastable):

et+1,t = yt+1 − yt+1,t = εt+1

with variance
σ2t+1,t = var(et+1,t) = σ2
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Interval and Density Forecasting
(h-Step-Ahead, AR(p))

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt εt ∼ WN(0, σ2)

Back substitution yields

yt = εt + b1εt−1 + b2εt−2 + b3εt−3 + ...

=⇒ yt+h = εt+h+b1εt+h−1+ ...+bh−1εt+1+bhεt +bh+1εt−1+ ...

(Note that the b′s are functions of the φ′s.)
Projecting yt+h on time-t information (εt , εt−1, ...) gives:

yt+h,t = bhεt + bh+1εt−1 + bh+2εt−2 + ...

Corresponding h-step-ahead error (zero-mean, unforecastable):

et+h,t = yt+h − yt+h,t = εt+h + b1εt+h−1 + ...+ bh−1εt+1

with variance (non-decreasing in h):

σ2t+h,t = var(et+h,t) = σ2(1 + b2
1 + ...+ b2

h−1)
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Liquor Sales History and
1- Through 12-Month-Ahead Point and Interval Forecasts
From Trend + Seasonal Model with Four Lags of y
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Now With Realization Superimposed...
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SIC Estimates of Out-of-Sample Forecast Error Variance)

LSALESt → c,TIMEt

SIC = 0.45

LSALESt → c,TIMEt ,TIME 2
t

SIC = 0, 28

LSALESt → TIMEt ,TIME 2
t ,Dt,1, ...,Dt,12

SIC = 0.04

LSALESt → TIMEt ,TIME 2
t ,Dt,1, ...,Dt,12, LSALESt−1, ..., LSALESt−4

SIC = 0.02

(We report exponentiated SIC’s because the software actually reports ln(SIC))
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Structural Change in Time Series:
Evolution or Breaks in Any or all Parameters

Do we really believe that parameters are fixed over time?
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Structural Change
Single Sharp Break, Exogenously Known

For simplicity of exposition, consider a bivariate regression:

yt =

{
β11 + β12xt + εt , i = 1, ...,T ∗

β21 + β22xt + εt , t = T ∗ + 1, ...,T

Let

Dt =

{
0, t = 1, ...,T ∗

1, t = T ∗ + 1, ...T

Then we can write the model as:

yt = (β11 + (β21 − β11)Dt) + (β12 + (β22 − β12)Dt)xt + εt

We run:

yt → c , Dt , xt , Dt · xt
Use regression to test for structural change (F test)

Use regression to accommodate structural change if present.
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Structural Change
Single Sharp Break, Exogenously Known, Continued

The “Chow test” is what we’re really calculating:

Chow =
(e ′e − (e ′1e1 + e ′2e2))/K

(e ′1e1 + e ′2e2)/(T − 2K )

Distributed F under the no-break null (and the rest of the IC)
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Structural Change
Sharp Breakpoint, Endogenously Identified

MaxChow = max
τmin≤δ≤τmax

Chow(δ),

where δ denotes potential break location as fraction of sample

(e.g., we might take δmin = .15 and δmax = .85)

The null distribution of MaxChow has been tabulated.
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Recursive Parameter Estimates

For generic parameter β, calculate and examine

β̂1:t

for t = 1, ...,T

– Note that you have to leave room for startup.
That is, you can’t really start at t = 1.

Why?
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Recursive Residuals

At each t, t = 1, ...,T − 1 (leaving room for startup),
compute a 1-step forecast,

ŷt+1,t =
K∑

k=1

β̂k,1:txk,t+1

The corresponding forecast errors, or recursive residuals, are

êt+1,t = yt+1 − ŷt+1,t

Under the IC (including structural stability),

êt+1,t ∼ N(0, σ2rt+1,t)

where rt+1,t = 1 + x ′t+1(X ′tX
′
t)−1xt+1
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Standardized Recursive Residuals and CUSUM

ŵt+1,t ≡
êt+1,t

σ
√

rt+1,t
,

t = 1, ...,T − 1 (leaving room for startup)

Under the IC,

ŵt+1,t ∼ iidN(0, 1).

Then

CUSUMt∗ ≡
t∗∑
t=1

wt+1,t , t∗ = 1, ...,T − 1

(leaving room for startup)

is just a sum of iid N(0, 1)’s,
and its 95% bounds have been tabulated
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Recursive Analysis, Constant-Parameter DGP
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Recursive Analysis, Breaking-Parameter DGP

234 / 280



Liquor Sales Model: Recursive Parameter Estimates

235 / 280



Liquor Sales Model: Recursive Residuals With Two
Standard Error Bands
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Liquor Sales Model: CUSUM
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Vector Autoregressions

What if we have more than one time series?
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Basic Framework

e.g., bivariate (2-variable) VAR(1)

y1,t = c1 + φ11y1,t−1 + φ12y2,t−1 + ε1,t

y2,t = c2 + φ21y1,t−1 + φ22y2,t−1 + ε2,t

ε1,t ∼ WN(0, σ21)

ε2,t ∼ WN(0, σ22)

cov(ε1,t, ε2,t) = σ12

• Can extend to N-variable VAR(p)
• Estimation by OLS (as before)
• Can include trends, seasonals, etc. (as before)
• Forecasts via Wold’s chain rule (as before)
• Order selection by information criteria (as before)
• Can do predictive causality analysis (coming)
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U.S. Housing Starts and Completions, 1968.01-1996.06
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Starts Sample Autocorrelations
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Starts Sample Partial Autocorrelations
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Completions Sample Autocorrelations
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Completions Sample Partial Autocorrelations
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Starts and Completions: Sample Cross Correlations
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VAR Starts Equation
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VAR Starts Equations Residual Plot
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VAR Starts Equation Residual Sample Autocorrelations
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VAR Starts Equation Residual Sample Partial
Autocorrelations
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VAR Completions Equation
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VAR Completions Equation Residual Plot
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VAR Completions Equation Residual Sample
Autocorrelations
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VAR Completions Equation Residual Sample Partial
Autocorrelations
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Predictive Causality Analysis
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Starts History and Forecast
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...Now With Starts Realization
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Completions History and Forecast
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...Now With Completions Realization
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Heteroskedasticity in Time Series

Do we really believe that
disturbance variances are constant over time?
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Dynamic Volatility is the Key to Finance and Financial
Economics

I Risk management

I Portfolio allocation

I Asset pricing

I Hedging

I Trading
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Financial Asset Returns

Figure: Time Series of Daily NYSE Returns.
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Returns are Approximately Serially Uncorrelated

Figure: Correlogram of Daily NYSE Returns.

So returns are approximately white noise. But...
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Returns are not Unconditionally Gaussian...

Figure: Histogram and Statistics for Daily NYSE Returns.
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Unconditional Volatility Measures

Variance: σ2 = E (rt − µ)2 (or standard deviation: σ)

Kurtosis: K = E (r − µ)4/σ4

Mean Absolute Deviation: MAD = E |rt − µ|

Interquartile Range: IQR = 75% − 25%

Outlier probability: P|rt − µ| > 5σ (for example)
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... Returns are Not Homoskedastic

Figure: Time Series of Daily Squared NYSE Returns.
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Indeed Returns are Highly Conditionally Heteroskedastic...

Figure: Correlogram of Daily Squared NYSE Returns.
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Standard Models (e.g., AR(1)) Fail to Capture the
Conditional Heteroskedasticity...

rt = φrt−1 + εt , εt ∼ iidN(0, σ2)

Equivalently, rt |Ωt−1 ∼ N(φrt−1, σ
2)

Conditional mean:
E (rt | Ωt−1) = φrt−1 (varies)

Conditional variance:
var(rt | Ωt−1) = σ2 (constant)
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...So Introduce Special Heteroskedastic Disturbances

rt = φrt−1 + εt , εt ∼ iidN(0, σ2t )

Equivalently, rt | Ωt−1 ∼ N(φrt−1, σ
2
t )

Now consider:

σ2t = ω + αr2t−1 + βσ2t−1

ω > 0, α ≥ 0, β ≥ 0, α + β < 1

“GARCH(1,1) Process”

E (rt |Ωt−1) = φrt−1 (varies)

var(rt | Ωt−1) = ω + αr2t−1 + βσ2t−1 (varies)

For modeling daily asset returns we can simply use:

rt | Ωt−1 ∼ N(0, σ2t )
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GARCH(1,1) and “Exponential Smoothing”

GARCH(1,1):

σ2t = ω + αr2t−1 + βσ2t−1

Solving backward:

σ2t =
ω

1− β
+ α

∞∑
j=1

βj−1r2t−j
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Unified Framework

I Conditional variance dynamics (of course, by construction)

I Conditional variance dynamics produce unconditional
leptokurtosis, even in our conditionally Gaussian setup
(So conditional variance dynamics and unconditional fat tails
are intimately related)

I Returns are non-Gaussian weak white noise
(Serially uncorrelated but nevertheless dependent, due to
conditional variance dynamics – today’s conditional variance
depends on the past.)
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Extension: Regression with GARCH Disturbances
(GARCH-M)

Standard GARCH regression:

rt = x ′tβ + εt

εt |Ωt−1 ∼ N(0, σ2t )

GARCH-in mean (GARCH-M) regression:

rt = x ′tβ + γσt + εt

εt |Ωt−1 ∼ N(0, σ2t )
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Extension: Fat-Tailed Conditional Densities
(t-GARCH)

If r is conditionally Gaussian, then

rt |Ωt−1 = N(0, σ2t )

or
rt
σt
∼ iid N(0, 1)

But often with high-frequency data,

rt
σt
∼ iid fat−tailed

So take:

rt
σt
∼ iid

td
std(td)

and treat d as another parameter to be estimated
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Extension: Asymmetric Response and the Leverage Effect
(Threshold GARCH)

Standard GARCH: σ2t = ω + αr2t−1 + βσ2t−1

Threshold GARCH: σ2t = ω + αr2t−1 + γr2t−1Dt−1 + βσ2t−1

Dt =

{
1 if rt < 0
0 otherwise

positive return (good news): α effect on volatility

negative return (bad news): α + γ effect on volatility

γ 6= 0: Asymetric news response
γ > 0: “Leverage effect”
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GARCH(1,1) MLE for Daily NYSE Returns

Figure: GARCH(1,1) Estimation
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“Fancy” GARCH(1,1) MLE

 
Dependent Variable: R   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Date: 04/10/12   Time: 13:48  
Sample (adjusted): 2 3461   
Included observations: 3460 after adjustments 
Convergence achieved after 19 iterations 
Presample variance: backcast (parameter = 0.7) 
GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*RESID(-1)^2*(RESID(-1)<0)  
        + C(7)*GARCH(-1)   

Variable Coefficient Std. Error z-Statistic Prob.  

@SQRT(GARCH) 0.083360 0.053138 1.568753 0.1167
C 1.28E-05 0.000372 0.034443 0.9725

R(-1) 0.073763 0.017611 4.188535 0.0000

 Variance Equation   

C 1.03E-06 2.23E-07 4.628790 0.0000
RESID(-1)^2 0.014945 0.009765 1.530473 0.1259

RESID(-1)^2*(RESID(-
1)<0) 0.094014 0.014945 6.290700 0.0000

GARCH(-1) 0.922745 0.009129 101.0741 0.0000

T-DIST. DOF 5.531579 0.478432 11.56188 0.0000

 

 

Figure: AR(1) Returns with Threshold t-GARCH(1,1) in Mean.
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Fitted GARCH Volatility

Figure: Estimated Conditional Standard Deviation, Daily NYSE Returns.

276 / 280



A Useful Specification Diagnostic

rt |Ωt−1 ∼ N(0, σ2t )

rt
σt
∼ iid N(0, 1)

Infeasible: examine rt
σt

. iid? Gaussian?

Feasible: examine rt
σ̂t

. iid? Gaussian?

Key deviation from iid is volatility dynamics. So examine

correlogram of squared standardized returns,
(

rt
σ̂t

)2
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GARCH Specification Diagnostic

Figure: Correlogram of Squared Standardized Returns
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GARCH Volatility Forecast

Figure: Conditional Standard Deviation, History and Forecast
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Volatility Forecasts Feed Into Return Density Forecasts

In earlier linear (AR) environment we wrote:

yt+h|Ωt ∼ N(yt+h,t , σ
2
h)

(h-step forecast error variance depended only on h, not t)

Now we have:

yt+h|Ωt ∼ N(yt+h,t , σ
2
t+h,t)

(h-step forecast error variance now depends on both h and t)
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