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Chapter 1

Introduction to Econometrics

1.1 Welcome

1.1.1 Who Uses Econometrics?

Econometrics is important — it is used constantly in business, finance, eco-

nomics, government, consulting and many other fields. Econometric models

are used routinely for tasks ranging from data description to policy analysis,

and ultimately they guide many important decisions.

To develop a feel for the tremendous diversity of econometric applications,

let’s explore some of the areas where they feature prominently, and the cor-

responding diversity of decisions supported.

One key field is economics (of course), broadly defined. Governments,

businesses, policy organizations, central banks, financial services firms, and

economic consulting firms around the world routinely use econometrics.

Governments, central banks and policy organizations use econometric mod-

els to guide monetary policy, fiscal policy, as well as education and training,

health, and transfer policies.

Businesses use econometrics for strategic planning tasks. These include

management strategy of all types including operations management and con-

trol (hiring, production, inventory, investment, ...), marketing (pricing, dis-

tributing, advertising, ...), accounting (budgeting revenues and expenditures),

3
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and so on.

Sales modeling is a good example. Firms routinely use econometric models

of sales to help guide management decisions in inventory management, sales

force management, production planning, and new market entry.

More generally, business firms use econometric models to help decide what

to produce (What product or mix of products should be produced?), when to

produce (Should we build up inventories now in anticipation of high future

demand? How many shifts should be run?), how much to produce and how

much capacity to build (What are the trends in market size and market share?

Are there cyclical or seasonal effects? How quickly and with what pattern will

a newly-built plant or a newly-installed technology depreciate?), and where

to produce (Should we have one plant or many? If many, where should we

locate them?). Firms also use forecasts of future prices and availability of

inputs to guide production decisions.

Econometric models are also crucial in financial services, including asset

management, asset pricing, mergers and acquisitions, investment banking,

and insurance. Portfolio managers, for example, are keenly interested in

the empirical modeling and understanding of asset returns (stocks, bonds,

exchange rates, commodity prices, ...).

Econometrics is similarly central to financial risk management. In recent

decades, econometric methods for volatility modeling have been developed

and widely applied to evaluate and insure risks associated with asset portfo-

lios, and to price assets such as options and other derivatives.

Finally, econometrics is central to the work of a wide variety of consulting

firms, many of which support the business functions already mentioned. Lit-

igation support, for example, is also a very active area, in which econometric

models are routinely used for damage assessment (e.g., lost earnings), “but

for” analyses, and so on.

Indeed these examples are just the tip of the iceberg. Surely you can think
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of many more situations in which econometrics is used.

1.1.2 What Distinguishes Econometrics?

Econometrics is much more than just “statistics using economic data,” al-

though it is of course very closely related to statistics.

• Econometrics has special focus on prediction. In many respects the goal

of econometrics is to help agents (consumers, firms, investors, policy

makers, ...) make better decisions, and good forecasts are key inputs to

good decisions.

• Econometrics must confront the special issues and features that arise

routinely in economic data, such as trends, seasonality and cycles.

• Econometrics must confront the special problems arising due to its largely

non-experimental nature: Model mis-specification, structural change,

etc.

With so many applications and issues in econometrics, you might fear

that a huge variety of econometric techniques exists, and that you’ll have to

master all of them. Fortunately, that’s not the case. Instead, a relatively

small number of tools form the common core of much econometric modeling.

We will focus on those underlying core principles.

1.2 Types of Recorded Economic Data

Several aspects of economic data will concern us frequently.

One issue is whether the data are continuous or binary. Continuous

data take values on a continuum, as for example with GDP growth, which in

principle can take any value in the real numbers. Binary data, in contrast,

take just two values, as with a 0-1 indicator for whether or not someone

purchased a particular product during the last month.
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Another issue is whether the data are recorded over time, over space, or

some combination of the two. Time series data are recorded over time, as

for example with U.S. GDP, which is measured once per quarter. A GDP

dataset might contain quarterly data for, say, 1960 to the present. Cross

sectional data, in contrast, are recorded over space (at a point in time), as

with yesterday’s closing stock price for each of the U.S. S&P 500 firms. The

data structures can be blended, as for example with a time series of cross

sections. If, moreover, the cross-sectional units are identical over time, we

speak of panel data, or longitudinal data. An example would be the daily

closing stock price for each of the U.S. S&P 500 firms, recorded over each of

the last 30 days.

1.3 Online Information and Data

Much useful information is available on the web. The best way to learn about

what’s out there is to spend a few hours searching the web for whatever inter-

ests you. Here we mention just a few key “must-know” sites. Resources for

Economists, maintained by the American Economic Association, is a fine por-

tal to almost anything of interest to economists. (See Figure 1.1.) It contains

hundreds of links to data sources, journals, professional organizations, and so

on. FRED (Federal Reserve Economic Data) is a tremendously convenient

source for economic data. The National Bureau of Economic Research site

has data on U.S. business cycles, and the Real-Time Data Research Center

at the Federal Reserve Bank of Philadelphia has real-time vintage macroeco-

nomic data. Quandl provides access to millions of data series on the web.

1.4 Software

Econometric software tools are widely available. Two good and time-honored

high-level environments with extensive capabilities are Stata and Eviews.

http://www.rfe.org
http://www.rfe.org
https://fred.stlouisfed.org/
http://www.nber.org
http://www.philadelphiafed.org/research-and-data/real-time-center/
http://www.quandl.com
www.stata.com
http://www.eviews.com
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Figure 1.1: Resources for Economists Web Page

Stata has particular strength in cross sections and panels, and Eviews has

particular strength in time series. Both reflect a balance of generality and

specialization well-suited to the sorts of tasks that will concern us. If you feel

more comfortable with another environment, however, that’s fine – none of

our discussion is wed to Stata or Eviews in any way.

There are also many flexible and more open-ended “mid-level” environ-

ments in which you can quickly program, evaluate, and apply new tools and

techniques. R is one popular such environment, with special strengths in

modern statistical methods and graphical data analysis. (See Figure 1.2.)

Other notable environments include Python (see Figure 1.3) and Julia.

http://www.rfe.org
http://www.r-project.org
https://www.python.org/
http://julialang.org/
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Figure 1.2: R Homepage

1.5 Tips on How to use this book

As you navigate through the book, keep the following in mind.

• Hyperlinks to internal items (table of contents, index, footnotes, etc.)

appear in red.

• Hyperlinks to bibliographic references appear in green.

• Hyperlinks to the web appear in cyan.1

• Hyperlinks to external files (e.g., video) appear in blue.

• Many images are clickable to reach related material.

• Key concepts appear in bold, and they also appear in the book’s (hy-

perlinked) index.

1Obviously web links sometimes go dead. I attempt effort to keep them updated. If you’re encountering
an unusual number of dead links, you’re probably using an outdated edition of the book.

http://www.r-project.org


1.5. TIPS ON HOW TO USE THIS BOOK 9

Figure 1.3: Python Homepage

• Additional related materials appear on the book’s web page. These may

include book updates, presentation slides, datasets, and computer code.

• Facebook group: Diebold Econometrics.

• Additional relevant material sometimes appears on Facebook groups

Diebold Forecasting and Diebold Time Series Econometrics, on Twit-

ter @FrancisDiebold, and on the No Hesitations blog.

• The data that we use in the book from national income accounts, firms,

people, financial and other markets, etc. – are fictitious. Sometimes

they data are based on real data for various real countries, firms, etc.,

and sometimes they are artificially constructed. Ultimately, however,

any resemblance to particular countries, firms, etc. should be viewed as

coincidental and irrelevant.

http://www.python.org
http://www.ssc.upenn.edu/~fdiebold/Textbooks.html
https://www.facebook.com/groups/DieboldEconometrics
https://www.facebook.com/groups/190222767797758/
https://www.facebook.com/groups/581038815262831/
http://www.fxdiebold.blogspot.com
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• The end-of-chapter “Exercises, Problems and Complements” sections

are of central importance and should be studied carefully. Exercises

are generally straightforward checks of your understanding. Problems,

in contrast, are generally significantly more involved, whether analyti-

cally or computationally. Complements generally introduce important

auxiliary material not covered in the main text.

1.6 Exercises, Problems and Complements

1. (No empirical example is definitive)

Recall that, as mentioned in the text, most chapters contain at least one

extensive empirical example. At the same time, those examples should

not be taken as definitive or complete treatments – there is no such

thing. A good idea is to think of the implicit “Problem 0” at the end of

each chapter as “Obtain the relevant data for the empirical modeling in

this chapter, and produce a superior analysis”.

2. (Nominal, ordinal, interval and ratio data)

We emphasized time series, cross-section and panel data, whether con-

tinuous or discrete, but there are other complementary categorizations.

In particular, distinctions are often made among nominal data, ordi-

nal data, interval data, and ratio data. Which are most common

and useful in economics and related fields, and why?

3. (Software differences and bugs: caveat emptor)

Be warned: no software is perfect. In fact, all software is highly im-

perfect. The results obtained when modeling in different software en-

vironments may differ – sometimes a little and sometimes a lot – for

a variety of reasons. The details of implementation may differ across

packages, for example, and small differences in details can sometimes
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produce large differences in results. Hence, it is important that you

understand precisely what your software is doing (insofar as possible,

as some software documentation is more complete than others). And

of course, quite apart from correctly-implemented differences in details,

deficient implementations can and do occur: there is no such thing as

bug-free software.

1.7 Notes

R is available for free as part of a large and highly-successful open-source

project. RStudio provides a fine R working environment, and, like R, it’s

free. A good R tutorial, first given on Coursera and then moved to YouTube,

is here. R-bloggers is a massive compendium with all sorts of information

about all things R. Quandl has a nice R interface.

Python and Julia are also free.

http://www.r-project.org
http://www.r-project.org
http://www.rstudio.com
http://blog.revolutionanalytics.com/2012/12/coursera-videos.html
http://www.r-bloggers.com/
http://www.r-bloggers.com/analyse-quandl-data-with-r-even-from-the-cloud/
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Chapter 2

Graphics and Graphical Style

It’s almost always a good idea to begin an econometric analysis with graphical

data analysis. When compared to the modern array of econometric methods,

graphical analysis might seem trivially simple, perhaps even so simple as to

be incapable of delivering serious insights. Such is not the case: in many

respects the human eye is a far more sophisticated tool for data analysis

and modeling than even the most sophisticated statistical techniques. Put

differently, graphics is a sophisticated technique. That’s certainly not to

say that graphical analysis alone will get the job done – certainly, graphical

analysis has its limitations of its own – but it’s usually the best place to

start. With that in mind, we introduce in this chapter some simple graphical

techniques, and we consider some basic elements of graphical style.

2.1 Simple Techniques of Graphical Analysis

We will segment our discussion into two parts: univariate (one variable) and

multivariate (more than one variable). Because graphical analysis “lets the

data speak for themselves,” it is most useful when the dimensionality of

the data is low; that is, when dealing with univariate or low-dimensional

multivariate data.

13
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2.1.1 Univariate Graphics

First consider time series data. Graphics is used to reveal patterns in time

series data. The great workhorse of univariate time series graphics is the

simple time series plot, in which the series of interest is graphed against

time.

In the top panel of Figure 2.1, for example, we present a time series plot

of a 1-year Government bond yield over approximately 500 months. A num-

ber of important features of the series are apparent. Among other things,

its movements appear sluggish and persistent, it appears to trend gently up-

ward until roughly the middle of the sample, and it appears to trend gently

downward thereafter.

The bottom panel of Figure 2.1 provides a different perspective; we plot

the change in the 1-year bond yield, which highlights volatility fluctuations.

Interest rate volatility is very high in mid-sample.

Univariate graphical techniques are also routinely used to assess distri-

butional shape, whether in time series or cross sections. A histogram, for

example, provides a simple estimate of the probability density of a random

variable. The observed range of variation of the series is split into a number

of segments of equal length, and the height of the bar placed at a segment

is the percentage of observations falling in that segment.1 In Figure 2.2 we

show a histogram for the 1-year bond yield.

2.1.2 Multivariate Graphics

When two or more variables are available, the possibility of relations be-

tween the variables becomes important, and we use graphics to uncover the

existence and nature of such relationships. We use relational graphics to

1In some software packages (e.g., Eviews), the height of the bar placed at a segment is simply the
number, not the percentage, of observations falling in that segment. Strictly speaking, such histograms are
not density estimators, because the “area under the curve” doesn’t add to one, but they are equally useful
for summarizing the shape of the density.
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Figure 2.1: 1-Year Goverment Bond Yield, Levels and Changes
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Figure 2.2: Histogram of 1-Year Government Bond Yield

display relationships and flag anomalous observations. You already under-

stand the idea of a bivariate scatterplot.2 In Figure 2.3, for example, we show

a bivariate scatterplot of the 1-year U.S. Treasury bond rate vs. the 10-year

U.S. Treasury bond rate, 1960.01-2005.03. The scatterplot indicates that the

two move closely together; in particular, they are positively correlated.

Thus far all our discussion of multivariate graphics has been bivariate.

That’s because graphical techniques are best-suited to low-dimensional data.

Much recent research has been devoted to graphical techniques for high-

dimensional data, but all such high-dimensional graphical analysis is subject

to certain inherent limitations.

One simple and popular scatterplot technique for high-dimensional data –

and one that’s been around for a long time – is the scatterplot matrix, or

multiway scatterplot. The scatterplot matrix is just the set of all possible

bivariate scatterplots, arranged in the upper right or lower left part of a

matrix to facilitate comparisons. If we have data on N variables, there are

2Note that “connecting the dots” is generally not useful in scatterplots. This contrasts to time series
plots, for which connecting the dots is fine and is typically done.
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Figure 2.3: Bivariate Scatterplot, 1-Year and 10-Year Government Bond Yields

N2−N
2 such pairwise scatterplots. In Figure 2.4, for example, we show a

scatterplot matrix for the 1-year, 10-year, 20-year, and 30-year U.S. Treasury

Bond rates, 1960.01-2005.03. There are a total of six pairwise scatterplots,

and the multiple comparison makes clear that although the interest rates are

closely related in each case, with a regression slope of approximately one, the

relationship is more precise in some cases (e.g., 20- and 30-year rates) than

in others (e.g., 1- and 30-year rates).

2.1.3 Summary and Extension

Let’s summarize and extend what we’ve learned about the power of graphics:

a. Graphics helps us summarize and reveal patterns in univariate time-series

data. Time-series plots are helpful for learning about many features of

time-series data, including trends, seasonality, cycles, the nature and lo-

cation of any aberrant observations (“outliers”), structural breaks, etc.

b. Graphics helps us summarize and reveal patterns in univariate cross-section

data. Histograms are helpful for learning about distributional shape.
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Figure 2.4: Scatterplot Matrix, 1-, 10-, 20- and 30-Year Government Bond Yields
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c. Graphics helps us identify relationships and understand their nature, in

both multivariate time-series and multivariate cross-section environments.

The key graphical device is the scatterplot, which can help us to begin

answering many questions, including: Does a relationship exist? Is it

linear or nonlinear? Are there outliers?

d. Graphics helps us identify relationships and understand their nature in

panel data. One can, for example, examine cross-sectional histograms

across time periods, or time series plots across cross-sectional units.

e. Graphics facilitates and encourages comparison of different pieces of data

via multiple comparisons. The scatterplot matrix is a classic example

of a multiple comparison graphic.

We might add to this list another item of tremendous relevance in our age

of big data: Graphics enables us to summarize and learn from huge datasets.

2.2 Elements of Graphical Style

In the preceding sections we emphasized the power of graphics and introduced

various graphical tools. As with all tools, however, graphical tools can be

used effectively or ineffectively, and bad graphics can be far worse than no

graphics. In this section you’ll learn what makes good graphics good and bad

graphics bad. In doing so you’ll learn to use graphical tools effectively.

Bad graphics is like obscenity: it’s hard to define, but you know it when

you see it. Conversely, producing good graphics is like good writing: it’s

an iterative, trial-and-error procedure, and very much an art rather than a

science. But that’s not to say that anything goes; as with good writing, good

graphics requires discipline. There are at least three keys to good graphics:

a. Know your audience, and know your goals.
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b. Show the data, and only the data, within the bounds of reason.

c. Revise and edit, again and again (and again). Graphics produced using

software defaults are almost never satisfactory.

We can use a number of devices to show the data. First, avoid distorting

the data or misleading the viewer, in order to reveal true data variation rather

than spurious impressions created by design variation. Thus, for example,

avoid changing scales in midstream, use common scales when performing

multiple comparisons, and so on. The sizes of effects in graphics should match

their size in the data.

Second, minimize, within reason, non-data ink (ink used to depict any-

thing other than data points). Avoid chartjunk (elaborate shadings and

grids that are hard to decode, superfluous decoration including spurious 3-D

perspective, garish colors, etc.)

Third, choose a graph’s aspect ratio (the ratio of the graph’s height, h,

to its width, w) to maximize pattern revelation. A good aspect ratio often

makes the average absolute slope of line segments connecting the data points

approximately equal 45 degrees. This procedure is called banking to 45

degrees.

Fourth, maximize graphical data density. Good graphs often display lots

of data, indeed so much data that it would be impossible to learn from them

in tabular form.3 Good graphics can present a huge amount of data in a

concise and digestible form, revealing facts and prompting new questions, at

both “micro” and “macro” levels.4

Graphs can often be shrunken greatly with no loss, as with sparklines

(tiny graphics, typically time-series plots, meant to flow with text) and the

3Conversely, for small amounts of data, a good table may be much more appropriate and informative
than a graphic.

4Note how maximization of graphical data density complements our earlier prescription to maximize the
ratio of data ink to non-data ink, which deals with maximizing the relative amount of data ink. High data
density involves maximizing as well the absolute amount of data ink.
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sub-plots in multiple comparison graphs, increasing the amount of data ink

per unit area.

2.3 U.S. Hourly Wages

We now begin our examination of CPS wage data, which we will use exten-

sively. Here we use the 1995 CPS hourly wage data; for a detailed description

see Appendix B. Figure 6.1 has four panels; consider first the left panels. In

the upper left we show a histogram of hourly wage for the 1000+ people in

the dataset. The distribution is clearly skewed right, with a mean around

$12/hour. In the lower left panel we show a density estimate (basically just

a smoothed histogram) together with the best fitting normal distribution

(a normal with mean and variance equal to the sample mean and sample

variance of the wage data). Clearly the normal fits poorly.

The right panels of Figure 6.1 have the same structure, except that we now

work with (natural) logarithms of the wages rather than the original “raw”

wage data.5 The log is often used as a “symmetrizing” transformation for data

with a right-skewed distribution, because the log transformation compresses

things, pulling in long right tails. Sometimes taking logs can even produce

approximate normality.6 Inspection of the log wage histogram in the upper

right panel reveals that the log wage does indeed appear more symmetrically

distributed, and comparison of the density estimate to the best-fitting normal

in the lower-right panel indicates approximate normality of the log wage.

5Whenever we say “log” in this book, we mean “natural log”.
6Recall the famous lognormal density: A random variable x is defined to be lognormal if log(x) is normal.

Hence if the wage data is approximately lognormally distributed, then, log(wage) will be approximately
normal. Of course lognormality may or may hold – whether data are lognormal is entirely an empirical
matter.
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Figure 2.5: Distributions of Wages and Log Wages

2.4 Concluding Remark

Ultimately good graphics proceeds just like good writing, so if good writing

is good thinking, then so too is good graphics. So the next time you hear an

ignorant person blurt out something along the lines of “I don’t like to write; I

like to think,” rest assured, his/her writing, thinking, and graphics are likely

all poor.

2.5 Exercises, Problems and Complements

1. (NBER recession bars: A useful graphical device)

In U.S. time-series situations it’s often useful to superimpose “NBER

Recession Bars” on time-series plots, to help put things in context. You

can find the dates of NBER expansions and contractions at http://

www.nber.org/cycles.html.

2. (Empirical warm-up)

http://www.nber.org/cycles.html
http://www.nber.org/cycles.html
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(a) Obtain time series of quarterly real GDP and quarterly real con-

sumption for a country of your choice. Provide details.

(b) Display time-series plots and a scatterplot (put consumption on the

vertical axis).

(c) Convert your series to growth rates in percent, and again display

time series plots.

(d) From now on use the growth rate series only.

(e) For each series, provide summary statistics (e.g., mean, standard

deviation, range, skewness, kurtosis, ...).

(f) For each series, perform t-tests of the null hypothesis that the pop-

ulation mean growth rate is 2 percent.

(g) For each series, calulate 90 and 95 percent confidence intervals for

the population mean growth rate. For each series, which interval is

wider, and why?

(h) Regress consumption on GDP. Discuss.

3. (Simple vs. partial correlation)

The set of pairwise scatterplots that comprises a multiway scatterplot

provides useful information about the joint distribution of the set of vari-

ables, but it’s incomplete information and should be interpreted with

care. A pairwise scatterplot summarizes information regarding the sim-

ple correlation between, say, x and y. But x and y may appear highly

related in a pairwise scatterplot even if they are in fact unrelated, if

each depends on a third variable, say z. The crux of the problem is

that there’s no way in a pairwise scatterplot to examine the correlation

between x and y controlling for z, which we call partial correlation.

When interpreting a scatterplot matrix, keep in mind that the pairwise

scatterplots provide information only on simple correlation.
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4. (Graphics and Big Data)

Another aspect of the power of statistical graphics comes into play in

the analysis of large datasets, so it’s increasingly more important in our

era of “Big Data”: Graphics enables us to present a huge amount of

data in a small space, and hence helps to make huge datasets coherent.

We might, for example, have supermarket-scanner data, recorded in five-

minute intervals for a year, on the quantities of goods sold in each of

four food categories – dairy, meat, grains, and vegetables. Tabular or

similar analysis of such data is simply out of the question, but graphics

is still straightforward and can reveal important patterns.

5. (Color)

There is a temptation to believe that color graphics is always better

than grayscale. That’s often far from the truth, and in any event, color

is typically best used sparingly.

a. Color can be (and often is) chartjunk. How and why?

b. Color has no natural ordering, despite the evident belief in some quar-

ters that it does. What are the implications for “heat map” graphics?

Might shades of a single color (e.g., from white or light gray through

black) be better?

c. On occasion, however, color can aid graphics both in showing the data

and in appealing to the viewer. One key “show the data” use is in

annotation. Can you think of others? What about uses in appealing

to the viewer?

d. Keeping in mind the principles of graphical style, formulate as many

guidelines for color graphics as you can.

6. (Principles of tabular style)
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Table 2.1: Yield Statistics

Maturity
(Months) ȳ σ̂y ρ̂y(1) ρ̂y(12)

6 4.9 2.1 0.98 0.64
12 5.1 2.1 0.98 0.65
24 5.3 2.1 0.97 0.65
36 5.6 2.0 0.97 0.65
60 5.9 1.9 0.97 0.66
120 6.5 1.8 0.97 0.68

Notes: We present descriptive statistics for end-of-month yields at various maturities. We show sample
mean, sample standard deviation, and first- and twelfth-order sample autocorrelations. Data are from the
Board of Governors of the Federal Reserve System. The sample period is January 1985 through December
2008.

The power of tables for displaying data and revealing patterns is very

limited compared to that of graphics, especially in this age of Big Data.

Nevertheless, tables are of course sometimes helpful, and there are prin-

ciples of tabular style, just as there are principles of graphical style.

Compare, for example, the nicely-formatted Table 2.1 (no need to worry

about what it is or from where it comes...) to what would be produced

by a spreadsheet such as Excel.

Try to formulate a set of principles of tabular style. (Hint: One principle

is that vertical lines should almost never appear in tables, as in the table

above.)

7. (More on graphical style: Appeal to the viewer)

Other graphical guidelines help us appeal to the viewer. First, use clear

and modest type, avoid mnemonics and abbreviations, and use labels

rather then legends when possible. Second, make graphics self-contained;

a knowledgeable reader should be able to understand your graphics with-

out reading pages of accompanying text. Third, as with our prescriptions

for showing the data, avoid chartjunk.
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8. (The “golden” aspect ratio, visual appeal, and showing the data)

A time-honored approach to visual graphical appeal is use of an aspect

ratio such that height is to width as width is to the sum of height and

width. This turns out to correspond to height approximately sixty per-

cent of width, the so-called “golden ratio.” Graphics that conform to

the golden ratio, with height a bit less than two thirds of width, are

visually appealing. Other things the same, it’s a good idea to keep the

golden ratio in mind when producing graphics. Other things are not

always the same, however. In particular, the golden aspect ratio may

not be the one that maximizes pattern revelation (e.g., by banking to

45 degrees).

9. (Graphics, non-profit and for-profit)

Check out the non-profit “community of creative people” at www.visualizing.

org.

Check out Google Charts at https://developers.google.com/chart/.

Poke around. What’s good? What’s bad? Can you use it to do

sparklines?

Check out www.zevross.com.

2.6 Notes

R implements a variety of sophisticated graphical techniques and in many

respects represents the cutting edge of statistical graphics software.

www.visualizing.org
www.visualizing.org
https://developers.google.com/chart/
www.zevross.com
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2.7 Graphics Legend: Edward Tufte

Figure 2.6: Tufte Teaching, with a First Edition Book by Galileo

This chapter has been heavily influenced by Tufte (1983), as are all modern

discussions of statistical graphics.7 Tufte’s book is an insightful and enter-

taining masterpiece on graphical style, and I recommend enthusiastically. Be

sure to check out his web page and other books, which go far beyond his 1983

work.

7Photo details follow.
Date: 7 February 2011.
Source: http://www.flickr.com/photos/roebot/5429634725/in/set-72157625883623225.
Author: Aaron Fulkerson.
Originally posted to Flickr by Roebot at http://flickr.com/photos/40814689@N00/5429634725. Reviewed
on 24 May 2011 by the FlickreviewR robot and confirmed to be licensed under the terms of the cc-by-sa-2.0.
Licensed under the Creative Commons Attribution-Share Alike 2.0 Generic license.

http://www.edwardtufte.com/tufte
http://www.edwardtufte.com/tufte/
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Cross Sections
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Chapter 3

Regression Under Ideal Conditions

You have already been introduced to probability and statistics, but chances

are that you could use a bit of review before plunging into regression, so

begin by studying Appendix A. Be warned, however: it is no substitute

for a full-course introduction to probability and statistics, which you should

have had already. Instead it is intentionally much more narrow, reviewing

some material related to moments of random variables, which we will use

repeatedly. It also introduces notation, and foreshadows certain ideas, that

we develop subsequently in greater detail.

3.1 Preliminary Graphics

In this chapter we’ll be working with cross-sectional data on log wages, ed-

ucation and experience. We already examined the distribution of log wages.

For convenience we reproduce it in Figure 3.1, together with the distributions

of the new data on education and experience.

31
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Figure 3.1: Distributions of Log Wage, Education and Experience
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3.2 Regression as Curve Fitting

3.2.1 Bivariate, or Simple, Linear Regression

Suppose that we have data on two variables, y and x, as in Figure 3.2, and

suppose that we want to find the linear function of x that best fits y, where

“best fits” means that the sum of squared (vertical) deviations of the data

points from the fitted line is as small as possible. When we “run a regression,”

or “fit a regression line,” that’s what we do. The estimation strategy is called

least squares, or sometimes “ordinary least squares” to distinguish it from

fancier versions that we’ll introduce later.

The specific data that we show in Figure 3.2 are log wages (LWAGE, y)

and education (EDUC, x) for a random sample of nearly 1500 people, as

described in Appendix B.

Let us elaborate on the fitting of regression lines, and the reason for the

name “least squares.” When we run the regression, we use a computer to fit

the line by solving the problem

min
β

N∑
i=1

(yi − β1 − β2xi)
2,

where β is shorthand notation for the set of two parameters, β1 and β2. We

denote the set of fitted parameters by β̂, and its elements by β̂1 and β̂2.

It turns out that the β1 and β2 values that solve the least squares problem

have well-known mathematical formulas. (More on that later.) We can use

a computer to evaluate the formulas, simply, stably and instantaneously.

The fitted values are

ŷi = β̂1 + β̂2xi,

i = 1, ..., N . The residuals are the difference between actual and fitted values,

ei = yi − ŷi,



34 CHAPTER 3. REGRESSION UNDER IDEAL CONDITIONS

Figure 3.2: (Log Wage, Education) Scatterplot
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Figure 3.3: (Log Wage, Education) Scatterplot with Superimposed Regression Line

i = 1, ..., N .

In Figure 3.3, we illustrate graphically the results of regressing LWAGE on

EDUC. The best-fitting line slopes upward, reflecting the positive correlation

between LWAGE and EDUC.1 Note that the data points don’t satisfy the

fitted linear relationship exactly; rather, they satisfy it on average. To predict

LWAGE for any given value of EDUC, we use the fitted line to find the value

of LWAGE that corresponds to the given value of EDUC.

1Note that use of log wage promostes several desiderata. First, it promotes normality, as we discussed

in Chapter 2. Second, it enforces positivity of the fitted wage, because ŴAGE = exp( ̂LWAGE), and
exp(x) > 0 for any x.
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Numerically, the fitted line is

̂LWAGE = 1.273 + .081EDUC.

We conclude with a brief comment on notation. A standard cross-section

notation for indexing the cross-sectional units is i = 1, ..., N . A standard

time-series notation for indexing time periods is t = 1, ..., T . Much of our

discussion will be valid in both cross-section and time-series environments, but

we generally attempt to use the more standard notation in each environment.

3.2.2 Multiple Linear Regression

Everything generalizes to allow for more than one RHS variable. This is

called multiple linear regression.

Suppose, for example, that we have two RHS variables, x2 and x3. Before

we fit a least-squares line to a two-dimensional data cloud; now we fit a least-

squares plane to a three-dimensional data cloud. We use the computer to

find the values of β1, β2, and β3 that solve the problem

min
β

N∑
i=1

(yi − β1 − β2x2i − β3x3i)
2,

where β denotes the set of three model parameters. We denote the set of

estimated parameters by β̂, with elements β̂1, β̂2, and β̂3. The fitted values

are

ŷi = β̂1 + β̂2x2i + β̂3x3i,

and the residuals are

ei = yi − ŷi,

i = 1, ..., N .
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For our wage data, the fitted model is

̂LWAGE = .867 + .093EDUC + .013EXPER.

Extension to the general multiple linear regression model, with an arbi-

trary number of right-hand-side (RHS) variables (K, including the constant),

is immediate. The computer again does all the work. The fitted line is

ŷi = β̂1 + β̂2x2i + β̂3x3i + ...+ β̂KxKi,

which we sometimes write more compactly as

ŷi =
K∑
k=1

β̂kxki,

where x1i = 1 for all i.

3.2.3 Onward

Before proceeding, two aspects of what we’ve done so far are worth noting.

First, we now have two ways to analyze data and reveal its patterns. One is

the graphical scatterplot of Figure 3.2, with which we started, which provides

a visual view of the data. The other is the fitted regression line of Figure 3.3,

which summarizes the data through the lens of a linear fit. Each approach

has its merit, and the two are complements, not substitutes, but note that

linear regression generalizes more easily to high dimensions.

Second, least squares as introduced thus far has little to do with statistics

or econometrics. Rather, it is simply a way of instructing a computer to

fit a line to a scatterplot in a way that’s rigorous, replicable and arguably

reasonable. We now turn to a probabilistic interpretation.
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3.3 Regression as a Probability Model

We work with the full multiple regression model (simple regression is of course

a special case). Collect the RHS variables into the vector x, where x′i =

(1, x2i, ..., xKi).

3.3.1 A Population Model and a Sample Estimator

Thus far we have not postulated a probabilistic model that relates yi and xi;

instead, we simply ran a mechanical regression of yi on xi to find the best

fit to yi formed as a linear function of xi. It’s easy, however, to construct

a probabilistic framework that lets us make statistical assessments about

the properties of the fitted line. We assume that yi is linearly related to

an exogenously-determined xi, and we add an independent and identically

distributed zero-mean (iid) Gaussian disturbance:

yi = β1 + β2x2i + ...+ βKxKi + εi

εi ∼ iidN(0, σ2),

i = 1, ..., N . The intercept of the line is β1, the slope parameters are the

other β’s, and the variance of the disturbance is σ2.2 Collectively, we call the

β’s (and σ) the model’s parameters.

We assume that the the linear model sketched is true in population; that is,

it is the data-generating process (DGP). But in practice, of course, we don’t

know the values of the model’s parameters, β1, β2, ..., βK and σ2. Our job is

to estimate them using a sample of data from the population. We estimate

the β’s precisely as before, using the computer to solve minβ
∑N

i=1 ε
2
i .

2We speak of the regression intercept and the regression slope.
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3.3.2 Notation, Assumptions and Results: The Ideal Conditions

The discussion thus far was intentionally a bit loose, focusing on motivation

and intuition. Let us now be more precise about what we assume and what

results we obtain.

A Bit of Matrix Notation

It will be useful to arrange all RHS variables into a matrix X. X has K

columns, one for each regressor. Inclusion of a constant in a regression

amounts to including a special RHS variable that is always 1. We put that in

the leftmost column of the X matrix, which is just ones. The other columns

contain the data on the other RHS variables, over the cross section in the

cross-sectional case, or over time in the time-series case. Notationally, X is

a N ×K matrix.

X =


1 x21 x31 . . . xK1

1 x22 x32 . . . xK2
...

1 x2N x3N . . . xKN

 .

One reason that the X matrix is useful is because the regression model

can be written very compactly using it. We have written the model as

yi = β1 + β2x2i + ...+ βKxKi + εi, i = 1, ..., N.

Alternatively, stack yi, i = 1, ..., N into the vector y, where y′ = (y1, y2, ..., yN),

and stack βj, j = 1, ..., K into the vector β, where β′ = (β1, β2, ..., βK), and

stack εi, i = 1, ..., N , into the vector ε, where ε′ = (ε1, ε2, ..., εN). Then we

can write the complete model over all observations as

y = Xβ + ε. (3.1)
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In addition,

εi ∼ iidN(0, σ2)

becomes

ε ∼ N(0, σ2I). (3.2)

This concise representation is very convenient.

Indeed representation (3.1)-(3.2) is crucially important, not simply be-

cause it is concise, but also because key results for estimation and inference

may be stated very simply withing it, and because the various assumptions

that we need to make to get various statistical results are most naturally and

simply stated on X and ε in equation (3.1). We now proceed to discuss such

assumptions.

Assumptions: The Ideal Conditions (IC)

1. The data-generating process (DGP) is:

yi = β1 + β2x2i + ...+ βKxKi + εi

εi ∼ iidN(0, σ2),

and the fitted model matches it exactly.

2. εi is independent of (x1i, ..., xKi), for all i

IC1 has many important sub-conditions embedded. For example:

1. The fitted model is correctly specified

2. The disturbances are Gaussian

3. The coefficients (β’s) are fixed (whether over space or time, depending

on whether we’re working in a time-series or cross-section environment)

4. The relationship is linear
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5. The εi’s have constant variance σ2

6. The εi’s are uncorrelated (whether over space or time, depending on

whether we’re working in a time-series or cross-section environment)

IC2 is more subtle, and it may seem obscure at the moment, but it is

very important in the context of causal estimation, which we will discuss in

chapter 10.

The IC’s are surely heroic in many contexts, and much of econometrics

is devoted to detecting and dealing with various IC failures. But before we

worry about IC failures, it’s invaluable first to understand what happens

when they hold.3

Results Under the IC

The least squares estimator is

β̂LS = (X ′X)−1X ′y,

and under the IC it is (among other things) consistent, asymptotically effi-

cient, and asymptotically normally distributed. We write

β̂LS

a

∼ N (β, V ) .

We consistently estimate the covariance matrix V using V̂ = s2(X ′X)−1,

where s2 =
∑N

i=1 e
2
i/(N −K).



42 CHAPTER 3. REGRESSION UNDER IDEAL CONDITIONS

Figure 3.4: Regression Output

3.4 A Wage Equation

Now let’s do more than a simple graphical analysis of the regression fit.

Instead, let’s look in detail at the computer output, which we show in Figure

6.2 for a regression of LWAGE on an intercept, EDUC and EXPER. We

run regressions dozens of times in this book, and the output format and

interpretation are always the same, so it’s important to get comfortable with

it quickly. The output is in Eviews format. Other software will produce

more-or-less the same information, which is fundamental and standard.

Before proceeding, note well that the IC may not be satisfied for this

dataset, yet we will proceed assuming that they are satisfied. As we proceed

through this book, we will confront violations of the various assumptions –

indeed that’s what econometrics is largely about – and we’ll return repeatedly

to this dataset and others. But we must begin at the beginning.

The software output begins by reminding us that we’re running a least-

3Certain variations of the IC as stated above can be entertained, and in addition we have ommitted some
technical details.
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squares (LS) regression, and that the left-hand-side (LHS) variable is the log

wage (LWAGE), using a total of 1323 observations.

Next comes a table listing each RHS variable together with four statistics.

The RHS variables EDUC and EXPER are education and experience, and the

C variable refers to the earlier-mentioned intercept. The C variable always

equals one, so the estimated coefficient on C is the estimated intercept of the

regression line.4

The four statistics associated with each RHS variable are the estimated

coefficient (“Coefficient”), its standard error (“Std. Error”), a t statistic,

and a corresponding probability value (“Prob.”). The standard errors of

the estimated coefficients indicate their likely sampling variability, and hence

their reliability. The estimated coefficient plus or minus one standard error is

approximately a 68% confidence interval for the true but unknown population

parameter, and the estimated coefficient plus or minus two standard errors

is approximately a 95% confidence interval, assuming that the estimated

coefficient is approximately normally distributed, which will be true if the

regression disturbance is normally distributed or if the sample size is large.

Thus large coefficient standard errors translate into wide confidence intervals.

Each t statistic provides a test of the hypothesis of variable irrelevance:

that the true but unknown population parameter is zero, so that the corre-

sponding variable contributes nothing to the regression and can therefore be

dropped. One way to test variable irrelevance, with, say, a 5% probability

of incorrect rejection, is to check whether zero is outside the 95% confidence

interval for the parameter. If so, we reject irrelevance. The t statistic is

just the ratio of the estimated coefficient to its standard error, so if zero is

outside the 95% confidence interval, then the t statistic must be bigger than

two in absolute value. Thus we can quickly test irrelevance at the 5% level

4Sometimes the population coefficient on C is called the constant term, and the regression estimate is
called the estimated constant term.
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by checking whether the t statistic is greater than two in absolute value.5

Finally, associated with each t statistic is a probability value, which is the

probability of getting a value of the t statistic at least as large in absolute

value as the one actually obtained, assuming that the irrelevance hypothesis

true. Hence if a t statistic were two, the corresponding probability value

would be approximately .05. The smaller the probability value, the stronger

the evidence against irrelevance. There’s no magic cutoff, but typically prob-

ability values less than 0.1 are viewed as strong evidence against irrelevance,

and probability values below 0.05 are viewed as very strong evidence against

irrelevance. Probability values are useful because they eliminate the need for

consulting tables of the t distribution. Effectively the computer does it for us

and tells us the significance level at which the irrelevance hypothesis is just

rejected.

Now let’s interpret the actual estimated coefficients, standard errors, t

statistics, and probability values. The estimated intercept is approximately

.867, so that conditional on zero education and experience, our best forecast

of the log wage would be 86.7 cents. Moreover, the intercept is very precisely

estimated, as evidenced by the small standard error of .08 relative to the

estimated coefficient. An approximate 95% confidence interval for the true

but unknown population intercept is .867± 2(.08), or [.71, 1.03]. Zero is

far outside that interval, so the corresponding t statistic is huge, with a

probability value that’s zero to four decimal places.

The estimated coefficient on EDUC is .093, and the standard error is again

small in relation to the size of the estimated coefficient, so the t statistic is

large and its probability value small. The coefficient is positive, so that

LWAGE tends to rise when EDUC rises. In fact, the interpretation of the

estimated coefficient of .09 is that, holding everything else constant, a one-

5If the sample size is small, or if we want a significance level other than 5%, we must refer to a table of
critical values of the t distribution. We also note that use of the t distribution in small samples also requires
an assumption of normally distributed disturbances.
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year increase in EDUC will produce a .093 increase in LWAGE.

The estimated coefficient on EXPER is .013. Its standard error is also

small, and hence its t statistic is large, with a very small probability value.

Hence we reject the hypothesis that EXPER contributes nothing to the fore-

casting regression. A one-year increase in EXPER tends to produce a .013

increase in LWAGE.

A variety of diagnostic statistics follow; they help us to evaluate the ad-

equacy of the regression. We provide detailed discussions of many of them

elsewhere. Here we introduce them very briefly:

3.4.1 Mean dependent var 2.342

The sample mean of the dependent variable is

ȳ =
1

N

N∑
i=1

yi.

It measures the central tendency, or location, of y.

3.4.2 S.D. dependent var .561

The sample standard deviation of the dependent variable is

SD =

√∑N
i=1(yi − ȳ)2

N − 1
.

It measures the dispersion, or scale, of y.

3.4.3 Sum squared resid 319.938

Minimizing the sum of squared residuals is the objective of least squares

estimation. It’s natural, then, to record the minimized value of the sum of

squared residuals. In isolation it’s not of much value, but it serves as an
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input to other diagnostics that we’ll discuss shortly. Moreover, it’s useful for

comparing models and testing hypotheses. The formula is

SSR =
N∑
i=1

e2
i .

3.4.4 Log likelihood -938.236

The likelihood function is the joint density function of the data, viewed as a

function of the model parameters. Hence a natural estimation strategy, called

maximum likelihood estimation, is to find (and use as estimates) the param-

eter values that maximize the likelihood function. After all, by construction,

those parameter values maximize the likelihood of obtaining the data that

were actually obtained. In the leading case of normally-distributed regres-

sion disturbances, maximizing the likelihood function (or equivalently, the

log likelihood function, because the log is a monotonic transformation) turns

out to be equivalent to minimizing the sum of squared residuals, hence the

maximum-likelihood parameter estimates are identical to the least-squares

parameter estimates. The number reported is the maximized value of the

log of the likelihood function.6 Like the sum of squared residuals, it’s not of

direct use, but it’s useful for comparing models and testing hypotheses.

Let us now dig a bit more deeply into the likelihood function, maximum-

likelihood estimation, and related hypothesis-testing procedures. A natural

estimation strategy with wonderful asymptotic properties, called maximum

likelihood estimation, is to find (and use as estimates) the parameter val-

ues that maximize the likelihood function. After all, by construction, those

parameter values maximize the likelihood of obtaining the data that were

actually obtained.

In the leading case of normally-distributed regression disturbances, max-

imizing the likelihood function turns out to be equivalent to minimizing the

6Throughout this book, “log” refers to a natural (base e) logarithm.



3.4. A WAGE EQUATION 47

sum of squared residuals, hence the maximum-likelihood parameter estimates

are identical to the least-squares parameter estimates.

To see why maximizing the Gaussian log likelihood gives the same pa-

rameter estimate as minimizing the sum of squared residuals, let us derive

the likelihood for the Gaussian linear regression model with non-stochastic

regressors,

yi = x′iβ + ε

εi ∼ iidN(0, σ2).

The model implies that

yi ∼ iidN(x′iβ, σ
2),

so that

f(yi) = (2πσ2)
−1
2 e

−1
2σ2

(yi−x′iβ)2.

Hence f(y1, ..., yN) = f(y1)f(y2) · · · f(yN) (by independence of the yi’s). In

particular,

L =
N∏
i=1

(2πσ2)
−1
2 e

−1
2σ2

(yi−x′iβ)2

so

lnL = ln
(

(2πσ2)
−N
2

)
− 1

2σ2

N∑
i=1

(yi − x′iβ)2

=
−N

2
ln(2π)− N

2
ln
(
σ2
)
− 1

2σ2

N∑
i=1

(yi − x′iβ)2.

Note in particular that the β vector that maximizes the likelihood (or log

likelihood – the optimizers must be identical because the log is a positive

monotonic transformation) is the β vector that minimizes the sum of squared

residuals.

The log likelihood is also useful for hypothesis testing via likelihood-ratio
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tests. Under very general conditions we have asymptotically that:

−2(lnL0 − lnL1) ∼ χ2
d,

where lnL0 is the maximized log likelihood under the restrictions implied

by the null hypothesis, lnL1 is the unrestricted log likelihood, and d is the

number of restrictions imposed under the null hypothesis.

t and F tests are likelihood ratio tests under a normality assumption.

That’s why they can be written in terms of minimized SSR’s rather than

maximized lnL’s.

3.4.5 F statistic 199.626

We use the F statistic to test the hypothesis that the coefficients of all vari-

ables in the regression except the intercept are jointly zero.7 That is, we

test whether, taken jointly as a set, the variables included in the forecasting

model have any explanatory value. This contrasts with the t statistics, which

we use to examine the explanatory value of the variables one at a time.8 If

no variable has explanatory value, the F statistic follows an F distribution

with k − 1 and T − k degrees of freedom. The formula is

F =
(SSRres − SSR)/(K − 1)

SSR/(N −K)
,

where SSRres is the sum of squared residuals from a restricted regression that

contains only an intercept. Thus the test proceeds by examining how much

the SSR increases when all the variables except the constant are dropped. If

it increases by a great deal, there’s evidence that at least one of the variables

has explanatory content.

7We don’t want to restrict the intercept to be zero, because under the hypothesis that all the other
coefficients are zero, the intercept would equal the mean of y, which in general is not zero. See Problem 6.

8In the degenerate case of only one RHS variable, the t and F statistics contain exactly the same infor-
mation, and F = t2 . When there are two or more RHS variables, however, the hypotheses tested differ, and
F 6= t2 .
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3.4.6 Prob(F statistic) 0.000000

The probability value for the F statistic gives the significance level at which

we can just reject the hypothesis that the set of RHS variables has no pre-

dictive value. Here, the value is indistinguishable from zero, so we reject the

hypothesis overwhelmingly.

3.4.7 S.E. of regression .492

If we knew the elements of β and predicted yi using x′iβ, then our prediction

errors would be the εi’s, with variance σ2. We’d like an estimate of σ2,

because it tells us whether our prediction errors are likely to be large or small.

The observed residuals, the ei’s, are effectively estimates of the unobserved

population disturbances, the εi’s. Thus the sample variance of the e’s, which

we denote s2 (read “s-squared”), is a natural estimator of σ2:

s2 =

∑N
i=1 e

2
i

N −K
.

s2 is an estimate of the dispersion of the regression disturbance and hence

is used to assess goodness of fit of the model, as well as the magnitude of

prediction errors that we’re likely to make. The larger is s2, the worse the

model’s fit, and the larger the prediction errors we’re likely to make. s2

involves a degrees-of-freedom correction (division by N −K rather than by

N −1, reflecting the fact that K regression coefficients have been estimated),

which is an attempt to get a good estimate of the out-of-sample prediction

error variance on the basis of the in-sample residuals.

The standard error of the regression (SER) conveys the same information;

it’s an estimator of σ rather than σ2, so we simply use s rather than s2. The

formula is

SER =
√
s2 =

√∑N
i=1 e

2
i

N −K
.
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The standard error of the regression is easier to interpret than s2, because

its units are the same as those of the e’s, whereas the units of s2 are not. If

the e’s are in dollars, then the squared e’s are in dollars squared, so s2 is in

dollars squared. By taking the square root at the end of it all, SER converts

the units back to dollars.

3.4.8 R-squared .232

If an intercept is included in the regression, as is almost always the case,

R-squared must be between zero and one. In that case, R-squared, usually

written R2, is the percent of the variance of y explained by the variables in-

cluded in the regression. R2 measures the in-sample success of the regression

equation in predicting y; hence it is widely used as a quick check of goodness

of fit, or predictibility, of y based on the variables included in the regression.

Here the R2 is about 23% – well above zero but not great. The formula is

R2 = 1−
∑N

i=1 e
2
i∑N

i=1(yi − ȳ)2
.

We can write R2 in a more roundabout way as

R2 = 1−
1
N

∑N
i=1 e

2
i

1
N

∑N
i=1(yi − ȳ)2

,

which makes clear that the numerator in the large fraction is very close to

s2, and the denominator is very close to the sample variance of y.

3.4.9 Adjusted R-squared .231

The interpretation is the same as that of R2, but the formula is a bit different.

Adjusted R2 incorporates adjustments for degrees of freedom used in fitting

the model, in an attempt to offset the inflated appearance of good fit if many

RHS variables are tried and the “best model” selected. Hence adjusted R2
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is a more trustworthy goodness-of-fit measure than R2. As long as there is

more than one RHS variable in the model fitted, adjusted R2 is smaller than

R2; here, however, the two are extremely close (23.1% vs. 23.2%). Adjusted

R2 is often denoted R̄2; the formula is

R̄2 = 1−
1

N−K
∑N

i=1 e
2
i

1
N−1

∑N
i=1(yi − ȳ)2

,

where K is the number of RHS variables, including the constant term. Here

the numerator in the large fraction is precisely s2, and the denominator is

precisely the sample variance of y.

3.4.10 Akaike info criterion 1.423

The Akaike information criterion, or AIC, is effectively an estimate of the

out-of-sample forecast error variance, as is s2, but it penalizes degrees of

freedom more harshly. It is used to select among competing models. The

formula is:

AIC = e(
2K
N )
∑N

i=1 e
2
i

N
,

and “smaller is better”. That is, we select the model with smallest AIC. We

will discuss AIC in greater depth in Chapter 4.

3.4.11 Schwarz criterion 1.435

The Schwarz information criterion, or SIC, is an alternative to the AIC with

the same interpretation, but a still harsher degrees-of-freedom penalty. The

formula is:

SIC = N(KN )
∑N

i=1 e
2
i

N
,

and “smaller is better”. That is, we select the model with smallest SIC. We

will discuss SIC in greater depth in Chapter 4.
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3.4.12 A Bit More on AIC and SIC

The AIC and SIC are tremendously important for guiding model selection

in a ways that avoid data mining and in-sample overfitting.

You will want to start using AIC and SIC immediately, so we provide

a bit more information here. Model selection by maximizing R2, or equiv-

alently minimizing residual SSR, is ill-advised, because they don’t penalize

for degrees of freedom and therefore tend to prefer models that are “too big.”

Model selection by maximizing R̄2, or equivalently minimizing residual s2,

is still ill-advised, even though R̄2 and s2 penalize somewhat for degrees of

freedom, because they don’t penalize harshly enough and therefore still tend

to prefer models that are too big. In contrast, AIC and SIC get things just

right. SIC has a wonderful asymptotic optimality property when the set of

candidate models is viewed as fixed: Basically SIC “gets it right” asymptoti-

cally, selecting either the DGP (if the DGP is among the models considered)

or the best predictive approximation to the DGP (if the DGP is not among

the models considered). AIC has a different and also-wonderful asymptotic

optimality property, known as “efficiency,” when the set of candidate models

is viewed as expanding as the sample size grows. In practice, the models

selected by AIC and SIC rarely disagree.

3.4.13 Hannan-Quinn criter. 1.427

Hannan-Quinn is yet another information criterion for use in model selection.

We will not use it in this book.

3.4.14 Durbin-Watson stat. 1.926

The Durbin-Watsion (DW) statistic is used in time-series contexts, and we

will study it later.
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Figure 3.5: Wage Regression Residual Scatter

3.4.15 The Residual Scatter

The residual scatter is often useful in both cross-section and time-series sit-

uations. It is a plot of y vs ŷ. A perfect fit (R2 = 1) corresponds to all

points on the 45 degree line, and no fit (R2 = 0) corresponds to all points on

a vertical line corresponding to y = ȳ.

In Figure 3.5 we show the residual scatter for the wage regression. It is

not a vertical line, but certainly also not the 45 degree line, corresponding to

the positive but relatively low R2 of .23.

3.4.16 The Residual Plot

In time-series settings, it’s always a good idea to assess visually the adequacy

of the model via time series plots of the actual data (yi’s), the fitted values

(ŷi’s), and the residuals (ei’s). Often we’ll refer to such plots, shown together
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in a single graph, as a residual plot.9 We’ll make use of residual plots through-

out this book. Note that even with many RHS variables in the regression

model, both the actual and fitted values of y, and hence the residuals, are

simple univariate series that can be plotted easily.

The reason we examine the residual plot is that patterns would indicate

violation of our iid assumption. In time series situations, we are particularly

interested in inspecting the residual plot for evidence of serial correlation

in the ei’s, which would indicate failure of the assumption of iid regression

disturbances. More generally, residual plots can also help assess the overall

performance of a model by flagging anomalous residuals, due for example to

outliers, neglected variables, or structural breaks.

Our wage regression is cross-sectional, so there is no natural ordering of

the observations, and the residual plot is of limited value. But we can still

use it, for example, to check for outliers.

In Figure 3.6, we show the residual plot for the regression of LWAGE on

EDUC and EXPER. The actual and fitted values appear at the top of the

graph; their scale is on the right. The fitted values track the actual values

fairly well. The residuals appear at the bottom of the graph; their scale is

on the left. It’s important to note that the scales differ; the ei’s are in fact

substantially smaller and less variable than either the yi’s or the ŷi’s. We

draw the zero line through the residuals for visual comparison. No outliers

are apparent.

9Sometimes, however, we’ll use “residual plot” to refer to a plot of the residuals alone. The intended
meaning should be clear from context.
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Figure 3.6: Wage Regression Residual Plot

3.5 Least Squares and Optimal Point Prediction

The linear regression DGP under the ideal conditions implies the conditional

mean function,

E(yi | x1i = 1, x2i = x∗2i, ..., xKi = x∗Ki) = β1 + β2x
∗
2i + ...+ βKx

∗
Ki(

or E(yi | xi = x∗i ) = x∗i
′β
)
.

And as also already noted much earlier in Chapter 1, a major goal in

econometrics is predicting y. The question is “If a new person arrives with

characteristics x∗, what is my minimum-MSE prediction of her y? It turns

out, very intuitively, that the answer is E(y|x = x∗) = x∗i
′β. That is, “the

conditional mean is the minimum MSE (point) predictor”. (Indeed if it were

anything else you’d surely be suspicious.) The non-operational version (i.e.,

pretending that we know β) is E(yi|xi = x∗i ) = x∗i
′β, and the operational



56 CHAPTER 3. REGRESSION UNDER IDEAL CONDITIONS

version (using β̂LS) is ̂E(yi|xi = x∗i ) = x∗i
′β̂LS.

Let’s now introduce a very basic and powerful result. Notice that the β’s in

the conditional mean expression give the weights on the various x’s for form-

ing the optimal predictor. Hence under the IC, consistency of OLS ensures

that symptotically the operational point prediction (based on β̂LS) will use

the right weights (based on β). That is, under the IC, LS is consistent for the

right predictive weights. Now here’s the really amazing thing (although it’s

obvious when you think about it): Under great generality, in particular even

if the IC fail, LS is still consistent for the right predictive weights, simply by

virtue of the MSE-optimization problem that it solves directly. The bottom

line: Forecasting is of central importance in economics, and LS regression

delivers optimal forecasts under great generality.

If LS provides optimal forecasts even without the IC, you might wonder

why we introduced the IC. There are two key sets of reasons. First, even

for standard forecasting situations of the form “If a new person arrives with

characteristics x∗, what is my minimum-MSE prediction of her y,” once we

drop the IC, so that the fitted model does not necessarily match the true

DGP, there is a crucial issue of what model to use. Many questions arise.

Which x’s should we include, and which should we exclude? Is a linear

model really adequate, or should we incorporate some non-linearlity? And so

on. For any given model, LS will deliver the optimal parameter configuration

for forecasting, but again, a crucial issue is what features a “good” or “the

best” model should incorporate.

Second, what we’ve considered so far is called “non-causal” prediction.

It exploits correlation between y and x to generate forecasts, but there is

no presumption (or need) that x truly causes y in a deep scientific sense.

(Remember, correlation does not imply causation!) But there is a causal

form of prediction that differs from the one sketched thus far. In particular,

thus far we’ve considered “If a new person arrives with characteristics x∗,
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what is my minimum-MSE prediction of her y?”, but we might alternatively

be interested in predicting the effects of an active treatment, or intervention,

or policy, along the lines of “If I randomly select someone and change her

characteristics in some way, what is my minimum-MSE prediction of the

corresponding change in her y?” It turns out that LS does not always perform

well for such “causal prediction” questions. So when does LS perform well for

causal prediction? Under the IC! Effectively LS solves both the non-causal

and causal prediction problems under the IC (or, put differently, the two

problems are identical under the IC), but when the IC fail LS continues to

solve the non-causal prediction problem but fails for the causal prediction

problem.

Summarizing, here’s what true:

1. Non-causal prediction is important in economics

2. LS succeeds for non-causal prediction under great generality

3. Causal prediction is important in economics

4. LS fails for causal prediction unless the IC hold, so credible causal pre-

diction is much harder.

Given the combination of 1 and 2 above, it makes obvious sense to start

with with non-causal prediction and treat it extensively, reserving 4 for sep-

arate treatment (which we do in Chapter 10). That has been the successful

strategy of econometrics for many decades, and it is very much at the center

of modern “data science” and “machine learning”.

3.6 Optimal Interval and Density Prediction

Prediction as introduced thus far is so-called point prediction (a single best

– i.e., minimum MSE – guess).
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Forecasts stated as confidence intervals (“interval forecasts”) are also of

interest. The linear regression DGP under the IC implies the conditional

variance function

var(yi | xi = x∗i ) = σ2,

which we can use to form interval forecasts. The non-operational version is

yi ∈ [x∗i
′β ± 1.96σ] w.p. 0.95,

and the operational version is

yi ∈ [x∗i
′β̂LS ± 1.96 s] w.p. 0.95.

Finally full density forecasts are of interest. The linear regression DGP

under the IC implies the conditional density function

yi | xi = x∗i ∼ N(x∗i
′β, σ2).

Hence a non-operational density forecast is

yi | xi = x∗i ∼ N(x∗i
′β, σ2),

with operational version

yi | xi = x∗i ∼ N(x∗i
′β̂LS, s

2).

Notice that the interval and density forecasts rely for validity on more parts

of the IC than do the point forecasts: Gaussian disturbances and constant

disturbance variances – which makes clear in even more depth why violations

of the IC are generally problematic even in non-causal forecasting situations.
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3.7 Regression Output from a Predictive Perspective

In light of our predictive emphasis throughout this book, here we offer some

predictive perspective on the regression statistics discussed earlier.

The sample, or historical, mean of the dependent variable, ȳ, an estimate

of the unconditional mean of y, is a benchmark forecast. It is obtained by

regressing y on an intercept alone – no conditioning on other regressors.

The sample standard deviation of y is a measure of the in-sample accuracy

of the unconditional mean forecast ȳ.

The OLS fitted values, ŷi = x′iβ̂, are effectively in-sample regression pre-

dictions.

The OLS residuals, ei = yi− ŷi, are effectively in-sample prediction errors

corresponding to use of those in-sample regression predictions.

OLS coefficient signs and sizes relate to the weights put on the various x

variables in forming the best in-sample prediction of y.

The standard errors, t statistics, and p-values let us do statistical inference

as to which regressors are most relevant for predicting y.

SSR measures “total” in-sample accuracy of the regression predictions. It

is closely related to in-sample MSE:

MSE =
1

N
SSR =

1

N

N∑
i=1

e2
i

(“average” in-sample accuracy of the regression predictions)

The F statistic effectively compares the accuracy of the regression-based

forecast to that of the unconditional-mean forecast. It helps us assess whether

the x variables, taken as a set, have predictive value for y. That contrasts

with the t statistics, which assess predictive value of the x variables one at a

time.

s2 is just SSR scaled by N −K, so again, it’s a measure of the in-sample
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accuracy of the regression-based forecast. It’s like MSE, but corrected for

degrees of freedom.

R2 and R̄2 effectively compare the in-sample accuracy of conditional-mean

(x′iβ̂) and unconditional-mean (ȳ) forecasts. R2 is not corrected for d.f. and

has MSE on top:

R2 = 1−
1
N

∑N
i=1(yi − x′iβ̂)2

1
N

∑N
i=1(yi − ȳ)2

.

In contrast, R̄2 is corrected for d.f. and has s2 on top:

R̄2 = 1−
1

N−K
∑N

i=1(yi − x′iβ̂)2

1
N−1

∑N
i=1(yi − ȳ)2

.

Residual plots are useful for visually flagging neglected things that im-

pact forecasting. Residual correlation (in time-series contexts) indicates that

point forecasts could possibly be improved. Non-constant residual volatility

indicates that interval and density forecasts could be possibly improved.

3.8 Multicollinearity

Collinearlty and multicollinearity don’t really involve failure of the ideal

conditions, but they nevertheless are someimes issues and should be men-

tioned.

Collinearity refers to two x variables that are highly correlated. But even if

all pairwise correlations are small an x variable could nevertheless be highly

correlated with a linear combination of other x variables. That raises the

idea of multicollinearity, where an x variable is highly correlated with a linear

combination of other x variables. Collinearity is of course a special case of

multicollinearity, so henceforth we will simply speak of multicollinearity.
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3.8.1 Perfect and Imperfect Multicollinearity

There are two types of multicollinearity, perfect and imperfect.

Perfect multicollinearity refers to perfect correlation among some re-

gressors, or linear combinations of regressors. Perfect multicollinearity is

indeed a problem; the X ′X matrix is singular, so (X ′X)−1 does not exist,

and the OLS estimator cannot even be computed!10 Perfect multicollinearity

is disastrous, but it’s unlikely to occur unless you do something really silly,

like entering the same regressor twice.11 In any event the solution is trivial:

simply drop one of the redundant variables.

Imperfect multicollinearity, in contrast, occurs routinely but is not

necessarily problematic, although in extreme cases it may require some at-

tention. Imperfect collinearity/multicollinearity refers to (imperfect) correla-

tion among some regressors, or linear combinations of regressors. Imperfect

multicollinearity is not a “problem” in the sense that something was done

incorrectly, and it is not a violation of the IC. Rather, it just reflects the

nature of economic and financial data. But we still need to be aware of it

and understand its effects. Telltale symptoms are large F and R2, yet small

t’s (large s.e.’s), and/or coefficients that are sensitive to small changes in

sample period. That is, OLS has trouble parsing individual influences, yet

it’s clear that there is an overall relationship. OLS is in some sense just what

the doctor ordered – orthogonal projection.

It can be shown, and it is very intuitive, that

var(β̂k) = f

 σ2︸︷︷︸
+

, σ2
xk︸︷︷︸
−

, R2
k︸︷︷︸

+


where R2

k is the R2 from a regression of xk on all other regressors. In the

10For this reason people sometimes view non-singular X ′X as part of the IC.
11A classic and more sophisticated example involves the “dummy variable trap,” in which we include as

regressors a full set of dummy variables and an intercept. We will define dummy variables and note the
dummy variable trap in Chapters 6 and 11.
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limit, as R2
k → 1, var(β̂k) → ∞, because xk is then perfectly “explained”

by the other variables and is therefore completely redundant. R2
k is effec-

tively a measure of the “strength” of the multicollinearity affecting βk. We

often measure the strength of multicollinearity by the “variance inflation

factor”,

V IF (β̂k) =
1

1−R2
k

,

which is just a transformation of R2
k.

3.9 Beyond Fitting the Conditional Mean:

Quantile regression

Recall that the OLS estimator, β̂OLS, solves:

minβ

N∑
i=1

(yi − β1 − β2x2t − ...− βKxKt)2 = minβ

N∑
i=1

ε2
i

As you know, the solution has a simple analytic closed-form expression,

(X ′X)−1X ′y), with wonderful properties under the IC (unbiased, consistent,
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Gaussian, MVUE). But other objectives are possible and sometimes useful.

So-called quantile regression (QR) involves an objective function linear on

each side of 0 but with (generally) unequal slopes. QR estimator β̂QR mini-

mizes “linlin loss,” or “check function loss”:

minβ

N∑
i=1

linlin(εi),

where:

linlin(e) =


a|e|, if e ≤ 0

b|e|, if e > 0

= a|e| I(e ≤ 0) + b|e| I(e > 0).

I(x) = 1 if x is true, and I(x) = 0 otherwise.

“I(·)” stands for “indicator” variable.

“linlin” refers to linearity on each side of the origin.

QR is not as simple as OLS, but it is still simple solves a linear program-

ming problem).

A key issue is what, precisely, quantile regression fits. QR fits the d ·100%

quantile:

quantiled(y|X) = xβ

where

d =
b

a+ b
=

1

1 + a/b

This is an important generalization of regression (e.g., How do the wages

of people in the far left tail of the wage distribution vary with education and

experience, and how does that compare to those in the center of the wage

distribution?)
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3.10 Exercises, Problems and Complements

1. (Regression with and without a constant term)

Consider Figure 3.3, in which we showed a scatterplot of y vs. x with a

fitted regression line superimposed.

a. In fitting that regression line, we included a constant term. How can

you tell?

b. Suppose that we had not included a constant term. How would the

figure look?

c. We almost always include a constant term when estimating regres-

sions. Why?

d. When, if ever, might you explicitly want to exclude the constant term?

2. (Interpreting coefficients and variables)

Let yi = β1 + β2xi + β3zi + εi, where yi is the number of hot dogs sold

at an amusement park on a given day, xi is the number of admission

tickets sold that day, zi is the daily maximum temperature, and εi is a

random error. Assume the IC.

a. State whether each of yi, xi, zi, β1, β2 and β3 is a coefficient or a

variable.

b. Determine the units of β1, β2 and β3, and describe the physical mean-

ing of each.

c. What do the signs of the a coefficients tell you about how the var-

ious variables affects the number of hot dogs sold? What are your

expectations for the signs of the various coefficients (negative, zero,

positive or unsure)?

d. Is it sensible to entertain the possibility of a non-zero intercept (i.e.,

β1 6= 0)? β2 > 0? β3 < 0?
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3. (Scatter plots and regression lines)

Draw qualitative scatter plots and regression lines for each of the follow-

ing two-variable datasets, and state the R2 in each case:

a. Data set 1: y and x have correlation 1

b. Data set 2: y and x have correlation -1

c. Data set 3: y and x have correlation 0.

4. (Desired values of regression diagnostic statistics)

For each of the diagnostic statistics listed below, indicate whether, other

things the same, “bigger is better,” “smaller is better,” or neither. Ex-

plain your reasoning. (Hint: Be careful, think before you answer, and

be sure to qualify your answers as appropriate.)

a. Coefficient

b. Standard error

c. t statistic

d. Probability value of the t statistic

e. R-squared

f. Adjusted R-squared

g. Standard error of the regression

h. Sum of squared residuals

i. Log likelihood

j. Mean of the dependent variable

k. Standard deviation of the dependent variable

l. Akaike information criterion

m. Schwarz information criterion
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n. F statistic

o. Probability-value of the F statistic

5. (Regression semantics)

Regression analysis is so important, and used so often by so many people,

that a variety of associated terms have evolved over the years, all of which

are the same for our purposes. You may encounter them in your reading,

so it’s important to be aware of them. Some examples:

a. Ordinary least squares, least squares, OLS, LS.

b. y, LHS variable, regressand, dependent variable, endogenous variable

c. x’s, RHS variables, regressors, independent variables, exogenous vari-

ables, predictors, covariates

d. probability value, prob-value, p-value, marginal significance level

e. Schwarz criterion, Schwarz information criterion, SIC, Bayes infor-

mation criterion, BIC

6. (Regression when X Contains Only an Intercept)

Consider the regression model (3.1)-(3.2), but where X contains only an

intercept.

a. What is the OLS estimator of the intercept?

b. What is the distribution of the OLS estimator under the ideal condi-

tions?

c. Does the variance-covariance matrix of the OLS estimator under the

ideal conditions depend on any unknown parameters, and if so, how

would you estimate them?

7. (Dimensionality)
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We have emphasized, particularly in Chapter 2, that graphics is a pow-

erful tool with a variety of uses in the construction and evaluation of

econometric models. We hasten to add, however, that graphics has its

limitations. In particular, graphics loses much of its power as the dimen-

sion of the data grows. If we have data in ten dimensions, and we try to

squash it into two or three dimensions to make graphs, there’s bound to

be some information loss.

Thus, in contrast to the analysis of data in two or three dimensions,

in which case learning about data by fitting models involves a loss of

information whereas graphical analysis does not, graphical methods lose

their comparative advantage in higher dimensions. In higher dimen-

sions, graphical analysis can become comparatively laborious and less

insightful.

8. (Wage regressions)

The relationship among wages and their determinants is one of the most

important in all of economics. In the text we have examined, and will

continue to examine, the relationship for 1995 using a CPS subsample.

Here you will thoroughly analyze the relationship for 2004 and 2012,

compare your results to those for 1995, and think hard about the mean-

ing and legitimacy of your results.

(a) Obtain the relevant 1995, 2004 and 2012 CPS subsamples.

(b) Discuss any differences in the datasets. Are the same people in each

dataset?

(c) For now, assume the validity of the ideal conditions. Using each

dataset, run the OLS regression WAGE → c, EDUC,EXPER.

(Note that the LHS variable is WAGE, not LWAGE.) Discuss and

compare the results in detail.
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(d) Now think of as many reasons as possible to be skeptical of your

results. (This largely means think of as many reasons as possible

why the IC might fail.) Which of the IC might fail? One? A few?

All? Why? Insofar as possible, discuss the IC, one-by-one, how/why

failure could happen here, the implications of failure, how you might

detect failure, what you might do if failure is detected, etc.

(e) Repeat all of the above using LWAGE as the LHS variable.

9. (Parallels between the sampling distribution of the sample mean un-

der simple random sampling, and the sampling distribution of the OLS

estimator under the IC)

Consider first the sample mean under Gaussian simple random sampling.

(a) What is a Gaussian simple random sample?

(b) What is the sample mean, and what finite-sample properties does

it have under Gaussian simple random sampling?

(c) Display and discuss the exact distribution of the sample mean.

(d) How would you estimate and plot the exact distribution of the sam-

ple mean?

Now consider the OLS regression estimator under the IC.

(a) What are the IC?

(b) What is the OLS estimator, and what finite-sample properties does

it enjoy?

(c) Display and discuss the exact distribution of the OLS estimator.

Under what conditions, if any, do your “sample mean answers” and

“OLS answers” precisely coincide?
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10. (OLS regression residuals sum to zero)

Assertion: As long as an intercept is included in a linear regression, the

OLS residuals must sum to precisely zero. The intuition is simply that

non-zero residual mean (residual “constant term”) would automatically

be pulled into the residual constant term, hence guaranteeing a zero

residual mean.

(a) Prove the assertion precisely.

(b) Evaluate the claim that the assertion implies the regression fits per-

fectly “on average,” despite the fact that it fits imperfectly point-

by-point.

11. (Simulation algorithm for density prediction)

(a) Take R draws from N(0, σ̂2).

(b) Add x∗′β̂ to each disturbance draw.

(c) Form a density forecast by fitting a density to the output from step

11b.

(d) Form an interval forecast (95%, say) by sorting the output from step

11b to get the empirical cdf, and taking the left and right interval

endpoints as the the .025% and .975% values, respectively.

As R→∞, the algorithmic and analytic results coincide.

Note: This simulation algorithm may seem roundabout, but later we

will drop normality.

12. (Quantile regression empirics)

For the 1995 CPS subsample (see EPC 8) re-do the regression LWAGE →
c, EDUC,EXPER using 20%, 50% and 80% quantile regression instead

of OLS regression.
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3.11 Notes

Dozens of software packages implement linear regression analysis. Most auto-

matically include an intercept in linear regressions unless explicitly instructed

otherwise. That is, they automatically create and include a C variable.

The R command for ordinary least squares regression is “lm”. It’s already

pre-loaded into R as the default package for estimating linear models. It

uses standard R format for such models, where you specify formula, data,

and various estimation options. It returns a model estimated by OLS in-

cluding coefficients, residuals, and fitted values. You can also easily calculate

summary statistics using the summary function.

The standard R quantile regression package is quantreg, written by Roger

Koenker, the inventor of quantile regression. The command “rq” functions

similarly to “lm”. It takes as input a formula, data, the quantile to be

estimated, and various estimation options.

http://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf
http://www.econ.uiuc.edu/~roger/
http://www.econ.uiuc.edu/~roger/
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3.12 Regression’s Inventor: Carl Friedrich Gauss

Figure 3.7: Carl Friedrich Gauss

This is a photographic reproduction of a public-domain artwork, an oil paint-

ing of German mathematician and philosopher Carl Friedrich Gauss by G.

Biermann (1824-1908). Date: 1887 (painting). Source Gau-Gesellschaft Gt-

tingen e.V. (Foto: A. Wittmann).

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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Chapter 4

Misspecification and Model Selection

The IC’s of Chapter 3 are surely heroic in economic contexts, so let us begin

to relax them. One aspect of IC 1 is that the fitted model matches the true

DGP. In reality we can never know the DGP, and surely any model that we

might fit fails to match it, so there is an issue of how to select and fit a “good”

model.

Recall that the Akaike information criterion, or AIC, is effectively an

estimate of the out-of-sample forecast error variance, as is s2, but it penal-

izes degrees of freedom more harshly. It is used to select among competing

forecasting models. The formula is:

AIC = e(
2K
N )
∑N

i=1 e
2
i

N
.

Also recall that the Schwarz information criterion, or SIC, is an alter-

native to the AIC with the same interpretation, but a still harsher degrees-

of-freedom penalty. The formula is:

SIC = N(KN )
∑N

i=1 e
2
i

N
.

Here we elaborate. We start with more on selection (“hard threshold”

– variables are either kept or discarded), and then we introduce shrinkage

(“soft threshold” – all variables are kept, but parameter estimates are coaxed

73
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in a certain direction), and then lasso, which blends selection and shrinkage.

4.1 Information Criteria (Hard Thresholding)

All-subsets model selection means that we examine every possible combina-

tion of K regressors and select the best. Examples include SIC and AIC.

Let us now discuss SIC and AIC in greater depth, as they are tremen-

dously important tools for building forecasting models. We often could fit a

wide variety of forecasting models, but how do we select among them? What

are the consequences, for example, of fitting a number of models and select-

ing the model with highest R2? Is there a better way? This issue of model

selection is of tremendous importance in all of forecasting.

It turns out that model-selection strategies such as selecting the model

with highest R2 do not produce good out-of-sample forecasting models. For-

tunately, however, a number of powerful modern tools exist to assist with

model selection. Most model selection criteria attempt to find the model

with the smallest out-of-sample 1-step-ahead mean squared prediction error.
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The criteria we examine fit this general approach; the differences among cri-

teria amount to different penalties for the number of degrees of freedom used

in estimating the model (that is, the number of parameters estimated). Be-

cause all of the criteria are effectively estimates of out-of-sample mean square

prediction error, they have a negative orientation – the smaller the better.

First consider the mean squared error,

MSE =

∑N
i=1 e

2
i

N
,

where N is the sample size and ei = yi − ŷi. MSE is intimately related to

two other diagnostic statistics routinely computed by regression software, the

sum of squared residuals and R2. Looking at the MSE formula reveals

that the model with the smallest MSE is also the model with smallest sum

of squared residuals, because scaling the sum of squared residuals by 1/N

doesn’t change the ranking. So selecting the model with the smallest MSE

is equivalent to selecting the model with the smallest sum of squared residuals.

Similarly, recall the formula for R2,

R2 = 1−
∑N

i=1 e
2
i∑N

i=1(yi − ȳ)2
= 1− MSE

1
N

∑N
i=1(yi − ȳ)2

.

The denominator of the ratio that appears in the formula is just the sum

of squared deviations of y from its sample mean (the so-called “total sum

of squares”), which depends only on the data, not on the particular model

fit. Thus, selecting the model that minimizes the sum of squared residuals –

which as we saw is equivalent to selecting the model that minimizes MSE –

is also equivalent to selecting the model that maximizes R2.

Selecting forecasting models on the basis of MSE or any of the equiva-

lent forms discussed above – that is, using in-sample MSE to estimate the

out-of-sample 1-step-ahead MSE – turns out to be a bad idea. In-sample

MSE can’t rise when more variables are added to a model, and typically
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it will fall continuously as more variables are added, because the estimated

parameters are explicitly chosen to minimize the sum of squared residuals.

Newly-included variables could get estimated coefficients of zero, but that’s

a probability-zero event, and to the extent that the estimate is anything else,

the sum of squared residuals must fall. Thus, the more variables we include

in a forecasting model, the lower the sum of squared residuals will be, and

therefore the lower MSE will be, and the higher R2 will be. Again, the sum

of squared residuals can’t rise, and due to sampling error it’s very unlikely

that we’d get a coefficient of exactly zero on a newly-included variable even

if the coefficient is zero in population.

The effects described above go under various names, including in-sample

overfitting, reflecting the idea that including more variables in a forecasting

model won’t necessarily improve its out-of-sample forecasting performance,

although it will improve the model’s “fit” on historical data. The upshot is

that in-sample MSE is a downward biased estimator of out-of-sample MSE,

and the size of the bias increases with the number of variables included in

the model. In-sample MSE provides an overly-optimistic (that is, too small)

assessment of out-of-sample MSE.

To reduce the bias associated with MSE and its relatives, we need to

penalize for degrees of freedom used. Thus let’s consider the mean squared

error corrected for degrees of freedom,

s2 =

∑N
i=1 e

2
i

N −K
,

where K is the number of degrees of freedom used in model fitting.1 s2 is just

the usual unbiased estimate of the regression disturbance variance. That is,

it is the square of the usual standard error of the regression. So selecting the

model that minimizes s2 is equivalent to selecting the model that minimizes

the standard error of the regression. s2 is also intimately connected to the

1The degrees of freedom used in model fitting is simply the number of parameters estimated.



4.1. INFORMATION CRITERIA (HARD THRESHOLDING) 77

R2 adjusted for degrees of freedom (the “adjusted R2,” or R̄2 ). Recall that

R̄2 = 1−
∑N

i=1 e
2
i/(N −K)∑N

i=1(yi − ȳ)2/(N − 1)
= 1− s2∑N

i=1(yi − ȳ)2/(N − 1)
.

The denominator of the R̄2 expression depends only on the data, not the

particular model fit, so the model that minimizes s2 is also the model that

maximizes R̄2. In short, the strategies of selecting the model that minimizes

s2, or the model that minimizes the standard error of the regression, or the

model that maximizes R̄2, are equivalent, and they do penalize for degrees of

freedom used.

To highlight the degree-of-freedom penalty, let’s rewrite s2 as a penalty

factor times the MSE,

s2 =

(
N

N −K

)∑N
i=1 e

2
i

N
.

Note in particular that including more variables in a regression will not nec-

essarily lower s2 or raise R̄2 – the MSE will fall, but the degrees-of-freedom

penalty will rise, so the product could go either way.

As with s2, many of the most important forecast model selection criteria

are of the form “penalty factor times MSE.” The idea is simply that if we

want to get an accurate estimate of the 1-step-ahead out-of-sample forecast

MSE, we need to penalize the in-sample residual MSE to reflect the degrees

of freedom used. Two very important such criteria are the Akaike Informa-

tion Criterion (AIC) and the Schwarz Information Criterion (SIC).

Their formulas are:

AIC = e(
2K
N )
∑N

i=1 e
2
i

N

and
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SIC = N(KN )
∑N

i=1 e
2
i

N
.

How do the penalty factors associated with MSE, s2, AIC and SIC

compare in terms of severity? All of the penalty factors are functions of

K/N , the number of parameters estimated per sample observation, and we

can compare the penalty factors graphically as K/N varies. In Figure *** we

show the penalties as K/N moves from 0 to .25, for a sample size of N = 100.

The s2 penalty is small and rises slowly with K/N ; the AIC penalty is a bit

larger and still rises only slowly with K/N . The SIC penalty, on the other

hand, is substantially larger and rises much more quickly with K/N .

It’s clear that the different criteria penalize degrees of freedom differently.

In addition, we could propose many other criteria by altering the penalty.

How, then, do we select among the criteria? More generally, what properties

might we expect a “good” model selection criterion to have? Are s2, AIC

and SIC “good” model selection criteria?

We evaluate model selection criteria in terms of a key property called con-

sistency, also known as the oracle property. A model selection criterion

is consistent if:

a. when the true model (that is, the data-generating process, or DGP)

is among a fixed set models considered, the probability of selecting the

true DGP approaches one as the sample size gets large, and

b. when the true model is not among a fixed set of models considered, so

that it’s impossible to select the true DGP, the probability of selecting the

best approximation to the true DGP approaches one as the sample size

gets large.

We must of course define what we mean by “best approximation” above.

Most model selection criteria – including all of those discussed here – assess
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goodness of approximation in terms of out-of-sample mean squared forecast

error.

Consistency is of course desirable. If the DGP is among those considered,

then we’d hope that as the sample size gets large we’d eventually select it.

Of course, all of our models are false – they’re intentional simplifications of

a much more complex reality. Thus the second notion of consistency is the

more compelling.

MSE is inconsistent, because it doesn’t penalize for degrees of freedom;

that’s why it’s unattractive. s2 does penalize for degrees of freedom, but as it

turns out, not enough to render it a consistent model selection procedure. The

AIC penalizes degrees of freedom more heavily than s2, but it too remains

inconsistent; even as the sample size gets large, the AIC selects models that

are too large (“overparameterized”). The SIC, which penalizes degrees of

freedom most heavily, is consistent.

The discussion thus far conveys the impression that SIC is unambigu-

ously superior to AIC for selecting forecasting models, but such is not the

case. Until now, we’ve implicitly assumed a fixed set of models. In that case,

SIC is a superior model selection criterion. However, a potentially more

compelling thought experiment for forecasting may be that we may want

to expand the set of models we entertain as the sample size grows, to get

progressively better approximations to the elusive DGP. We’re then led to

a different optimality property, called asymptotic efficiency. An asymp-

totically efficient model selection criterion chooses a sequence of models, as

the sample size get large, whose out-of-sample forecast MSE approaches the

one that would be obtained using the DGP at a rate at least as fast as that

of any other model selection criterion. The AIC, although inconsistent, is

asymptotically efficient, whereas the SIC is not.

In practical forecasting we usually report and examine both AIC and SIC.

Most often they select the same model. When they don’t, and despite the
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theoretical asymptotic efficiency property of AIC, this author recommends

use of the more parsimonious model selected by the SIC, other things equal.

This accords with the parsimony principle of Chapter ?? and with the re-

sults of studies comparing out-of-sample forecasting performance of models

selected by various criteria.

The AIC and SIC have enjoyed widespread popularity, but they are not

universally applicable, and we’re still learning about their performance in

specific situations. However, the general principle that we need somehow to

inflate in-sample loss estimates to get good out-of-sample loss estimates is

universally applicable.

The versions of AIC and SIC introduced above – and the claimed op-

timality properties in terms of out-of-sample forecast MSE – are actually

specialized to the Gaussian case, which is why they are written in terms of

minimized SSR’s rather than maximized lnL’s.2 More generally, AIC and

SIC are written not in terms of minimized SSR’s, but rather in terms of

maximized lnL’s. We have:

AIC = −2lnL+ 2K

and

SIC = −2lnL+KlnN.

These are useful for any model estimated by maximum likelihood, Gaussian

or non-Gaussian.

4.2 Cross Validation (Hard Thresholding)

Cross validation (CV) proceeds as follows. Consider selecting among J mod-

els. Start with model 1, estimate it using all data observations except the first,

use it to predict the first observation, and compute the associated squared

2Recall that in the Gaussian case SSR minimization and lnL maximization are equivalent.
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prediction error. Then estimate it using all observations except the second,

use it to predict the second observation, and compute the associated squared

error. Keep doing this – estimating the model with one observation deleted

and then using the estimated model to predict the deleted observation – un-

til each observation has been sequentially deleted, and average the squared

errors in predicting each of the N sequentially deleted observations. Repeat

the procedure for the other models, j = 2, ..., J , and select the model with

the smallest average squared prediction error.

Actually this is “N − fold” CV, because we split the data into N parts

(the N individual observations) and predict each of them. More generally

we can split the data into M parts (M < N) and cross validate on them

(“M − fold” CV). As M falls, M -fold CV eventually becomes consistent.

M = 10 often works well in practice.

It is instructive to compare SIC and CV, both of which have the oracle

property. SIC achieves it by penalizing in-sample residual MSE to obtain

an approximately-unbiased estimate of out-of-sample MSE. CV, in contrast,

achieves it by directly obtaining an unbiased estimated out-of-sample MSE.

CV is more general than information criteria insofar as it can be used even

when the model degrees of freedom is unclear. In addition, non-quadratic loss

can be introduced easily.

4.3 Stepwise Selection (Hard Thresholding)

All-subsets selection, whether by AIC, SIC or CV, quickly gets hard as there

are 2K subsets of K regressors. Other procedures, like the stepwise selection

procedures that we now introduce, don’t explore every possible subset. They

are more ad hoc but very useful.
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4.3.1 Forward

Algorithm:

– Begin regressing only on an intercept

– Move to a one-regressor model by including that variable with the small-

est t-stat p-value

– Move to a two-regressor model by including that variable with the small-

est p-value

– Move to a three-regressor model by including that variable with the

smallest p-value

Often people use information criteria or CV to select from the stepwise

sequence of models. This is a “greedy algorithm,” producing an increasing

sequence of candidate models. Often people use information criteria or CV

to select from the stepwise sequence of models. No guaranteed optimality

properties of the selected model.

“forward stepwise regression”

– Often people use information criteria or cross validation to select from

the stepwise sequence of models.

4.3.2 Backward

Algorithm:

– Start with a regression that includes all K variables

– Move to a K−1 variable model by dropping the variable with the largest

t-stat p-value

– Move to a K−2 variable model by dropping the variable with the largest

p-value

Often people use information criteria or CV to select from the stepwise

sequence of models. This is a “greedy algorithm,” producing a decreasing

sequence of candidate models. Often people use information criteria or CV
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to select from the stepwise sequence of models. No guaranteed optimality

properties of the selected model.

4.4 Bayesian Shrinkage (Soft Thresholding)

Shrinkage is a generic feature of Bayesian estimation. The Bayes rule under

quadratic loss is the posterior mean, which is a weighted average of the MLE

and the prior mean,

β̂bayes = ω1β̂MLE + ω2β0,

where the weights depend on prior precision. Hence the the Bayes rule pulls,

or “shrinks,” the MLE toward the prior mean.

A classic shrinkage estimator is ridge regression,,3

β̂ridge = (X ′X + λI)−1X ′y.

λ → 0 produces OLS, whereas λ → ∞ shrinks completely to 0. λ can be

chosen by CV. (Notice that λ can not be chosen by information criteria,

as K regressors are included regardless of λ. Hence CV is a more general

selection procedure, useful for selecting various “tuning parameters” (like λ)

as opposed to just numbers of variables in hard-threshold procedures.

3The ridge regression estimator can be shown to be the posterior mean for a certain prior and likelihood.
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4.5 Selection and Shrinkage (Mixed Hard and Soft

Thresholding)

4.5.1 Penalized Estimation

Consider the penalized estimator,

β̂PEN = argminβ

 N∑
i=1

(
yi −

∑
i

βixit

)2

+ λ
K∑
i=1

|βi|q
 ,

or equivalently

β̂PEN = argminβ

N∑
i=1

(
yi −

∑
i

βixit

)2

s.t.
K∑
i=1

|βi|q ≤ c.

Concave penalty functions non-differentiable at the origin produce selection.

Smooth convex penalties produce shrinkage. Indeed one can show that taking

q → 0 produces subset selection, and taking q = 2 produces ridge regression.

Hence penalized estimation nests those situations and includes an intermedi-

ate case (q = 1) that produces the lasso, to which we now turn.

4.5.2 The Lasso

The lasso solves the L1-penalized regression problem of finding

β̂LASSO = argminβ

 N∑
i=1

(
yi −

∑
i

βixit

)2

+ λ

K∑
i=1

|βi|





4.6. DISTILLATION: PRINCIPAL COMPONENTS 85

or equivalently

β̂LASSO = argminβ

N∑
i=1

(
yi −

∑
i

βixit

)2

s.t.
K∑
i=1

|βi| ≤ c.

Ridge shrinks, but the lasso shrinks and selects. Figure ?? says it all. No-

tice that, like ridge and other Bayesian procedures, lasso requires only one

estimation. And moreover, the lasso uses minimization problem is convex

(lasso uses the smallest q for which it is convex), which renders the single

estimation highly tractable computationally.

Lasso also has a very convenient d.f. result. The effective number of

parameters is precisely the number of variables selected (number of non-

zero β’s). This means that we can use info criteria to select among “lasso

models” for various λ. That is, the lasso is another device for producing an

“increasing” sequence of candidate models (as λ increases). The “best” λ can

then be chosen by information criteria (or cross-validation, of course).

4.6 Distillation: Principal Components

4.6.1 Distilling “X Variables” into Principal Components

Data Summarization. Think of a giant (wide) X matrix and how to “distill”

it.

X ′X eigen-decomposition:

X ′X = V D2V ′

The jth column of V , vj, is the jth eigenvector of X ′X

Diagonal matrix D2 contains the descending eigenvalues of X ′X



86 CHAPTER 4. MISSPECIFICATION AND MODEL SELECTION

Figure 4.1: Lasso and Ridge Comparison
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First principal component (PC):

z1 = Xv1

var(z1) = d2
1/N

(maximal sample variance among all possible l.c.’s of columns of X)

In general:

zj = Xvj ⊥ zj′, j
′ 6= j

var(zj) ≤ d2
j/N

4.6.2 Principal Components Regression

The idea is to enforce parsimony with little information loss by regressing not

on the full X, but rather on the first few PC’s of X. We speak of “Principal

components regression” (PCR), or “Factor-Augmented Regression”.

Ridge regression and PCR are both shrinkage procedures involving PC’s.

Ridge effectively includes all PC’s and shrinks according to sizes of eigenvalues

associated with the PC’s. PCR effectively shrinks some PCs completely to

zero (those not included) and doesn’t shrink others at all (those included).

4.7 Exercises, Problems and Complements

1. (The sum of squared residuals, SSR)

(a) What is SSR and why is it reported?

(b) Do you agree with “bigger is better,” “smaller is better,” or neither?

Be careful.

(c) Describe in detail and discuss the use of regression statistics R2, R̄2,

F , SER, and SIC. What role does SSR play in each of the test

statistics?

(d) Under the IC, is the maximized log likelihood related to the SSR?

If so, how? Would your answer change if we dropped normality?
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2. (The variety of “information criteria” reported across software packages)

Some authors, and software packages, examine and report the logarithms

of the AIC and SIC,

ln(AIC) = ln

(∑N
i=1 e

2
i

N

)
+

(
2K

N

)

ln(SIC) = ln

(∑N
i=1 e

2
i

N

)
+
K ln(N)

N
.

The practice is so common that log(AIC) and log(SIC) are often sim-

ply called the “AIC” and “SIC.” AIC and SIC must be greater than

zero, so log(AIC) and log(SIC) are always well-defined and can take on

any real value. The important insight, however, is that although these

variations will of course change the numerical values of AIC and SIC

produced by your computer, they will not change the rankings of mod-

els under the various criteria. Consider, for example, selecting among

three models. If AIC1 < AIC2 < AIC3 , then it must be true as well

that ln(AIC1) < ln(AIC2) < ln(AIC3) , so we would select model 1 re-

gardless of the “definition” of the information criterion used.

3. (“All-subset”, “partial-subset”, and “one-shot” model selection)

Note that model selection by information criteria or cross validation are

all-subset strategies, insofar as we examine all possible models and pick

the one that looks best according to the criterion. Stepwise procedures

are partial-subset strategies, insofar as we examine many models, but not

all possible models, and pick the one that looks best according to the

criterion. Ridge and LASSO, in contrast, are one-shot strategies, insofar

as we need to perform only a single estimation. All-subset strategies

become unappealing as the number of regressors, K, grows, because

there are 2K subsets of K regressors, requiring running and comparing
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2K regressions. One-shot strategies, in contrast, remain appealing in

situations with many regressors, because just one estimation is required.
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Chapter 5

Non-Normality

Here we consider another violation of the IC, non-normal disturbances.

Non-normality and outliers, which we introduce in this chapter, are

closely related, because deviations from Gaussian behavior are often charac-

terized by fatter tails than the Gaussian, which produce outliers. It is impor-

tant to note that outliers are not necessarily “bad,” or requiring “treatment.”

Every data set must have some most extreme observation, by definition! Sta-

tistical estimation efficiency, moreover, increases with data variability. The

most extreme observations can be the most informative about the phenom-

ena of interest. “Bad” outliers, in contrast, are those associated with things

like data recording errors (e.g., you enter .753 when you mean to enter 75.3)

or one-off events (e.g., a strike or natural disaster).

5.0.1 Results

To understand the properties of OLS without normality, it is helpful first to

consider the properties of the sample mean without normality.

As reviewed in Appendix A, for a non-Gaussian simple random sample,

yi ∼ iid(µ, σ2), i = 1, ..., N,

we have that the sample mean is consistent, asymptotically normal, and

91
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asymptotically efficient, with

ȳ

a

∼ N

(
µ,
σ2

N

)
.

This result forms the basis for asymptotic inference. It is a Gaussian central

limit theorem. We consistently estimate σ2 using s2.

Now consider the linear regression under the IC except that we allow non-

Gaussian disturbances. OLS remains consistent, asymptotically normal, and

asymptotically efficient, with

β̂OLS

a

∼ N (β, V ) .

We consistently estimate the covariance matrix V using s2(X ′X)−1.

5.1 Assessing Normality

There are many methods, ranging from graphics to formal tests.

5.1.1 QQ Plots

We introduced histograms earlier in Chapter 2 as a graphical device for learn-

ing about distributional shape. If, however, interest centers on the tails of

distributions, QQ plots often provide sharper insight as to the agreement or

divergence between the actual and reference distributions.

The QQ plot is simply a plot of the quantiles of the standardized data

against the quantiles of a standardized reference distribution (e.g., normal). If

the distributions match, the QQ plot is the 45 degree line. To the extent that

the QQ plot does not match the 45 degree line, the nature of the divergence
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can be very informative, as for example in indicating fat tails.

5.1.2 Residual Sample Skewness and Kurtosis

Recall skewness and kurtosis, which we reproduce here for convenience:

S =
E(y − µ)3

σ3

K =
E(y − µ)4

σ4
.

Obviously, each tells about a different aspect of non-normality. Kurtosis, in

particular, tells about fatness of distributional tails relative to the normal.

A simple strategy is to check various implications of residual normality,

such as S = 0 and K = 3 , via informal examination of Ŝ and K̂.

5.1.3 The Jarque-Bera Test

The Jarque-Bera test (JB) effectively aggregates the information in the

data about both skewness and kurtosis to produce an overall test of the joint

hypothesis that S = 0 and K = 3 , based upon Ŝ and K̂. The test statistic

is

JB =
N

6

(
Ŝ2 +

1

4
(K̂ − 3)2

)
.

Under the null hypothesis of independent normally-distributed observations

(S = 0, K = 3), JB is distributed in large samples as a χ2 random variable

with two degrees of freedom.1

1We have discussed the case of an observed time series. If the series being tested for normality is the
residual from a model, then N can be replaced with N−K, where K is the number of parameters estimated,
although the distinction is inconsequential asymptotically.
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5.2 Outliers

Outliers refer to big disturbances (in population) or residuals (in sample).

Outliers may emerge for a variety of reasons, and they may require special

attention because they can have substantial influence on the fitted regression

line.

On the one hand, OLS retains its magic in such outlier situations – it is

BLUE regardless of the disturbance distribution. On the other hand, the

fully-optimal (MVUE) estimator may be highly non-linear, so the fact that

OLS remains BLUE is less than fully comforting. Indeed OLS parameter

estimates are particularly susceptible to distortions from outliers, because the

quadratic least-squares objective really hates big errors (due to the squaring)

and so goes out of its way to tilt the fitted surface in a way that minimizes

them.

How to identify and treat outliers is a time-honored problem in data anal-

ysis, and there’s no easy answer. If an outlier is simply a data-recording

mistake, then it may well be best to discard it if you can’t obtain the correct

data. On the other hand, every dataset, even a perfectly “clean” dataset,

has a “most extreme observation,” but it doesn’t follow that it should be dis-

carded. Indeed the most extreme observations are often the most informative

– precise estimation requires data variation.

5.2.1 Outlier Detection

Graphics

One obvious way to identify outliers in bivariate regression situations is via

graphics: one xy scatterplot can be worth a thousand words. In higher di-

mensions, the residual ŷy scatterplot remains invaluable, as does the residual

plot of y − ŷ.
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Leave-One-Out and Leverage

Another way to identify outliers is a “leave-one-out” coefficient plot, where

we use the computer to sweep through the sample, leaving out successive

observations, and examining differences in parameter estimates with obser-

vation various observations “in” vs. “out”. That is, in an obvious notation,

we examine and plot β̂
(−i)
OLS − β̂OLS, i = 1, ..., N .

It can be shown, however, that the change in β̂OLS is

β̂
(−i)
OLS − β̂OLS = − 1

1− hi
(X ′X)−1x′iei ,

where hi is the i-th diagonal element of the “hat matrix,” X(X ′X)−1X ′.

Hence the estimated coefficient change β̂
(−i)
OLS − β̂OLS is driven by 1

1−hi . hi is

called the observation-i leverage. hi can be shown to be in [0, 1], so that

the larger is hi, the larger is β̂
(−i)
OLS − β̂OLS. Hence one really just needs to

examine the leverage sequence, and scrutinize carefully observations with

high leverage.

5.3 Robust Estimation

Robust estimation provides a useful middle ground between completely dis-

carding allegedly-outlying observations (“dummying them out”) and doing

nothing. Here we introduce outlier-robust approaches to regression. The

first involves OLS regression, but on weighted data, an the second involves

switching from OLS to a different estimator.

5.3.1 Robustness Iteration

Fit at robustness iteration 0:

ŷ(0) = Xβ̂(0)
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where

β̂(0) = argmin

[
N∑
i=1

(yi − x′iβ)2

]
.

Robustness weight at iteration 1:

ρ
(1)
i = S

(
e

(0)
i

6med|e(0)
i |

)

where

e
(0)
i = yi − ŷ(0)

i ,

and S(z) is a function such that S(z) = 1 for z ∈ [−1, 1] but downweights

outside that interval.

Fit at robustness iteration 1:

ŷ(1) = Xβ̂(1)

where

β̂(1) = argmin

[
N∑
i=1

ρ
(1)
i (yi − xi′β)

2

]
.

Continue as desired.

5.3.2 Least Absolute Deviations

Recall that the OLS estimator solves

min
β

N∑
i=1

(yi − x′iβ)2.

Now we simply change the objective to

min
β

N∑
i=1

|yi − x′iβ|.
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or

minβ

N∑
i=1

|εi|

That is, we change from squared-error loss to absolute-error loss. We call

the new estimator “least absolute deviations” (LAD) and we write β̂LAD.2

By construction, β̂LAD is not influenced by outliers as much as β̂OLS. Put

differently, LAD is more robust to outliers than is OLS.

Of course nothing is free, and the price of LAD is a bit of extra compu-

tational complexity relative to OLS. In particular, the LAD estimator does

not have a tidy closed-form analytical expression like OLS, so we can’t just

plug into a simple formula to obtain it. Instead we need to use the computer

to find the optimal β directly. If that sounds complicated, rest assured that

it’s largely trivial using modern numerical methods, as embedded in modern

software.3

It is important to note that whereas OLS fits the conditional mean func-

tion:

mean(y|X) = Xβ,

LAD fits the conditional median function (50% quantile):

median(y|X) = Xβ

The conditional mean and median are equal under symmetry and hence under

normality, but not under asymmetry, in which case the median is a better

measure of central tendency. Hence LAD delivers two kinds of robustness to

non-normality: it is robust to outliers and robust to asymmetry.

2Note that LAD regression is just quantile regression for d = .50.
3Indeed computation of the LAD estimator turns out to be a linear programming problem, which is

well-studied and simple.
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5.4 Wage Determination

Here we show some empirical results that make use of the ideas sketched

above. There are many tables and figures appearing at the end of the chapter.

We do not refer to them explicitly, but all will be clear upon examination.

5.4.1 WAGE

We run WAGE → c, EDUC, EXPER. We show the regression results,

the residual plot, the residual histogram and statistics, the residual Gaussian

QQ plot, the leave-one-out plot, and the results of LAD estimation. The

residual plot shows lots of positive outliers, and the residual histogram and

Gaussian QQ plot indicate right-skewed residuals.

5.4.2 LWAGE

Now we run LWAGE → c, EDUC, EXPER. Again we show the re-

gression results, the residual plot, the residual histogram and statistics, the

residual Gaussian QQ plot, the leave-one-out plot, and the results of LAD

estimation. Among other things, and in sharp contrast to the results for

WAGE and opposed to LWAGE, the residual histogram and Gaussian QQ

plot indicate approximate residual normality.
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Figure 5.1: OLS Wage Regression
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Figure 5.2: OLS Wage Regression: Residual Plot
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Figure 5.3: OLS Wage Regression: Residual Histogram and Statistics
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Figure 5.4: OLS Wage Regression: Residual Gaussian QQ Plot
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Figure 5.5: OLS Wage Regression: Leave-One-Out Plot
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Figure 5.6: LAD Wage Regression



5.4. WAGE DETERMINATION 105

Figure 5.7: OLS Log Wage Regression
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Figure 5.8: OLS Log Wage Regression: Residual Plot
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Figure 5.9: OLS Log Wage Regression: Residual Histogram and Statistics
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Figure 5.10: OLS Log Wage Regression: Residual Gaussian QQ Plot
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Figure 5.11: OLS Log Wage Regression: Leave-One-Out Plot
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Figure 5.12: LAD Log Wage Regression

5.5 Exercises, Problems and Complements

1. (Taleb’s The Black Swan)

Nassim Taleb is a financial markets trader turned pop author. His book,

The Black Swan (Taleb (2007)), deals with many of the issues raised

in this chapter. “Black swans” are seemingly impossible or very low-

probability events – after all, swans are supposed to be white – that

occur with annoying regularity in reality. Read his book. Where does

your reaction fall on the spectrum from A to B below?

A. Taleb offers crucial lessons for econometricians, heightening awareness

in ways otherwise difficult to achieve. After reading Taleb, it’s hard to

stop worrying about non-normality, model uncertainty, etc.

B. Taleb belabors the obvious for hundreds of pages, arrogantly “inform-

ing”’ us that non-normality is prevalent, that all models are misspecified,

and so on. Moreover, it takes a model to beat a model, and Taleb offers
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little.

2. (Additional ways of quantifying “outliers”)

(a) Consider the outlier probability,

P |y − µ| > 5σ

(there is of course nothing magical about our choice of 5). In practice

we use a sample version of the population object.

(b) Consider the “tail index” γ, such that

P (y > y∗) = ky∗−γ.

In practice we use a sample version of the population object.

3. (“Leave-one-out” coefficient plots)

Leave-one-out coefficient plots are more appropriate for cross-section

data than for time-series data. Why? How might you adapt them to

handle time-series data?
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Chapter 6

Group Heterogeneity and Indicator

Variables

From one perspective we continue working under the FIC. From another

we now begin relaxing the FIC, effectively by recognizing RHS variables that

were omitted from, but should not have been omitted from, our original wage

regression.

6.1 0-1 Dummy Variables

A dummy variable, or indicator variable, is just a 0-1 variable that

indicates something, such as whether a person is female, non-white, or a

union member. We use dummy variables to account for such “group effects,”

if any. We might define the dummy UNION, for example, to be 1 if a person

is a union member, and 0 otherwise. That is,

UNIONi =

{
1, if observation i corresponds to a union member

0, otherwise.

In Figure 6.1 we show histograms and statistics for all potential determi-

nants of wages. Education (EDUC) and experience (EXPER) are standard

continuous variables, although we measure them only discretely (in years);

113
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Figure 6.1: Histograms for Wage Covariates

we have examined them before and there is nothing new to say. The new vari-

ables are 0-1 dummies, UNION (already defined) and NONWHITE, where

NONWHITEi =

{
1, if observation i corresponds to a non− white person

0, otherwise.

Note that the sample mean of a dummy variable is the fraction of the

sample with the indicated attribute. The histograms indicate that roughly

one-fifth of people in our sample are union members, and roughly one-fifth

are non-white.

We also have a third dummy, FEMALE, where

FEMALEi =

{
1, if observation i corresponds to a female

0, otherwise.

We don’t show its histogram because it’s obvious that FEMALE should be

approximately 0 w.p. 1/2 and 1 w.p. 1/2, which it is.
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Sometimes dummies like UNION, NONWHITE and FEMALE are called

intercept dummies, because they effectively allow for a different intercept

for each group (union vs. non-union, non-white vs. white, female vs. male).

The regression intercept corresponds to the “base case” (zero values for all

dummies) and the dummy coefficients give the extra effects when the respec-

tive dummies equal one. For example, in a wage regression with an intercept

and a single dummy (UNION, say), the intercept corresponds to non-union

members, and the estimated coefficient on UNION is the extra effect (up or

down) on LWAGE accruing to union members.

Alternatively, we could define and use a full set of dummies for each cate-

gory (e.g., include both a union dummy and a non-union dummy) and drop

the intercept, reading off the union and non-union effects directly.

In any event, never include a full set of dummies and an intercept. Doing

so would be redundant because the sum of a full set of dummies is just a unit

vector, but that’s what the intercept is. If an intercept is included, one of

the dummy categories must be dropped.

6.2 Group Dummies in the Wage Regression

Recall our basic wage regression,

LWAGE → c, EDUC,EXPER,

shown in Figure 6.2. Both explanatory variables are highly significant, with

expected signs.

Now consider the same regression, but with our three group dummies

added, as shown in Figure 6.3. All dummies are significant with the expected

signs, and R2 is higher. Both SIC and AIC favor including the group dum-

mies. We show the residual scatter in Figure 6.4. Of course it’s hardly the

forty-five degree line (the regression R2 is higher but still only .31), but it’s
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Figure 6.2: Wage Regression on Education and Experience

Figure 6.3: Wage Regression on Education, Experience and Group Dummies
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Figure 6.4: Residual Scatter from Wage Regression on Education, Experience and Group
Dummies

getting closer.

6.3 Exercises, Problems and Complements

1. (Slope dummies)

Consider the regression

yi = β1 + β2xi + εi.

The dummy variable model as introduced in the text generalizes the

intercept term such that it can change across groups. Instead of writing
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the intercept as β1, we write it as β1 + δDi.

We can also allow slope coefficients to vary with groups. Instead of

writing the slope as β2, we write it as β2 + γDi. Hence to capture slope

variation across groups we regress y not only on an intercept and x, but

also on D ∗ x.

Allowing for both intercept and slope variation across groups corresponds

to regressing on an intercept, D, x, and D ∗ x.

2. (Dummies vs. separate regression)

Consider the simple regression, y → c, x.

(a) How is inclusion of a group G intercept dummy related to the idea

of running separate regressions, one for G and one for non-G? Are

the two strategies equivalent? Why or why not?

(b) How is inclusion of group G intercept and slope dummies related

to the idea of running separate regressions, one for G and one for

non-G? Are the two strategies equivalent? Why or why not?

3. (Analysis of variance (ANOVA) and dummy variable regression)

[You should have learned about analysis of variance (ANOVA) in

your earlier statistics course. In any event there’s good news: If you

understand regression on dummy variables, you understand analysis of

variance (ANOVA), as any ANOVA analysis can be done via regression

on dummies. So here we go.]

You treat each of 1000 randomly-selected farms that presently use no

fertilizer. You either do nothing, or you apply one of four experimental

fertilizers, A, B, C or D. Using a dummy variable regression setup:

(a) How would you test the hypothesis that none of the four new fertil-

izers is effective?
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(b) Assuming that you reject the null, how would you estimate the im-

provement (or worsening) due to using fertilizer A, B, C or D?

6.4 Notes

ANOVA traces to Sir Ronald Fischer’s 1918 article, “The Correlation Be-

tween Relatives on the Supposition of Mendelian Inheritance,” and it was

featured prominently in his classic 1925 book, Statistical Methods for Re-

search Workers . Fischer is in many ways the “father” of much of modern

statistics.

http://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance
http://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance
http://en.wikipedia.org/wiki/Statistical_Methods_for_Research_Workers
http://en.wikipedia.org/wiki/Statistical_Methods_for_Research_Workers


120 CHAPTER 6. GROUP HETEROGENEITY AND INDICATOR VARIABLES

6.5 Dummy Variables, ANOVA, and Sir Ronald Fis-

cher

Figure 6.5: Sir Ronald Fischer

Photo credit: From Wikimedia commons. Source: http://www.swlearning.com/quant/kohler/stat/

biographical_sketches/Fisher_3.jpeg Rationale: Photographer died ¿70yrs ago =¿ PD. Date: 2008-05-

30 (original upload date). Source: Transferred from en.wikipedia. Author: Original uploader was Bletchley

at en.wikipedia. Permission (Reusing this file): Released under the GNU Free Documentation License; PD-

OLD-70. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU

Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included

in the section entitled GNU Free Documentation License.

http://en.wikipedia.org/wiki/Ronald_Fisher
http://www.swlearning.com/quant/kohler/stat/biographical_sketches/Fisher_3.jpeg
http://www.swlearning.com/quant/kohler/stat/biographical_sketches/Fisher_3.jpeg


Chapter 7

Nonlinearity

In general there is no reason why the conditional mean function should be lin-

ear. That is, the appropriate functional form may not be linear. Whether

linearity provides an adequate approximation is an empirical matter.

Non-linearity is related to non-normality, which we studied in chapter 5.

In particular, in the mutivariate normal case, the conditional mean function

is linear in the conditioning variables. But once we leave the terra firma

of multivariate normality, anything goes. The conditional mean function

and disturbances may be linear and Gaussian, non-linear and Gaussian, linear

and non-Gaussian, or non-linear and non-Gaussian.

In the Gaussian case, because the conditional mean is a linear function

of the conditioning variable(s), it coincides with the linear projection. In

non-Gaussian cases, however, linear projections are best viewed as approxi-

mations to generally non-linear conditional mean functions. That is, we can

view the linear regression model as a linear approximation to a generally non-

linear conditional mean function. Sometimes the linear approximation may

be adequate, and sometimes not.

121



122 CHAPTER 7. NONLINEARITY

7.1 Models Linear in Transformed Variables

Models can be non-linear but nevertheless linear in non-linearly-transformed

variables. A leading example involves logarithms, to which we now turn. This

can be very convenient. Moreover, coefficient interpretations are special, and

similarly convenient.

7.1.1 Logarithms

Logs turn multiplicative models additive, and they neutralize exponentials.

Logarithmic models, although non-linear, are nevertheless “linear in logs.”

In addition to turning certain non-linear models linear, they can be used

to enforce non-negativity of a left-hand-side variable and to stabilize a dis-

turbance variance. (More on that later.)

Log-Log Regression

First, consider log-log regression. We write it out for the simple regres-

sion case, but of course we could have more than one regressor. We have

lnyi = β1 + β2lnxi + εi.

yi is a non-linear function of the x
i
, but the function is linear in logarithms,

so that ordinary least squares may be applied.

To take a simple example, consider a Cobb-Douglas production function

with output a function of labor and capital,

yi = ALαiK
β
i exp(εi).

Direct estimation of the parameters A,α, β would require special techniques.

Taking logs, however, yields

lnyi = lnA+ αlnLi + βlnKi + εi.
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This transformed model can be immediately estimated by ordinary least

squares. We simply regress lnyi on an intercept, lnLi and lnKi. Such log-log

regressions often capture relevant non-linearities, while nevertheless main-

taining the convenience of ordinary least squares.

Note that the estimated intercept is an estimate of lnA (not A, so if you

want an estimate of A you must exponentiate the estimated intercept), and

the other estimated parameters are estimates of α and β, as desired.

Recall that for close yi and xi, (ln yi− ln xi) is approximately the percent

difference between yi and xi. Hence the coefficients in log-log regressions give

the expected percent change in E(yi|xi) for a one-percent change in xi, the

so-called elasticity of yi with respect to xi.

Log-Lin Regression

Second, consider log-lin regression, in which lnyi = βxi + εi. We have

a log on the left but not on the right. The classic example involves the

workhorse model of exponential growth:

yt = Aertεt

It’s non-linear due to the exponential, but taking logs yields

lnyt = lnA+ rt+ εt,

which is linear. The growth rate r gives the approximate percent change in

E(yt|t) for a one-unit change in time (because logs appear only on the left).

Lin-Log Regression

Finally, consider lin-log Regression:

yi = βlnxi + εi

It’s a bit exotic but it sometimes arises. β gives the effect on E(yi|xi) of a

one-percent change in xi, because logs appear only on the right.
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7.1.2 Box-Cox and GLM

Box-Cox

The Box-Cox transformation generalizes log-lin regression. We have

B(yi) = β1 + β2xi + εi,

where

B(yi) =
yλt − 1

λ
.

Hence

E(yi|xi) = B−1(β1 + β2xi).

Because

limλ→0

(
yλ − 1

λ

)
= ln(yi),

the Box-Cox model corresponds to the log-lin model in the special case of

λ = 0.

GLM

The so-called “generalized linear model” (GLM) provides an even more

flexible framework. Almost all models with left-hand-side variable transfor-

mations are special cases of those allowed in the generalized linear model

(GLM). In the GLM, we have

G(yi) = β1 + β2xt + εi,

so that

E(yi|xi) = G−1(β1 + β2xi).

Wide classes of “link functions” G can be entertained. Log-lin regression,

for example, emerges when G(yi) = ln(yi), and Box-Cox regression emerges

when G(yi) = yλi −1
λ .
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7.2 Intrinsically Non-Linear Models

Sometimes we encounter intrinsically non-linear models. That is, there

is no way to transform them to linearity, so that they can then be estimated

simply by least squares, as we have always done so far.

As an example, consider the logistic model,

yi =
1

a+ brxi
+ εi,

with 0 < r < 1. The precise shape of the logistic curve of course depends on

the precise values of a, b and r, but its “S-shape” is often useful. The key

point for our present purposes is that there is no simple transformation of y

that produces a model linear in the transformed variables.

7.2.1 Nonlinear Least Squares

The least squares estimator is often called “ordinary” least squares, or OLS.

As we saw earlier, the OLS estimator has a simple closed-form analytic ex-

pression, which makes it trivial to implement on modern computers. Its

computation is fast and reliable.

The adjective “ordinary” distinguishes ordinary least squares from more

laborious strategies for finding the parameter configuration that minimizes

the sum of squared residuals, such as the non-linear least squares (NLS)

estimator. When we estimate by non-linear least squares, we use a computer

to find the minimum of the sum of squared residual function directly, using

numerical methods, by literally trying many (perhaps hundreds or even thou-

sands) of different β values until we find those that appear to minimize the

sum of squared residuals. This is not only more laborious (and hence slow),

but also less reliable, as, for example, one may arrive at a minimum that is

local but not global.

Why then would anyone ever use non-linear least squares as opposed to
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OLS? Indeed, when OLS is feasible, we generally do prefer it. For example,

in all regression models discussed thus far OLS is applicable, so we prefer it.

Intrinsically non-linear models can’t be estimated using OLS, but they can

be estimated using non-linear least squares. We resort to non-linear least

squares in such cases.

Intrinsically non-linear models obviously violate the linearity assumption

of the IC. But the violation is not a big deal. Under the remaining IC (that

is, dropping only linearity), β̂NLS has a sampling distribution similar to that

under the IC.

7.3 Series Expansions

There is really no such thing as an intrinsically non-linear model. In the

bivariate case we can think of the relationship as

yi = g(xi, εi)

or slightly less generally as

yi = f(xi) + εi.

First consider Taylor series expansions of f(xi). The linear (first-order)

approximation is

f(xi) ≈ β1 + β2xi

and the quadratic (second-order) approximation is

f(xi) ≈ β1 + β2xi + β3x
2
i .

In the multiple regression case, Taylor approximations also involves inter-

action terms. Consider, for example, a function of two regressors, f(xi, zi).



7.4. A FINAL WORD ON NONLINEARITY AND THE IC 127

The second-order Taylor approximation is:

f(xi, zi) ≈ β1 + β2xi + β3zi + β4x
2
i + β5z

2
i + β6xizi.

The final term picks up interaction effects. Interaction effects are also rele-

vant in situations involving dummy variables. There we capture interactions

by including products of dummies.1

The ultimate point is that even so-called “intrinsically non-linear” models

are themselves linear when viewed from the series-expansion perspective. In

principle, of course, an infinite number of series terms are required, but in

practice nonlinearity is often quite gentle (e.g., quadratic) so that only a few

series terms are required. From this viewpoint non-linearity is in some sense

really an omitted-variables problem.

One can also use Fourier series approximations:

f(xi) ≈ β1 + β2sin(xi) + β3cos(xi) + β4sin(2xi) + β5cos(2xi) + ...,

and one can also mix Taylor and Fourier approximations by regressing not

only on powers and cross products (“Taylor terms”), but also on various sines

and cosines (“Fourier terms”). Mixing may facilitate parsimony.

7.4 A Final Word on Nonlinearity and the IC

It is of interest to step back and ask what parts of the IC are violated in our

various non-linear models.

Models linear in transformed variables (e.g., log-log regression) actually

don’t violate the IC, after transformation. Neither do series expansion mod-

els, if the adopted expansion order is deemed correct, because they too are

linear in transformed variables.

The series approach to handling non-linearity is actually very general and

1Notice that a product of dummies is one if and only if both individual dummies are one.
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handles intrinsically non-linear models as well, and low-ordered expansions

are often adequate in practice, even if an infinite expansion is required in

theory. If series terms are needed, a purely linear model would suffer from

misspecification of the X matrix (a violation of the IC) due to the omitted

higher-order expansion terms. Hence the failure of the IC discussed in this

chapter can be viewed either as:

1. The linearity assumption (E(y|X) = X ′β) is incorrect, or

2. The linearity assumption (E(y|X) = X ′β) is correct, but the assumption

that X is correctly specified (i.e., no omitted variables) is incorrect, due

to the omitted higher-order expansion terms.

7.5 Selecting a Non-Linear Model

7.5.1 t and F Tests, and Information Criteria

One can use the usual t and F tests for testing linear models against non-

linear alternatives in nested cases, and information criteria (AIC and SIC)

for testing against non-linear alternatives in non-nested cases. To test linear-

ity against a quadratic alternative in a simple regression case, for example,

we can simply run y → c, x, x2 and perform a t-test for the relevance of x2.

And of course, use AIC and SIC as always.

7.5.2 The RESET Test

Direct inclusion of powers and cross products of the various x variables in

the regression can be wasteful of degrees of freedom, however, particularly

if there are more than just one or two right-hand-side variables in the re-

gression and/or if the non-linearity is severe, so that fairly high powers and

interactions would be necessary to capture it.
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In light of this, a useful strategy is first to fit a linear regression yi → c, xi

and obtain the fitted values ŷi. Then, to test for non-linearity, we run the

regression again with various powers of ŷi included,

yi → c, xi, ŷ
2
i , ..., ŷ

m
i .

Note that the powers of ŷi are linear combinations of powers and cross prod-

ucts of the x variables – just what the doctor ordered. There is no need

to include the first power of ŷi, because that would be redundant with the

included x variables. Instead we include powers ŷ2
i , ŷ

3
i , ... Typically a small

m is adequate. Significance of the included set of powers of ŷi can be checked

using an F test. This procedure is called RESET (Regression Specification

Error Test).

7.6 Non-Linearity in Wage Determination

For convenience we reproduce in Figure 7.1 the results of our current linear

wage regression,

LWAGE → c, EDUC,EXPER,

FEMALE,UNION,NONWHITE.

The RESET test from that regression suggests neglected non-linearity; the

p-value is .03 when using ŷ2
t and ŷ3

t in the RESET test regression.

Non-Linearity in EDUC and EXPER: Powers and Interactions

Given the results of the RESET test, we proceed to allow for non-linearity.

In Figure 7.2 we show the results of the quadratic regression

LWAGE → EDUC,EXPER

EDUC2, EXPER2, EDUC ∗ EXPER,

FEMALE,UNION,NONWHITE
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Figure 7.1: Basic Linear Wage Regression

Two of the non-linear effects are significant. The impact of experience is

decreasing, and experience seems to trade off with education, insofar as the

interaction is negative.

Non-Linearity in FEMALE, UNION and NONWHITE: Interactions

Just as continuous variables like EDUC and EXPER may interact (and

we found that they do), so too may discrete dummy variables. For example,

the wage effect of being female and non-white might not simply be the sum

of the individual effects. We would estimate it as the sum of coefficients on

the individual dummies FEMALE and NONWHITE plus the coefficient

on the interaction dummy FEMALE*NONWHITE.

In Figure 7.4 we show results for

LWAGE → EDUC,EXPER,

FEMALE,UNION,NONWHITE,

FEMALE∗UNION,FEMALE∗NONWHITE,UNION∗NONWHITE.
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Figure 7.2: Quadratic Wage Regression

The dummy interactions are insignificant.

7.6.1 Non-Linearity in Continuous and Discrete Variables Simul-

taneously

Now let’s incorporate powers and interactions in EDUC and EXPER, and

interactions in FEMALE, UNION and NONWHITE.

In Figure 7.4 we show results for

LWAGE → EDUC,EXPER,

EDUC2, EXPER2, EDUC ∗ EXPER,

FEMALE,UNION,NONWHITE,

FEMALE∗UNION,FEMALE∗NONWHITE,UNION∗NONWHITE.

The dummy interactions remain insignificant.

Note that we could explore additional interactions amongEDUC, EXPER
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Figure 7.3: Wage Regression on Education, Experience, Group Dummies, and Interactions

and the various dummies. We leave that to the reader.

Assembling all the results, our tentative “best” model thus far is tht of

section 7.6,

LWAGE → EDUC,EXPER,

EDUC2, EXPER2, EDUC ∗ EXPER,

FEMALE,UNION,NONWHITE.

The RESET statistic has a p-value of .19, so we would not reject adequacy

of functional form at conventional levels.

7.7 Exercises, Problems and Complements

1. (Tax revenue and the tax rate)

The U.S. Congressional Budget Office (CBO) is helping the president
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Figure 7.4: Wage Regression with Continuous Non-Linearities and Interactions, and Discrete
Interactions

to set tax policy. In particular, the president has asked for advice on

where to set the average tax rate to maximize the tax revenue collected

per taxpayer. For each of 65 countries the CBO has obtained data on

the tax revenue collected per taxpayer and the average tax rate.

(a) Is tax revenue likely related to the tax rate? (That is, do you think

that the mean of tax revenue conditional on the tax rate actually is

a function of the tax rate?)

(b) Is the relationship likely linear? (Hint: how much revenue would be

collected at tax rates of zero or one hundred percent?)

(c) If not, is a linear regression nevertheless likely to produce a good

approximation to the true relationship?

2. (Graphical regression diagnostic: scatterplot of ei vs. xi)

This plot helps us assess whether the relationship between y and x is

truly linear, as assumed in linear regression analysis. If not, the linear

regression residuals will depend on x. In the case where there is only
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one right-hand side variable, as above, we can simply make a scatterplot

of ei vs. xi. When there is more than one right-hand side variable, we

can make separate plots for each, although the procedure loses some of

its simplicity and transparency.

3. (Difficulties with non-linear optimization)

Non-linear optimization can be a tricky business, fraught with problems.

Some problems are generic. It’s relatively easy to find a local optimum,

for example, but much harder to be confident that the local optimum

is global. Simple checks such as trying a variety of startup values and

checking the optimum to which convergence occurs are used routinely,

but the problem nevertheless remains. Other problems may be software

specific. For example, some software may use highly accurate analytic

derivatives whereas other software uses approximate numerical deriva-

tives. Even the same software package may change algorithms or details

of implementation across versions, leading to different results.

4. (Conditional mean functions)

Consider the regression model,

yi = β1 + β2xi + β3x
2
i + β4zi + εi

under the full ideal conditions. Find the mean of yi conditional upon

xi = x∗i and zi = z∗i . Is the conditional mean linear in (x∗i ? z∗i )?

5. (OLS vs. NLS)

Consider the following three regression models:

yi = β1 + β2xi + εi

yi = β1e
β2xiεi

yi = β1 + eβ2xi + εi.
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a. For each model, determine whether OLS may be used for estimation

(perhaps after transforming the data), or whether NLS is required.

b. For those models for which OLS is feasible, do you expect NLS and

OLS estimation results to agree precisely? Why or why not?

c. For those models for which NLS is “required,” show how to avoid it

using series expansions.

6. (What is linear regression really estimating?)

It is important to note the distinction between a conditional mean and

a linear projection. The conditional mean is not necessarily a lin-

ear function of the conditioning variable(s). The linear projection is of

course a linear function of the conditioning variable(s), by construction.

Linear projections are best viewed as approximations to generally non-

linear conditional mean functions. That is, we can view an empirical

linear regression as estimating the population linear projection, which

in turn is an approximation to the population conditional expectation.

Sometimes the linear projection may be an adequate approximation, and

sometimes not.

7. Putting lots of things together.

Consider the cross-sectional (log) wage equation that we studied exten-

sively, which appears again in Figure 7.5 for your reference.

(a) The model was estimated using ordinary least squares (OLS). What

loss function is optimized in calculating the OLS estimate? (Give

a formula and a graph.) What is the formula (if any) for the OLS

estimator?

(b) Consider instead estimating the same model numerically (i.e., by

NLS) rather than analytically (i.e., by OLS). What loss function is
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optimized in calculating the NLS estimate? (Give a formula and a

graph.) What is the formula (if any) for the NLS estimator?

(c) Does the estimated equation indicate a statistically significant effect

of union status on log wage? An economically important effect?

What is the precise interpretation of the estimated coefficient on

UNION? How would the interpretation change if the wage were not

logged?

(d) Precisely what hypothesis does the F-statistic test? What are the

restricted and unrestricted sums of squared residuals to which it

is related, and what are the two OLS regressions to which they

correspond?

(e) Consider an additional regressor, AGE, where AGE = 6 + EDUC

+ EXPER. (The idea is that 6 years of early childhood, followed by

EDUC years of education, followed by EXPER years of work expe-

rience should, under certain assumptions, sum to a person’s age.)

Discuss the likely effects, if any, of adding AGE to the regression.

(f) The log wage may of course not be linear in EDUC and EXPER.

How would you assess the possibility of quadratic nonlinear effects

using t-tests? An F-test? The Schwarz criterion (SIC)? R2?

(g) Suppose you find that the log wage relationship is indeed non-linear

but still very simple, with only EXPER2 entering in addition to the

variables in Figure 7.5. What is ∂ E(LWAGE |X)
∂ EXPER in the expanded model?

How does it compare to ∂ E(LWAGE |X)
∂ EXPER in the original model of Figure

7.5? What are the economic interpretations of the two derivatives?

(X refers to the full set of included right-hand-side variables in a

regression.)

(h) Return to the original model of Figure 7.5. How would you assess

the overall adequacy of the fitted model using the standard error of
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Figure 7.5: Regression Output

the regression? The model residuals? Which is likely to be more

useful/informative?

(i) Consider estimating the model not by OLS or NLS, but rather by

quantile regression (QR). What loss function is optimized in calcu-

lating the QR estimate? (Give a formula and a graph.) What is the

formula (if any) for the QR estimator? How is the least absolute

deviations (LAD) estimator related to the QR estimator? Under

the IC, are the OLS and LAD estimates likely very close? Why or

why not?

(j) Discuss whether and how you would incorporate trend and seasonal-

ity by using a linear time trend variable and a set of seasonal dummy

variables.
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Chapter 8

Heteroskedasticity

We continue exploring issues associated with possible failure of the ideal con-

ditions. This chapter’s issue is “Do we really believe that disturbance vari-

ances are constant?” As always, consider: ε ∼ N(0,Ω). Heteroskedasticity

corresponds to Ω diagonal but Ω 6= σ2I

Ω =


σ2

1 0 . . . 0

0 σ2
2 . . . 0

...
... . . . ...

0 0 . . . σ2
N


Heteroskedasticity can arise for many reasons. A leading cause is that σ2

i

may depend on one or more of the xi’s. A classic example is an “Engel curve”,

a regression relating food expenditure to income. Wealthy people have much

more discretion in deciding how much of their income to spend on food, so

their disturbances should be more variable, as routinely found.

8.1 Consequences of Heteroskedasticity for Estimation,

Inference, and Prediction

As regards point estimation, OLS remains largely OK, insofar as parameter

estimates remain consistent and asymptotically normal. They are, however,
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rendered inefficient. But consistency is key. Inefficiency is typically inconse-

quential in large samples, as long as we have consistency.

As regards inference, however, heteroskedasticity wreaks significant havoc.

Standard errors are biased and inconsistent. Hence t statistics do not have the

t distribution in finite samples and do not even have the N(0, 1) distribution

asymptotically.

Finally, as regards prediction, results vary depending on whether we’re

talking about point or density prediction. Our earlier feasible point forecasts

constructed under homoskedasticity remain useful under heteroskedasticity.

Because parameter estimates remain consistent, we still have

̂E(yi | xi=x∗i )→p E(yi | xi=x∗i )

.

In contrast, our earlier feasible density forecasts do not remain useful,

because under heteroskedasticity it is no longer appropriate to base them on

“identical σ’s for different people”. Now we need to base them on “different

σ’s for different people”.

8.2 Detecting Heteroskedasticity

We will consider both graphical heteroskedasticity diagnostics and formal

heteroskedasticity tests. The two approaches are complements, not substi-

tutes.

8.2.1 Graphical Diagnostics

The first thing we can do is graph e2
i against xi, for various regressors, looking

for relationships. This makes sense because e2
i is effectively a proxy for σ2

i .

Recall, for example, our “Final” wage regression, shown in Figure 8.1.
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Figure 8.1: Final Wage Regression

In Figure 8.2 we graph the squared residuals agains EDUC. There is appar-

ently a positive relationship, although it is noisy. This makes sense, because

very low education almost always leads to very low wage, whereas high ed-

ucation can produce a larger variety of wages (e.g., both neurosurgeons and

college professors are highly educated, but neurosurgeons typically earn much

more).

8.2.2 Formal Tests

The Breusch-Pagan-Godfrey Test (BPG)

An important limitation of the graphical method for heteroskedasticity de-

tection is that it is purely pairwise (we can only examine one x at a time),

whereas the disturbance variance might actually depend on more than one

x. Formal tests let us blend the information from multiple x’s, and they also

let us assess statistical significance.

The BPG test proceeds as follows:

1. Estimate the OLS regression, and obtain the squared residuals



142 CHAPTER 8. HETEROSKEDASTICITY

Figure 8.2: Squared Residuals vs. Years of Education

2. Regress the squared residuals on all regressors

3. To test the null hypothesis of no relationship, examine N ·R2 from this

regression. It can be shown that in large samples N · R2 ∼ χ2
K−1 under

the null of homoskedasticity, where K is the number of regressors in the

test regression.

We show the BPG test results in Figure 8.3.

White’s Test

White’s test is a simple extension of BPG, replacing the linear BPG test

regression with a more flexible (quadratic) regression:

1. Estimate the OLS regression, and obtain the squared residuals

2. Regress the squared residuals on all regressors, squared regressors, and

pairwise regressor cross products
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Figure 8.3: BPG Test Regression and Results

3. To test the null hypothesis of no relationship, examine N ·R2 from this

regression. It can be shown that in large samples N · R2 ∼ χ2
K−1 under

the null of homoskedasticity, where K is the number of regressors in the

test regression.

We show the White test results in Figure 8.4.

8.3 Dealing with Heteroskedasticity

We will consider both adjusting standard errors and adjusting density fore-

casts.

8.3.1 Adjusting Standard Errors

Using advanced methods, one can obtain consistent standard errors, even

when heteroskedasticity is present. Mechanically, it’s just a simple regression

option. e.g., in EViews, instead of “ls y,c,x”, use “ls(cov=white) y,c,x”

Even if you’re only interested in prediction, you still might want to use

robust standard errors, in order to do credible inference regarding the con-
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Figure 8.4: White Test Regression and Results

tributions of the various x variables to the point prediction.

In Figure 8.5 we show the final wage regression with robust standard errors.

Although the exact values of the standard errors change, it happens in this

case that significance of all coefficients is preserved.

8.3.2 Adjusting Density Forecasts

Recall operational density forecast under the ideal conditions (which include,

among other things, Gaussian homoskedastic disturbances):

yi | xi=x∗ ∼ N(x∗′β̂LS, s
2).

Now, under heterskedasticity (but maintaining normality), we have the nat-

ural extension,

yi | xi=x∗ ∼ N(x∗′β̂LS, σ̂
2
∗),

where σ̂2
∗ is the fitted value from the BPG or White test regression evaluated

at x∗.
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Figure 8.5: Wage Regression with Heteroskedasticity-Robust Standard Errors

8.4 Exercises, Problems and Complements

1. (Vocabulary)

All these have the same meaning:

(a) “Heteroskedasticity-robust standard errors”

(b) “heteroskedasticity-consistent standard errors”

(c) “Robust standard errors”

(d) “White standard errors”

(e) “White-washed” standard errors”

2. (Generalized Least Squares (GLS))

For arbitrary Ω matrix, it can be shown that full estimation efficiency re-

quires “generalized least squares” (GLS) estimation. The GLS estimator

is:

β̂GLS = (X ′Ω−1X)−1X ′Ω−1y.

Under the ideal conditions (but allowing for Ω 6= σ2I) it is consistent,
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MVUE, and normally distributed with covariance matrix (X ′Ω−1X)−1:

β̂GLS ∼ N
(
β, (X ′Ω−1X)−1

)
.

(a) Show that when Ω = σ2I the GLS estimator is just the standard

OLS estimator:

β̂GLS = β̂OLS = (X ′X)−1X ′y.

(b) Show that when Ω = σ2I the covariance matrix of the GLS estimator

is just that of the standard OLS estimator:

cov(β̂GLS) = cov(β̂OLS) = σ2(X ′X)−1.

3. (GLS for Heteroskedasticity)

(a) Show that GLS for heteroskedasticity amounts to OLS on data

weighted by the inverse disturbance standard deviation (1/σi), of-

ten called “weighted least squares” (WLS). This is “infeasible” WLS

since in general we don’t know the σi’s.

(b) To see why WLS works, consider the heteroskedastic DGP:

yi = x′iβ + εi

εi ∼ idN(0, σ2
i ).

Now weight the data (yi, xi) by 1/σi:

yi
σi

=
x′iβ

σi
+
εi
σi
.

The transformed (but equivalent) DGP is then:

y∗i = x∗i
′β + ε∗i
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ε∗i ∼ iidN(0, 1).

The weighted data satisfies the IC and so OLS is MVUE! So GLS is

just OLS on appropriately transformed data. In the heteroskedastic-

ity case the appropriate transfomation is weighting. We downweight

high-variance observations, as is totally natural.

4. (Details of Weighted Least Squares)

Note that weighting the data by 1/σi is the same as

weighting the residuals by 1/σ2
i :

min
β

N∑
i=1

(
yi − x′iβ

σi

)2

= min
β

N∑
i=1

1

σ2
i

(yi − x′iβ)
2
.

5. (Feasible Weighted Least Squares)

To make WLS feasible, we need to replace the unknown σ2
i ’s with esti-

mates.

• Good idea: Use weights wi = 1/ê2
i , where ê2

i are from the BGP test

regression

• Good idea: Use wi = 1/ê2
i , where ê2

i are from the White test regres-

sion.

• Bad idea: Use wi = 1/e2
i is not a good idea. e2

i is too noisy; we’d like

to use not e2
i but rather E(e2

i |xi). So we use an estimate of E(e2
i |xi),

namely ê2
i from e2 → X

In Figure 8.6 we show regression results with weighting based on the

results from the White test regression.

6. (Robustness iteration)

Sometimes, after an OLS regression, people do a second-stage WLS with

weights 1/|ei|, or something similar. This is not a heteroskedasticity
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Figure 8.6: Regression Weighted by Fit From White Test Regression

correction, but rather a strategy to downweight outliers. But notice

that the two are closely related.

7. (Spatial Correlation)

So far we have studied a heteroskedastic situation (εi independent across

i but not identically distributed across t). But do we really believe that

the disturbances are uncorrelated over space (i)? Spatial correlation in

cross sections is another type of violation of the IC. (This time it’s “non-

zero disturbance covariances” as opposed to “non-constant disturbance

variances”.) As always, consider ε ∼ N(0,Ω). Spatial correlation (with

possible heteroskedasticity as well) corresponds to:

Ω =


σ2

1 σ12 . . . σ1N

σ21 σ2
2 . . . σ2N

...
... . . . ...

σN1 σN2 . . . σ2
N

 .

8. (“Clustering” in spatial correlation)
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Ω could be non-diagonal in cross sections but still sparse in certain ways.

A key case is block-diagonal Ω, in which there is nonzero covariance

within certain sets of disturbances, but not across sets (“clustering”).
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Chapter 9

Limited Dependent Variables

In this chapter we study so-called “discrete-response models”, or “qualitative-

response models”, or “limited dependent variable models”, or “classification

models”. Terms like “limited dependent variables,” refer to variables that

can take only a limited number of values. The classic case is a 0-1 “dummy

variable.” The twist is that the dummy variable appears on the left side of a

regression, as opposed to the already-discussed use of dummies on the right.

Dummy right-hand side variables (RHS) variables create no problem, and

you already understand them. The new issue is Dummy left-hand-side vari-

ables (LHS), which do raise special issues.

9.1 Binary Response

Note that the basic regression model,

yi = x′iβ + εi

immediately implies that

E(yi|xi) = x′iβ.

Here we consider left-hand-side variables yi = Ii(z), where the dummy vari-

able (“indicator variable”) Ii(z) indicates whether event z occurs; that

151



152 CHAPTER 9. LIMITED DEPENDENT VARIABLES

is,

Ii(z) =

{
1 if event z occurs

0 otherwise.

In that case we have

E(Ii(z)|xi) = x′iβ.

A key insight, however, is that

E(Ii(z)|xi) = P (Ii(z) = 1|xi),

so the model is effectively

P (Ii(z) = 1|xi) = x′iβ. (9.1)

That is, when the LHS variable is a 0-1 indicator variable, the model is effec-

tively a model relating a conditional probability to the conditioning variables.

There are numerous “events” that fit the 0-1 paradigm. Examples pur-

chasing behavior does a certain consumer buy or not buy a certain product?,

hiring behavior (does a certain firm hire or not hire a certain owrker?), and

loan defaults (does a certain borrower default or not default on a loan?), and

recessions (will a certain country have or not have a recession begin during

the next year?).

But how should we “fit a line” when the LHS variable is binary? The

linear probability model does it by brute-force OLS regression Ii(z)→ xi.

There are several econometric problems associated with such regressions, but

the one of particular relevance is simply that the linear probability model

fails to constrain the fitted values of E(Ii(z)|xi) = P (Ii(z) = 1|xi) to lie in

the unit interval, in which probabilities must of course lie. We now consider

models that impose that constraint by running x′iβ through a “squashing

function,” F (·), that keeps P (Ii(z) = 1|xi) in the unit interval. That is, we
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move to models with

P (Ii(z) = 1|xi) = F (x′iβ),

where F (·) is monotone increasing, with limw→−∞F (w) = 0 and limw→∞F (w) =

1. Many squashing functions can be entertained, and many have been enter-

tained.

9.2 The Logit Model

The most popular and useful squashing function for our purposes is the logis-

tic function, which takes us to the so-called “logit” model. There are several

varieties and issues, to which we now turn.

9.2.1 Logit

In the logit model, the squashing function F (·) is the logistic function,

F (w) =
ew

1 + ew
=

1

1 + e−w
,

so

P (Ii(z) = 1|xi) =
ex
′
iβ

1 + ex
′
iβ
.

At one level, there’s little more to say; it really is that simple. The likelihood

function can be derived, and the model can be immediately estimated by

numerical maximization of the likelihood function.

But an alternative latent variable formulation yields useful insights. In

particular, consider a latent variable, y∗t , where

y∗i = x′iβ + εi

εi ∼ logistic(0, 1),
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and let Ii(z) be Ii(y
∗
i > 0), or equivalently, Ii(ε > −x′iβ). Interestingly, this

is the logit model. To see this, note that

E(Ii(y
∗
i > 0)|xi) = P ((y∗i > 0)|xi) = P (εi > −x′iβ)

= P (εi < x′iβ) (by symmetry of the logistic density of ε)

=
ex
′
iβ

1 + ex
′
iβ
,

where the last equality holds because the logistic density has cdf is ew/(1+ew).

This way of thinking about the logit DGP – a continuously-evolving latent

variable y∗i with an observed indicator that turns “on” when y∗i > 0 – is

very useful. For example, it helps us to think about consumer choice as a

function of continuous underlying utility, business cycle regime as a function

of continuous underlying macroeconomic conditions, etc.

The latent-variable approach also leads to natural generalizations like or-

dered logit, to which we now turn.

9.2.2 Ordered Logit

Here we still imagine a continuously-evolving underlying latent variable, but

we have a more-refined indicator, taking not just two values, but several

(ordered) values. Examples include financial analyst stocks ratings of “buy,”

“hold” and “sell”, and surveys that ask about degree of belief in three or

more categories ranging from “strongly disagree” through “strongly agree.”

Suppose that there are N ordered outcomes. As before, we have a

continuously-evolving latent variable,

y∗i = x′iβ + εi

εi ∼ logistic(0, 1).
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But now we have an indicator with a finer gradation:

Ii(y
∗
i ) =



0 if y∗i < c1

1 if c1 < y∗i < c2

2 if c2 < y∗i < c3
...

N if cN < y∗i .

We can estimate this ordered logit model by maximum likelihood, just as

with the standard logit model. Under some assumptions, all interpretation

remains the same.

9.2.3 Complications

In logit regression, both the marginal effects and the R2 are hard to determine

and/or interpret directly.

Marginal Effects

Logit marginal effects ∂E(y|x)/∂xi are hard to determine directly; in par-

ticular, they are not simply given by the βi’s. Instead we have

∂E(y|x)

∂xi
= f(x′β)βi,

where f(x) = dF (x)/dx is the density corresponding the cdf f .1 So the

marginal effect is not simply βi; instead it is βi weighted by f(x′β), which

depends on all β’s and x’s. However, signs of β’s are the signs of the effects,

because f must be positive. In addition, ratios of β’s do give ratios of effects,

because the f ’s cancel.

R2

1In the leading logit case, f(x) would be the logistic density.
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Recall that traditional R2 for continuous LHS variables is

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳi)2

.

It’s not clear how to define or interpret R2 when the LHS variable is 0-1, but

several variants have been proposed. The two most important are Effron’s

and McFadden’s.

Effron’s R2 is

R2 = 1−
∑

(yi − P̂ (Ii(z) = 1|xi))2∑
(yi − ȳi)2

.

Effron’s R2 attempts to maintain the R2 interpretation as variation explained

and as correlation between actual and fitted values.

McFadden’s R2 is

R2 = 1− lnL̂1

lnL̂0

,

where lnL̂0 is the maximized restricted log likelihood (only an intercept in-

cluded) and lnL̂1 is the maximized unrestricted log likelihood. McFadden’s

R2 attempts to maintain theR2 interpretation as improvement from restricted

to unrestricted model.

9.3 Classification and “0-1 Forecasting”

Classification maps probabilities into 0-1 forecasts. The so-called “Bayes

classifier” uses a cutoff (“decision boundary”) of .5, which is hardly surprising.

That is, we predict 1 when logit(x′β) > 1/2. Note, however, that that’s the

same as predicting 1 when x′β > 0. If there are 2 RHS variables (potentially

plus an intercept), then the condition x′β > 0 defines a line in R2. Points on

one side will be classified as 0, and points on the other side will be classified

as 1. That line is the decision boundary.

We can also have non-linear decision boundaries. Suppose for example
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that that x vector contains not only x1 and x2, but also x2
1 and x2

2. Now the

condition x′β > 0 defines a circle in R2. Points inside will be classified as 0,

and points outside will be classified as 1. The circle is the decision boundary.

9.4 Exercises, Problems and Complements

1. (Logit and Ordered-Logit Situations)

In the chapter we gave several examples where logit or ordered-logit

modeling would be appropriate.

a. Give three additional examples where logit modeling would be appro-

priate. Why?

b. Give three additional examples where ordered-logit modeling would

be appropriate. Why?

2. (The Logistic Squashing Function)

We used the logistic function throughout this chapter. In particular, it

is the foundation on which the logit model is built.

a. What is the logistic function? Write it down precisely.

b. From where does the logistic function come?

c. Verify that the logistic function is a legitimate squashing function.

That is, verify that it is monotone increasing, with limw→∞F (w) = 1

and and limw→−∞F (w) = 0.

3. (The Logit Likelihood Function)

Consider the logit model (9.1). It is more formally called a binomial

logit model, in reference to its two outcome categories.

a. Derive the likelihood function. (Hint: Consider the binomial struc-

ture.)
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b. Must the likelihood be maximized numerically, or is an analytic for-

mula available?

4. (Logit as a Linear Model for Log Odds)

The odds O(Ii(z) = 1|xi) of an event z are just a simple transformation

of its probability

O(Ii(z) = 1|xi) =
P (Ii(z) = 1|xi)

1− P (Ii(z) = 1|xi)
.

Consider a linear model for log odds

ln

(
P (Ii(z) = 1|xi)

1− P (Ii(z) = 1|xi)

)
= x′iβ.

Solving the log odds for P (Ii(z) = 1|xi) yields the logit model,

P (Ii(z) = 1|xi) =
1

1 + e−x
′
iβ

=
ex
′
iβ

1 + ex
′
iβ
.

Hence the logit model is simply a linear regression model for log odds.

A full statement of the model is

yi ∼ Bern(pi)

ln

(
pi

1− pi

)
= x′iβ.

5. (Probit and GLM Squashing Functions)

Other squashing functions are sometimes used for binary-response re-

gression.

a. In the probit model, we simply use a different squashing function

to keep probabilities in the unit interval. F (·) is the standard normal
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cumulative density function (cdf), so the model is

P (Ii(z) = 1|xi) = Φ(x′iβ),

where Φ(x) = P (z ≤ x) for N(0, 1) random variable z.

b. More exotic, but equally simple, squashing functions have also been

used. Almost all (including those used with logit and probit) are

special cases of those allowed in the generalized linear model

(GLM), a flexible regression framework with uses far beyond just

binary-response regression. In the GLM,

E(yi|xi) = G−1(x′iβ),

and very wide classes of “link functions” G can be entertained.

6. (Multinomial Models)

In contrast to the binomial logit model, we can also have more than

two categories (e.g., what transportation method will I choose to get to

work: Private transportation, public transportation, or walking?), and

use multinomial logit.

7. (Other Situations/Mechanisms Producing Limited Dependent Variables)

Situations involving censoring or counts also produce limited dependent

variables.

a. Data can be censored by definition (e.g. purchases can’t be negative).

For example, we might see only yi, where yi = y∗i if y∗i ≥ 0, and 0

otherwise, and where

y∗i = β0 + β1xi + εi.

This is the framework in which the Tobit model works.
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b. Data can be censored due to sample selection, for example if income

is forecast using a model fit only to high-income people.

c. “Counts” (e.g., points scored in hockey games) are automatically cen-

sored, as they must be in the natural numbers, 1, 2, 3...



Chapter 10

Causal Estimation

In this chapter we distinguish between the predictive modeling perspective

(which we have adopted so far) and what we will call the causal estimation

perspective. Both are tremendously important in econometrics. We will in-

vestigate the properties of OLS from each perspective. It turns out that

much hinges on the validity of IC2.1, which, as you recall from Chapter 3,

says that X and ε are independent, and which we have so far not discussed.1

Roughly, it turns out that from the predictive modeling perspective every-

thing remains fine asymptotically even if IC2.1 fails (which is why we have

not yet had reason to discuss it): β̂OLS is still consistent in an appropriate

sense and asymptotically normally distributed. But from the causal estima-

tion perspective disasters occur if IC2.1 fails: β̂OLS is not even consistent,

so that inference is potentially severely distorted even in arbitrarily large

samples.

Of course none of this makes sense yet, as we have yet introduced the

causal estimation perspective. We now do so.

1The independence assumption can be weakened somewhat, but we will not pursue that here.
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10.1 Predictive Modeling vs. Causal Estimation

Here we distinguish “predictive modeling” from “causal estimation”, or “non-

causal prediction” from “causal prediction”, or “conditional expectation es-

timation” from “partial derivative estimation”.

A major goal in econometrics, as we have emphasized thus far, is predicting

y. In the language of estimation, the question is “If a new person i arrives

with covariates xi, what is my minimum-MSE estimate of her yi?” So we

are estimating a conditional mean E(y|x). That is the domain of predictive

modeling.

Sometimes another goal in econometrics is predicting the effects of exoge-

nous “treatments” or “interventions” or “policies”. Phrased in the language

of estimation, the question is “If I intervene and give someone a certain

treatment ∂x, what is my minimum-MSE estimate of her ∂y?” So we are es-

timating the partial derivative ∂y/∂x, which in general is very different from

estimating a conditional expectation E(y|x). That is the domain of causal

estimation.

Related, it is important to note the distinction between what we will call

“consistency for a predictive effect” and “consistency for a treatment effect.”

In large samples, under very general conditions, the relationship estimated

by running y → c, x is useful for predicting y given an observation on x

(“consistency for a predictive effect”). But it may or may not be useful for

determining the effect on y of an exogenous shift in x (“consistency for a

treatment effect”). The two types of consistency coincide under the IC, but

they diverge when IC2.1 fails.
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10.1.1 Predictive Modeling and P-Consistency

Consider a standard linear regression setting with K regressors. Assuming

quadratic loss, the predictive risk of a parameter configuration β is

R(β) = E(y − x′β)2.

Let B be a set of β’s and let β∗ ∈ B minimize R(β). We will say that β̂ is

consistent for a predictive effect (“P-consistent”) if plimR(β̂) = R(β∗); that

is, if (
R(β̂)−R(β∗)

)
→p 0.

Hence in large samples β̂ provides a good way to predict y for any hypothet-

ical x: simply use x′β̂. OLS is effectively always P-consistent; we require

almost no conditions of any kind! P-consistency is effectively induced by the

minimization problem that defines OLS, as the minimum-MSE predictor is

the conditional mean.

10.1.2 Causal Estimation and T-Consistency

Consider a standard linear regression setting with K regressors. We will say

that an estimator β̂ is consistent for a treatment effect (“T-consistent”) if

plimβ̂k = ∂E(y|x)/∂xk, ∀k = 1, ..., K; that is, if(
β̂k −

∂E(y|x)

∂xk

)
→p 0, ∀k = 1, ..., K.

Hence in large samples β̂k provides a good estimate of the effect on y of a

one-unit “treatment” or “intervention” performed on xk. OLS is T-consistent

under the IC including IC2.1. OLS is generally not T-consistent without

IC2.1.
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10.1.3 Correlation vs. Causality, and P-Consistency vs. T-Consistency

The distinction between P-consistency and T-consistency is intimately re-

lated to the distinction between correlation and causality. As is well known,

correlation does not imply causality! As long as x and y are correlated, we

can exploit the correlation (as captured in β̂LS from the regression y → x)

very generally to predict y given knowledge of x. That is, there will be a

nonzero “predictive effect” of x knowledge on y. But nonzero correlation

doesn’t necessarily tell us anything about the causal “treatment effect” of x

treatments on y. That requires the ideal conditions, and in particular IC2.1.

Even if there is a non-zero predictive effect of x on y (as captured by β̂LS),

there may or may not be a nonzero treatment effect of x on y, and even if

there is a nonzero treatment effect it will generally not equal the predictive

effect.

So, assembling things, we have that:

1. P-consistency is consistency for a non-causal predictive effect. It is al-

most trivially easy to obtain, by virtue of the objective function that

OLS optimizes.

2. T-consistency is consistency for a causal predictive effect. It is quite

difficult to obtain reliably, because it requires IC2.1, which may fail for

a variety of reasons.

Thus far we have sketched why P-consistency holds very generally, whereas

we have simply asserted that T-consistency is much more difficult to obtain

and relies critically on IC2.1. We now sketch why T-consistency is much more

difficult to obtain and relies critically on IC2.1.

Consider the following example. Suppose that y and z are in fact causally

unrelated, so that the true treatment effect of z on y is 0 by construction.

But suppose that z is correlated with an unobserved variable x that does

cause y. Then y and z will be correlated due to their joint dependence on
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x, and that correlation can be used to predict y given z, despite the fact

that, by construction, z treatments (interventions) will have no effect on

y. Clearly this sort of situation – omission of a relevant variable correlated

with an included variable – may happen commonly, and it violates IC2.1.

In the next section we sketch several situations that produce violations of

IC2.1, beginning with an elaboration on the above-sketched omitted-variables

problem.

10.2 Reasons for Failure of IC2.1

IC2.1 can fail for several reasons; we now sketch some of the most important.

10.2.1 Omitted Variables (“Confounders”)

Omission of relevant variables is a clear violation of the ideal conditions,

insofar as the IC explicitly state that the fitted model matches the DGP. But

there is a deeper way to see why and when omitted variables cause trouble,

and when they don’t, and it involves IC2.1.

Suppose that the DGP is

y = βx+ ε,

with all IC satisfied, but that we incorrectly regress y → z, where corr(x, z) >

0. Clearly we’ll estimate a positive causal effect of z on y, in large as well

as small samples, even though it’s completely spurious and would vanish if x

had been included in the regression. The positive bias arises because in our

example corr(x, z) > 0; in general the sign of the bias could go either way,

depending on the sign of the correlation. We speak of “omitted variable

bias”.

In this example the problem is that condition IC2.1 is violated in the

regression y → z, because the disturbance is correlated with the regressor.
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β̂OLS is P-consistent, as always. But it’s not T-consistent, because the omit-

ted variable x is lurking in the disturbance of the fitted regression y → z,

which makes the disturbance correlated with the regressor (i.e., IC2.1 fails

in the fitted regression). The fitted OLS regression coefficient on z will be

non-zero and may be very large, even asymptotically, despite that fact that

the true causal impact of z on y is zero by construction. The OLS estimated

coefficient is reliable for predicting y given z, but not for assessing the effects

on y of treatments in z.

10.2.2 Misspecified Functional Form

Note that, from a series expansion perspective, misspecified functional form

corresponds to a form of omitted variables. For example, suppose that the

true y = f(x) + ε relationship is quadratic, but you use a linear specification.

Then x2 is an omitted variable, correlated with x, resulting in an error term

in the fitted regression that is correlated with the included regressor.

10.2.3 Measurement Error

Suppose as above that the DGP is

y = βx+ ε,

with all IC satisfied, but that we can’t measure x accurately. Instead we

measure

xm = x+ v.

Think of v as an iid measurement error with variance σ2
v. (Assume that it is

also independent of ε.) Sometimes xm is called a “proxy variable”.

Clearly, as σ2
v gets larger relative to σ2

x, the fitted regression y → xm

is progressively less able to identify the true relationship, as the measured

regressor is polluted by progressively more noise. In the limit as σ2
v / σ2

x →∞,
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it is impossible, and β̂OLS = 0. In any event, β̂OLS is biased toward zero,

in small as well as large samples. We speak of the “errors in variables

problem”, or measurement-error bias.

So far we have motivated measurement-error bias intuitively. Formally, it

arises from violation of IC2.1. To see this, note that we have

y = βx+ ε

= β(xm − v) + ε

= βxm + (ε− v)

= βxm + ν.

In the fitted regression y → xm, the disturbance ν is clearly negatively cor-

related with the included regressor xm.

In more complicated cases involving multiple regression with some vari-

ables measured with error, some measured without error, possibly correlated

measurement errors, etc., things quickly get very complicated. Bias still ex-

ists, but it is difficult to ascertain its direction.

10.2.4 Simultaneity

Suppose that y and x are jointly determined, as for example in simultaneous

determination of quantity (Q) and price (P ) in market equilibrium. Then we

may write

Q = βP + ε,

but note that the ε shocks affect not only Q but also P . (Any shock to Q

is also a shock to P , since Q and P are determined jointly by supply and

demand!) That is, ε is correlated with P , violating IC2.1. So if you want

to estimate a demand curve (or a supply curve), simply running a mongrel

regression of Q on P will produce erroneous results. To estimate a demand
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curve we need exogenous supply shifters, and to estimate a supply curve we

need exogenous demand shifters.

10.3 Confronting Failures of IC2.1

10.3.1 Controling for Omitted Variables

The remedy for omitted relevant variables is simple in principle: start includ-

ing them!2 Let’s continue with our earlier example. The DGP is

y = βx+ ε,

with all IC satisfied, but we incorrectly regress y → z, where corr(x, z) > 0.

We saw that we estimate a positive causal effect of z on y, in large as well

as small samples, even though it’s completely spurious, due to the failure of

IC2.1 in the fitted model. Now consider instead controlling for x as well. In

the OLS regression y → x, z, all IC are satisfied, so z will get a zero coefficient

asymptotically, but x will get a β coefficient, which will be accurate for the

predictive effect of x on y (of course – OLS is always consistent for predictive

effects) and the treatment effect of x on y. (Remember, the predictive and

treatment effects coincide under the IC.)

Of course the recipe “start including omitted variables” is easier said than

done. We simply may never know about various omitted variables, or we

may suspect them but be unable to measure them. In a wage equation, for

example, in addition to the usual regressors like education and experience,

we might want to include “ability” – but how? In any event it’s important

to use all devices available, from simple introspection to formal theory, in an

attempt to assemble an adequate set of controls.

2In the lingo, the problem is that we failed to “control” for, or include, the omitted variable.
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10.3.2 Instrumental Variables

Consider the simple regression

y = βx+ ε.

Following standard usage, let us call a regressor x that satisfies IC2.1 “ex-

ogenous” (i.e., x is uncorrelated with ε), and a regressor x that fails IC2.1

“endogenous”.

If x is endogenous it means that IC2.1 fails, so we need to do something

about it. One solution is to find an acceptable “instrument” for x. An instru-

ment inst is a new regressor that is both exogenous (uncorrelated with ε) and

“strong” or “relevant” (highly-correlated with x). IV estimation proceeds as

follows: (0) Find an exogenous and relevant inst, (1) In a first-stage regres-

sion run x→ inst and get the fitted values x̂(inst), and (2) in a second-stage

regression run y → x̂(inst). So in the second-stage regression we replace

the endogenous x with our best linear approximation to x based on inst,

namely x̂(inst). This second-stage regression does not violate IC2.1 – inst is

exogenous so x̂(inst) must be as well.

In closing this section, we note that just as the prescription “start including

omitted variables” for a specific violation of IC2.1 (omitted variables) may

at first appear vapid, so too might the general prescription for violations of

IC2.1, “find a good instrument”. But plausible, if not unambiguously “good”,

instruments can often be found. Economists generally rely on a blend of

introspection and formal economic theory. Economic theory requires many

assumptions, but if the assumptions are plausible, then theory can be used

to suggest plausible instruments.
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10.3.3 Randomized Controlled Trials (RCT’s)

Randomized controlled trials (RCT’s), or randomized experiments, are the

gold standard in terms of assessing causal effects. The basic idea is to ran-

domly secect some people into a treatment group, and some into a non-

treatment group, and to estimate the mean difference (the “average treatment

effect.”)

In a development economics context, for example, you might be interested

in whether adoption of a new fertilizer enhances crop yield. You can’t just

introduce it, see who adopts and who doesn’t, and then regress yield on an

adoption choice dummy,

yield→ c, choice, (10.1)

because those farms that chose to use the new fertilizer may have done so

because their characteristics made them particularly likely to benefit from it.

Instead you’d need an instrument for adoption.

An RCT effectively creates an instrument for choice in regression (10.1),

by randomizing. You randomly select some farms for adoption (treatment)

and some not (control), and you inspect the difference between yields for the

two groups. More formally, for the firms in the experiment you could run

yield→ c, treatment. (10.2)

The OLS estimate of c is the mean yield for the non-adoption (control) group,

and the OLS estimate of the coefficient on the treatment dummy is the mean

enhancement from adoption (treatment). You can test its significance with

the usual t test. The randomization guarantees that the regressor in (10.2)

is exogenous, so that IC2.1 is satisfied.

The key insight bears repeating: RCT’s, if successfully implemented, guar-

antee that IC2.1 is satisfied.

But of course there’s no free lunch, and there are various issues and po-
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tential problems with “successful implementation of an RCT” in all but the

simplest cases (like the example above), just as there are many issues and

potential problems with “finding a strong and exogenous instrument”.

10.3.4 Regression Discontinuity Designs (RDD’s)

RCT’s can be expensive and wasteful when estimating the efficacy of a treat-

ment, as many people who don’t need treatment will be randomly assigned

treatment anyway. Hence alternative experimental designs are often enter-

tained. A leading example is the “regression discontinuity design” (RDD).

To understand the RDD, consider a famous scholarship example. You want

to know whether receipt of an academic scholarship causes enhanced aca-

demic performance among top academic performers. You can’t just regress

academic performance on a scholarship receipt dummy, because recipients

are likely to be stong academic performers even without the scholarship.

The question is whether scholarship receipt causes enhanced performance for

already-strong performers.

You could do an RCT, but in an RCT approach you’re going to give lots

of academic scholarships to lots of randomly-selected people, many of whom

are not strong performers. That’s wasteful.

An RDD design is an attractive alternative. You give scholarships only to

those who score above some threshold in the scholarship exam, and compare

the performances of students who scored just above and below the threshold.

In the RDD you don’t give any scholarships to weak performers, so it’s not

wasteful.

Notice how the RDD effectively attempts to approximate an RCT. People

just above and below the scholarship threshold are basically the same in terms

of academic talent – the only difference is that one group gets the scholarship

and one doesn’t. The RCT does the controlled experiment directly; it’s

statistically efficient but can be wasteful. The RDD does the controlled
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experiment indirectly; it’s statistically less efficient but also less wasteful.

10.3.5 Propensity-Score Matching

In the scholarship exam example, you could do an RCT, but it’s not attractive

for certain reasons. Sometimes it’s even worse – an RCT is simply infeasible.

Consider, for example, estimating the causal effect of college education on

subsequent earnings. As usual, we don’t just want to compare earnings of

college grads and non college grads (regress earnings on a college dummy).

College grads may earn more for many reasons other than college – perhaps

higher intelligence, more supportive family, etc. We need to control for such

things. An RCT works in principle but is infeasible in practice – you’d have

to randomly select a large group of high school students, randomly send

part to college, and prohibit the rest from attending college, and follow their

outcomes for decades.

The propensity score approach attempts to approximate an RCT by esti-

mating a logit or similar model for the probability of attending college. The

idea is to compare people with similar propensity scores, some of whom went

to college and some of whom didn’t, to control for everything other than

college vs. non-college.

Causal effect estimation based on propensity scores is one example of the

general idea of matching estimation.

10.3.6 Differences in Differences (“Diff in Diff”) and Panel Data

10.4 Internal and External Validity

10.4.1 Internal Validity and its Problems

Successfully-implemented RCT’s are generally “internally valid” for some-

thing ; that is, they produce credible estimates of treatment effect for the
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precise experiment performed and situation studied. But lots of things can

go wrong, casting doubt on internal validity. A short list, with many items

inter-related, includes:

– Is the randomization really credible?

– Are the sample sizes large enough?

– Are there placebo effects?

– Who knows what about who is treated and who is not? (Single-blind

RCT, double blind RCT, open RCT, ...)

– Are the behaviors of the groups evolving over time, perhaps due to

interaction with each other (“spillovers”)?

– Are people entering and/or leaving the study at different times? If so,

when and why?

– Might experimenters coddle the treatment group in various ways in at-

tempts to raise the likelihood of “significant” effects of their treatments?

– Might “negative” or “insignificant” results be discarded, and hence only

positive and significant results published? (The “file-drawer problem”.)

10.4.2 External Validity and its Problems

Even if an RCT study is internally valid, its results may not generalize to

other populations or situations. That is, even if internally valid, it may not

be externally valid.

Consider, for example, a study of the effects of fertilizer on crop yield done

for region X in India during a heat wave. Even if successfully randomized,

and hence internally valid, the estimated treatment effect is for the effects

of fertilizer on crop yield in region X during a heat wave. The results do

not necessarily generalize – and in this example surely do not generalize – to

times of “normal” weather, even in region X. And of course, for a variety of

reasons, they may not generalize to regions other than X, even in heat waves.

Hence, even if an RCT is internally valid, there is no guarantee that it
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is externally valid, or “extensible”. That is, there is no guarantee that its

results will hold in other cross sections and/or time periods.

10.5 Exercises, Problems and Complements

1. Omitted variable bias.

How might you assess whether a regression suffers from omitted variable

bias?

2. Included irrelevant variables.

Another violation of the full ideal conditions is inclusion of irrelevant

variables. Fortunately the effects are minor; some degrees of freedom

are wasted, but otherwise there’s no problem. How would you assess

whether an included variable in a regression is irrelevant? Whether a

set of included variables is irrelevant?

3. Panels vs. time series of cross sections.

The two are not the same. Why?

4. Panel models.

Consider the bivariate panel regression case. Extension to multiple panel

regression is immediate but notationally tedious. The data are (yit, xit)

(for “person” i at time t), i = 1, ..., N (cross section dimension), t =

1, ..., T (time series dimension).

In panels we have N × T “observations,” or data points, which is a lot

of data. In a pure cross section we have just i = 1, ..., N observations,

so we could never allow for different intercepts across all people (“fixed

individual effects”), because there are N people, and we have only N

observations, so we’d run out of degrees of freedom. Similarly, in a pure

time series we have just t = 1, ..., T observations, so we could never allow
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for different intercepts (say) across all time periods (“fixed time effects”),

because there are T time periods, and we have only T observations, so

we’d run out of degrees of freedom. But with panel data, allowing for

such individual and time effects is possible. There are N +T coefficients

to be estimated (N individual effects and T time effects), but we have

N × T observations!

5. Estimating panel models with fixed individual effects.

Let us consider a situation of unobserved heterogeneity corresponding

to fixed individual effects. We write

yit = αi + βxit + εit.

Fixed individual effects correspond to a different intercept (αi) for each

person. The estimation strategy, in principle, is to run

yit → I(i = 1), I(i = 2), I(i = 3), ..., I(i = N), xit.

Note that this regression is impossible in pure cross sections of size N ,

in which case one could at best consider a “middle ground” in which

individuals are grouped into ui < N units. In the panel case the regres-

sion can be run in principle, and it has the benefit of allowing one to

examine the individual effects (αi’s) and the common effect (β), but the

cost of potentially significant numerical/computational difficulty unless

N is small. In panels of typical size, the regression is infeasible and

rarely attempted.

6. “Differencing out” fixed effects.

How then do we really estimate the panel regression allowing for fixed

individual effects? We eliminate the αi, which are often viewed as un-

interesting “nuisance parameters”, by writing the model in deviations
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from means,

(yit − yi) = (αi − αi) + β (xit − xi) + (εit − εi) ,

where xi = 1
T

T∑
t=1

xit and εi = 1
T

T∑
t=1

εit. Because αi is constant, αi = αi,

so (αi − αi) = 0. Hence we simply run

(yit − yi)→ (xit − xi) ,

which delivers an estimate of the key common effect β, while allowing

for individual fixed effects, even if it does not deliver estimates of the

individual effects.

7. Tradeoffs between instrument exogeneity and relevance.

We want instruments that are both exogenous (uncorrelated with ε)

and “strong” or “relevant” (highly-correlated with x). There is a trade-

off. For example, an exogenous but weakly-relevant instrument might

nevertheless be valuable, as might a relevant but “slightly-endogenous”

instrument. The former instrument may produce an IV estimator that

is consistent but high-variance, whereas the latter may produce an esti-

mator that is (slightly) inconsistent but low-variance.
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Chapter 11

Trend and Seasonality

The time series that we want to model vary over time, and we often men-

tally attribute that variation to unobserved underlying components related

to trend and seasonality.

11.1 Linear Trend

Trend involves slow, long-run, evolution in the variables that we want to

model and forecast. In business, finance, and economics, for example, trend

is produced by slowly evolving preferences, technologies, institutions, and

demographics. We’ll focus here on models of deterministic trend, in which

the trend evolves in a perfectly predictable way. Deterministic trend models

are tremendously useful in practice.

Linear trend is a simple linear function of time,

Trendt = β1 + β2TIMEt.

The indicator variable TIME is constructed artificially and is called a “time

trend”, or “time indicator”, or “time dummy.” TIME equals 1 in the first

period of the sample, 2 in the second period, and so on. Thus, for a sample

of size T , TIME = (1, 2, 3, ..., T −1, T ). Put differently, TIMEt = t, so that

the TIME variable simply indicates the time. β1 is the intercept; it’s the

179
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Figure 11.1: Various Linear Trends

value of the trend at time t=0. β2 is the slope; it’s positive if the trend is

increasing and negative if the trend is decreasing. The larger the absolute

value of β1, the steeper the trend’s slope. In Figure 11.1, for example, we show

two linear trends, one increasing and one decreasing. The increasing trend

has an intercept of β1 = −50 and a slope of β2 = .8, whereas the decreasing

trend has an intercept of β1 = 10 and a gentler absolute slope of β2 = −.25.

In business, finance, and economics, linear trends are typically increasing,

corresponding to growth, but they don’t have to increase. In recent decades,

for example, male labor force participation rates have been falling, as have

the times between trades on stock exchanges. Morover, in some cases, such

as records (e.g., world records in the marathon), trends are decreasing by

definition.

Estimation of a linear trend model (for a series y, say) is easy. First we

need to create and store on the computer the variable TIME. Fortunately we

don’t have to type the TIME values (1, 2, 3, 4, ...) in by hand; in most good

software environments, a command exists to create the trend automatically.

Then we simply run the least squares regression y → c, T IME.
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11.2 Non-Linear Trend

Nonlinearity can be important in time series just as in cross sections, but

there is a special case of key importance in time series: nonlinear trend. Here

we introduce it.

11.2.1 Quadratic Trend

Sometimes trend appears non-linear, or curved, as for example when a vari-

able increases at an increasing or decreasing rate. Ultimately, we don’t require

that trends be linear, only that they be smooth.

We can allow for gentle curvature by including not only TIME, but also

TIME2,

Trendt = β1 + β2TIMEt + β3TIME2
t .

This is called quadratic trend, because the trend is a quadratic function of

TIME.1 Linear trend emerges as a special (and potentially restrictive) case

when β3 = 0.

A variety of different non-linear quadratic trend shapes are possible, de-

pending on the signs and sizes of the coefficients; we show several in Figure

11.2. In particular, if β2 > 0 and β3 > 0 as in the upper-left panel, the trend is

monotonically, but non-linearly, increasing, Conversely, if β2 < 0 and β3 < 0,

the trend is monotonically decreasing. If β2 < 0 and β3 > 0 the trend has a

U shape, and if β2 > 0 and β3 < 0 the trend has an inverted U shape. Keep

in mind that quadratic trends are used to provide local approximations; one

rarely has a “U-shaped” trend, for example. Instead, all of the data may lie

on one or the other side of the “U”.

Estimating quadratic trend models is no harder than estimating linear

trend models. We first create TIME and its square; call it TIME2, where

1Higher-order polynomial trends are sometimes entertained, but it’s important to use low-order poly-
nomials to maintain smoothness.
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Figure 11.2: Various Quadratic Trends

TIME2t = TIME2
t . Because TIME = (1, 2, ..., T ), TIME2 = (1, 4, ..., T 2).

Then we simply run the least squares regression y → c, T IME, TIME2.

Note in particular that although the quadratic is a non-linear function, it is

linear in the variables TIME and TIME2.

11.2.2 Exponential Trend

The insight that exponential growth is non-linear in levels but linear in log-

arithms takes us to the idea of exponential trend, or log-linear trend,

which is very common in business, finance and economics.2

Exponential trend is common because economic variables often display

roughly constant real growth rates (e.g., two percent per year). If trend is

2Throughout this book, logarithms are natural (base e) logarithms.
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Figure 11.3: Various Exponential Trends

characterized by constant growth at rate β2, then we can write

Trendt = β1e
β2TIMEt.

The trend is a non-linear (exponential) function of time in levels, but in

logarithms we have

ln(Trendt) = ln(β1) + β2TIMEt. (11.1)

Thus, ln(Trendt) is a linear function of time.

In Figure 11.3 we show the variety of exponential trend shapes that can

be obtained depending on the parameters. Depending on the signs and sizes

of the parameter values, exponential trend can achieve a variety of patterns,

increasing or decreasing at increasing or decreasing rates.

Although the exponential trend model is non-linear, we can estimate it by
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simple least squares regression, because it is linear in logs. We simply run the

least squares regression, ln y → c, T IME. Note that because the intercept

in equation (11.1) is not β1, but rather ln(β1), we need to exponentiate the

estimated intercept to get an estimate of β1. Similarly, the fitted values from

this regression are the fitted values of lny, so they must be exponentiated to

get the fitted values of y. This is necessary, for example, for appropriately

comparing fitted values or residuals (or statistics based on residuals, like AIC

and SIC) from estimated exponential trend models to those from other trend

models.

It’s important to note that, although the same sorts of qualitative trend

shapes can sometimes be achieved with quadratic and exponential trend,

there are subtle differences between them. The non-linear trends in some se-

ries are well approximated by quadratic trend, while the trends in other series

are better approximated by exponential trend. Ultimately it’s an empirical

matter as to which is best in any particular application.

11.2.3 Non-Linearity in Liquor Sales Trend

We already fit a non-linear (exponential) trend to liquor sales, when we fit a

linear trend to log liquor sales. But it still didn’t fit so well.

We now examine quadratic trend model (again in logs). The log-quadratic

trend estimation results appear in Figure 11.4. Both TIME and TIME2

are highly significant. The adjusted R2 for the log-quadratic trend model

is 89%, higher than for the the log-linear trend model. As with the log-

linear trend model, the Durbin-Watson statistic provides no evidence against

the hypothesis that the regression disturbance is white noise. The residual

plot (Figure 11.5) shows that the fitted quadratic trend appears adequate,

and that it increases at a decreasing rate. The residual plot also continues

to indicate obvious residual seasonality. (Why does the Durbin-Watson not

detect it?)
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Dependent Variable: LSALES
Method: Least Squares
Date: 08/08/13   Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.  

C 6.231269 0.020653 301.7187 0.0000
TIME 0.007768 0.000283 27.44987 0.0000

TIME2 -1.17E-05 8.13E-07 -14.44511 0.0000

R-squared 0.903676     Mean dependent var 7.096188
Adjusted R-squared 0.903097     S.D. dependent var 0.402962
S.E. of regression 0.125439     Akaike info criterion -1.305106
Sum squared resid 5.239733     Schwarz criterion -1.271025
Log likelihood 222.2579     Hannan-Quinn criter. -1.291521
F-statistic 1562.036     Durbin-Watson stat 1.754412
Prob(F-statistic) 0.000000

Figure 11.4: Log-Quadratic Trend Estimation

In Figure 11.6 we show the results of regression on quadratic trend and

a full set of seasonal dummies. The trend remains highly significant, and

the coefficients on the seasonal dummies vary significantly. The adjusted R2

rises to 99%. The Durbin-Watson statistic, moreover, has greater ability to

detect residual serial correlation now that we have accounted for seasonal-

ity, and it sounds a loud alarm. The residual plot of Figure 11.7 shows no

seasonality, as the model now accounts for seasonality, but it confirms the

Durbin-Watson statistic’s warning of serial correlation. The residuals appear

highly persistent.

There remains one model as yet unexplored, exponential trend fit to

LSALES. We do it by NLS (why?) and present the results in Figure ***.

Among the linear, quadratic and exponential trend models for LSALES,

both SIC and AIC clearly favor the quadratic.

– Exogenously-specified break in log-linear trend model

– Endogenously-selected break in log-linear trend model

– SIC for best broken log-linear trend model vs. log-quadratic trend model
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Figure 11.5: Residual Plot, Log-Quadratic Trend Estimation

11.3 Seasonality

In the last section we focused on the trends; now we’ll focus on seasonal-

ity. A seasonal pattern is one that repeats itself every year.3 The annual

seasonal repetition can be exact, in which case we speak of deterministic

seasonality Here we focus exclusively on deterministic seasonality models.

Seasonality arises from links of technologies, preferences and institutions

to the calendar. The weather (e.g., daily high temperature) is a trivial but

very important seasonal series, as it’s always hotter in the summer than in

the winter. Any technology that involves the weather, such as production of

agricultural commodities, is likely to be seasonal as well.

Preferences may also be linked to the calendar. Consider, for example,

gasoline sales. People want to do more vacation travel in the summer, which

tends to increase both the price and quantity of summertime gasoline sales,

both of which feed into higher current-dollar sales.

3Note therefore that seasonality is impossible, and therefore not an issue, in data recorded once per year,
or less often than once per year.
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Dependent Variable: LSALES
Method: Least Squares
Date: 08/08/13   Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.  

TIME 0.007739 0.000104 74.49828 0.0000
TIME2 -1.18E-05 2.98E-07 -39.36756 0.0000

D1 6.138362 0.011207 547.7315 0.0000
D2 6.081424 0.011218 542.1044 0.0000
D3 6.168571 0.011229 549.3318 0.0000
D4 6.169584 0.011240 548.8944 0.0000
D5 6.238568 0.011251 554.5117 0.0000
D6 6.243596 0.011261 554.4513 0.0000
D7 6.287566 0.011271 557.8584 0.0000
D8 6.259257 0.011281 554.8647 0.0000
D9 6.199399 0.011290 549.0938 0.0000

D10 6.221507 0.011300 550.5987 0.0000
D11 6.253515 0.011309 552.9885 0.0000
D12 6.575648 0.011317 581.0220 0.0000

R-squared 0.987452     Mean dependent var 7.096188
Adjusted R-squared 0.986946     S.D. dependent var 0.402962
S.E. of regression 0.046041     Akaike info criterion -3.277812
Sum squared resid 0.682555     Schwarz criterion -3.118766
Log likelihood 564.6725     Hannan-Quinn criter. -3.214412
Durbin-Watson stat 0.581383

Figure 11.6: Liquor Sales Log-Quadratic Trend Estimation with Seasonal Dummies

Finally, social institutions that are linked to the calendar, such as holidays,

are responsible for seasonal variation in a variety of series. In Western coun-

tries, for example, sales of retail goods skyrocket every December, Christmas

season. In contrast, sales of durable goods fall in December, as Christmas

purchases tend to be nondurables. (You don’t buy someone a refrigerator for

Christmas.)

You might imagine that, although certain series are seasonal for the rea-

sons described above, seasonality is nevertheless uncommon. On the con-

trary, and perhaps surprisingly, seasonality is pervasive in business and eco-

nomics. Many industrialized economies, for example, expand briskly every

fourth quarter and contract every first quarter.
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Figure 11.7: Residual Plot, Liquor Sales Log-Quadratic Trend Estimation With Seasonal
Dummies

11.3.1 Seasonal Dummies

A key technique for modeling seasonality is regression on seasonal dum-

mies. Let S be the number of seasons in a year. Normally we’d think of four

seasons in a year, but that notion is too restrictive for our purposes. Instead,

think of S as the number of observations on a series in each year. Thus S = 4

if we have quarterly data, S = 12 if we have monthly data, and so on.

The pure seasonal dummy model is

Seasonalt =
S∑
s=1

γsSEASts

where SEASts =

{
1 if observation t falls in season s

0 otherwise

The SEASts variables are called seasonal dummy variables. They simply

indicate which season we’re in.

Operationalizing the model is simple. Suppose, for example, that we have
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quarterly data, so that S = 4. Then we create four variables4:

SEAS1 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, ..., 0)′

SEAS2 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, ..., 0)′

SEAS3 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, ..., 0)′

SEAS4 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, ..., 1)′.

SEAS1 indicates whether we’re in the first quarter (it’s 1 in the first quarter

and zero otherwise), SEAS2 indicates whether we’re in the second quarter

(it’s 1 in the second quarter and zero otherwise), and so on. At any given

time, we can be in only one of the four quarters, so one seasonal dummy is

1, and all others are zero.

To estimate the model for a series y, we simply run the least squares

regression,

y → SEAS1, ..., SEASS.

Effectively, we’re just regressing on an intercept, but we allow for a different

intercept in each season. Those different intercepts (that is γs’s) are called the

seasonal factors; they summarize the seasonal pattern over the year, and we

often may want to examine them and plot them. In the absence of seasonality,

those intercepts are all the same, so we can drop all the seasonal dummies

and instead simply include an intercept in the usual way.

In time-series contexts it’s often most natural to include a full set of sea-

sonal dummies, without an intercept. But of course we could instead include

any S− 1 seasonal dummies and an intercept. Then the constant term is the

intercept for the omitted season, and the coefficients on the seasonal dum-

mies give the seasonal increase or decrease relative to the omitted season. In

no case, however, should we include S seasonal dummies and an intercept.

Including an intercept is equivalent to including a variable in the regression

whose value is always one, but note that the full set of S seasonal dummies

sums to a variable whose value is always one, so it is completely redundant.

4For illustrative purposes, assume that the data sample begins in Q1 and ends in Q4.
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Trend may be included as well. For example, we can account for season-

ality and linear trend by running5

y → TIME, SEAS1, ..., SEASS.

In fact, you can think of what we’re doing in this section as a generalization

of what we did in the last, in which we focused exclusively on trend. We still

want to account for trend, if it’s present, but we want to expand the model

so that we can account for seasonality as well.

11.3.2 More General Calendar Effects

The idea of seasonality may be extended to allow for more general calendar

effects. “Standard” seasonality is just one type of calendar effect. Two

additional important calendar effects are holiday variation and trading-

day variation.

Holiday variation refers to the fact that some holidays’ dates change over

time. That is, although they arrive at approximately the same time each year,

the exact dates differ. Easter is a common example. Because the behavior

of many series, such as sales, shipments, inventories, hours worked, and so

on, depends in part on the timing of such holidays, we may want to keep

track of them in our forecasting models. As with seasonality, holiday effects

may be handled with dummy variables. In a monthly model, for example,

in addition to a full set of seasonal dummies, we might include an “Easter

dummy,” which is 1 if the month contains Easter and 0 otherwise.

Trading-day variation refers to the fact that different months contain dif-

ferent numbers of trading days or business days, which is an important con-

sideration when modeling and forecasting certain series. For example, in a

monthly forecasting model of volume traded on the London Stock Exchange,

in addition to a full set of seasonal dummies, we might include a trading day

5Note well that we drop the intercept!
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Figure 11.8: Liquor Sales

variable, whose value each month is the number of trading days that month.

More generally, you can model any type of calendar effect that may arise,

by constructing and including one or more appropriate dummy variables.

11.4 Trend and Seasonality in Liquor Sales

We’ll illustrate trend and seasonal modeling with an application to liquor

sales. The data are measured monthly.

We show the time series of liquor sales in Figure 11.8, which displays

clear trend (sales are increasing) and seasonality (sales skyrocket during the

Christmas season, among other things).

We show log liquor sales in Figure 11.9 ; we take logs to stabilize the

variance, which grows over time.6 Log liquor sales has a more stable variance,

and it’s the series for which we’ll build models.7

Linear trend estimation results appear in Table 11.10. The trend is in-

creasing and highly significant. The adjusted R2 is 84%, reflecting the fact

6The nature of the logarithmic transformation is such that it “compresses” an increasing variance. Make
a graph of log(x) as a function of x, and you’ll see why.

7From this point onward, for brevity we’ll simply refer to “liquor sales,” but remember that we’ve taken
logs.
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Figure 11.9: Log Liquor Sales

that trend is responsible for a large part of the variation in liquor sales.

The residual plot (Figure 11.11) suggests, however, that linear trend is

inadequate. Instead, the trend in log liquor sales appears nonlinear, and the

neglected nonlinearity gets dumped in the residual. (We’ll introduce nonlin-

ear trend later.) The residual plot also reveals obvious residual seasonality.

In Figure 11.12 we show estimation results for a model with linear trend

and seasonal dummies. All seasonal dummies are of course highly significant

(no month has average sales of 0), and importantly the various seasonal

coefficients in many cases are significantly different from each other (that’s

the seasonality). R2 is higher.

In Figure 11.13 we show the corresponding residual plot. The model now

picks up much of the seasonality, as reflected in the seasonal fitted series

and the non-seasonal residuals. However, it clearly misses nonlinearity in the

trend, which therefore appears in the residuals.

In Figure 11.14 we plot the estimated seasonal pattern (the set of 12

estimated seasonal coefficients), which peaks during the winter holidays.

All of these results are crude approximations, because the linear trend

is clearly inadequate. We will subsequently allow for more sophisticated
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Dependent Variable: LSALES
Method: Least Squares
Date: 08/08/13   Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.  

C 6.454290 0.017468 369.4834 0.0000
TIME 0.003809 8.98E-05 42.39935 0.0000

R-squared 0.843318     Mean dependent var 7.096188
Adjusted R-squared 0.842849     S.D. dependent var 0.402962
S.E. of regression 0.159743     Akaike info criterion -0.824561
Sum squared resid 8.523001     Schwarz criterion -0.801840
Log likelihood 140.5262     Hannan-Quinn criter. -0.815504
F-statistic 1797.705     Durbin-Watson stat 1.078573
Prob(F-statistic) 0.000000

Figure 11.10: Linear Trend Estimation

(nonlinear) trends.

11.5 Exercises, Problems and Complements

1. (Mechanics of trend estimation and detrending)

Obtain from the web a quarterly time series of U.S. real GDP in levels,

spanning the last forty years, and ending in Q4.

a. Produce a time series plot and discuss.

b. Fit a linear trend. Discuss both the estimation results and the residual

plot.

c. Is there any evidence of seasonality in the residuals? Why or why

not?

d. The residuals from your fitted model are effectively a linearly de-

trended version of your original series. Why? Discuss.

2. (Using model selection criteria to select a trend model)



194 CHAPTER 11. TREND AND SEASONALITY

Figure 11.11: Residual Plot, Linear Trend Estimation

You are tracking and forecasting the earnings of a new company develop-

ing and applying proprietary nano-technology. The earnings are trend-

ing upward. You fit linear, quadratic, and exponential trend models,

yielding sums of squared residuals of 4352, 2791, and 2749, respectively.

Which trend model would you select, and why?

3. (Seasonal adjustment)

Just as we sometimes want to remove the trend from a series, sometimes

we want to seasonally adjust a series before modeling it. Seasonal

adjustment may be done using a variety of methods.

a. Discuss in detail how you’d use a linear trend plus seasonal dummies

model to seasonally adjust a series.

b. Seasonally adjust the log liquor sales data using a linear trend plus

seasonal dummy model. Discuss the patterns present and absent from

the seasonally adjusted series.

c. Search the Web (or the library) for information on the latest U.S.
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Figure 11.12: Estimation Results, Linear Trend with Seasonal Dummies

Census Bureau seasonal adjustment procedure, and report what you

learned.

4. (Handling sophisticated calendar effects)

Describe how you would construct a purely seasonal model for the fol-

lowing monthly series. In particular, what dummy variable(s) would you

use to capture the relevant effects?

a. A sporting goods store suspects that detrended monthly sales are

roughly the same for each month in a given three-month season. For

example, sales are similar in the winter months of January, February
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Figure 11.13: Residual Plot, Linear Trend with Seasonal Dummies

and March, in the spring months of April, May and June, and so on.

b. A campus bookstore suspects that detrended sales are roughly the

same for all first, all second, all third, and all fourth months of

each trimester. For example, sales are similar in January, May, and

September, the first months of the first, second, and third trimesters,

respectively.

c. (Trading-day effects) A financial-markets trader suspects that de-

trended trading volume depends on the number of trading days in

the month, which differs across months.

d. (Time-varying holiday effects) A candy manufacturer suspects that

detrended candy sales tend to rise at Easter.

5. (Testing for seasonality)

Using the log liquor sales data:
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Figure 11.14: Seasonal Pattern

a. As in the chapter, construct and estimate a model with a full set of

seasonal dummies.

b. Test the hypothesis of no seasonal variation. Discuss.

c. Test for the equality of the January through April seasonal factors.

Discuss.

d. Test for equality of the May through November seasonal factors. Dis-

cuss.

e. Estimate a suitable “pruned” model with fewer than twelve seasonal

dummies that nevertheless adequately captures the seasonal pattern.

6. Specifying and testing nonlinear trend models.

In 1965, Intel co-founder Gordon Moore predicted that the number of

transistors that one could place on a square-inch integrated circuit would

double every twelve months.

a. What sort of trend is this?
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b. Given a monthly series containing the number of transistors per square

inch for the latest integrated circuit, how would you test Moore’s pre-

diction? How would you test the currently accepted form of “Moore’s

Law,” namely that the number of transistors actually doubles every

eighteen months?

7. (Properties of polynomial trends)

Consider a sixth-order deterministic polynomial trend:

Tt = β1 + β2TIMEt + β3TIME2
t + ...+ β7TIME6

t .

a. How many local maxima or minima may such a trend display?

b. Plot the trend for various values of the parameters to reveal some of

the different possible trend shapes.

c. Is this an attractive trend model in general? Why or why not?

d. Fit the sixth-order polynomial trend model to a trending series that

interests you, and discuss your results.

8. (Selecting non-linear trend models)

Using AIC and SIC, perform a detailed comparison of polynomial vs.

exponential trend in LSALES. Do you agree with our use of quadratic

trend in the text?

9. (Difficulties with non-linear optimization)

Non-linear optimization can be a tricky business, fraught with problems.

Some problems are generic. It’s relatively easy to find a local optimum,

for example, but much harder to be confident that the local optimum

is global. Simple checks such as trying a variety of startup values and

checking the optimum to which convergence occurs are used routinely,

but the problem nevertheless remains. Other problems may be software
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specific. For example, some software may use highly accurate analytic

derivatives whereas other software uses approximate numerical deriva-

tives. Even the same software package may change algorithms or details

of implementation across versions, leading to different results.

10. (Direct estimation of exponential trend in levels)

We can estimate an exponential trend in two ways. First, as we have

emphasized, we can take logs and then use OLS to fit a linear trend.

Alternatively we can use NLS, proceeding directly from the exponential

representation and letting the computer find

(β̂1, β̂2) = argminβ1,β2

T∑
t=1

[
yt − β1e

β2TIMEt
] 2
.

a. The NLS approach is more tedious? Why?

b. The NLS approach is less thoroughly numerically trustworthy? Why?

c. Nevertheless the NLS approach can be very useful? Why? (Hint:

Consider comparing SIC values for quadratic vs. exponential trend.)

11. (Logistic trend)

In the main text we introduced the logistic functional form. A key

example is logistic trend, which is

Trendt =
1

a+ brTIMEt
,

with 0<r<1.

a. Graph the trend shape for various combinations of a and b values.

When might such a trend shape be useful?

b. Can you think of other specialized situations in which other special-

ized trend shapes might be useful? Produce mathematical formulas

for the additional specialized trend shapes you suggest.
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12. (Modeling Liquor Sales Trend and Seasonality)

Consider the liquor sales data. Never include an intercept. Discuss all

results in detail.

(a) Fit a linear trend plus seasonal dummy model to log liquor sales

(LSALES), using a full set of seasonal dummies.

(b) Find a “best” linear trend plus seasonal dummy LSALES model.

That is, consider tightening the seasonal specification to include

fewer than 12 seasonal dummies, and decide what’s best.

(c) Keeping the same seasonality specification as in (12b), re-estimate

the model in levels (that is, the LHS variable is now SALES rather

than LSALES) using exponential trend and nonlinear least squares.

Do your coefficient estimates match those from (12b)? Does the SIC

match that from (12b)?

(d) Repeat (12c), again using SALES and again leaving intact your

seasonal specification from (12b), but try linear and quadratic trend

instead of the exponential trend in (12c). What is your “final”

SALES model?

(e) Critique your final SALES model from (12d). In what ways is it

likely still deficient? You will of course want to discuss its residual

plot (actual values, fitted values, residuals), as well as any other

diagnostic plots or statistics that you deem relevant.

(f) Take your final estimated SALES model from (12d), and include

as regressors three lags of SALES (i.e., SALESt−1, SALESt−2 and

SALESt−3). What role do the lags of SALES play? Consider this

new model to be your “final, final” SALES model, and repeat (12e).

13. Moving-Average Trend and De-Trending
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The trend regression technique is one way to estimate trend. An addi-

tional way involves model-free smoothing techniques. A leading case

is “moving-average smoothing”. We’ll focus on three moving-average

smoothers: two-sided moving averages, one-sided moving averages, and

one-sided weighted moving averages. Denote the original data by {yt}Tt=1

and the smoothed data by {zt}Tt=1. Then the two-sided moving aver-

age is

zt = (2m+ 1)−1
m∑

i=−m
yt−i,

the one-sided moving average is

zt = (m+ 1)−1
m∑
i=0

yt−i,

and the one-sided weighted moving average is

zt =
m∑
i=0

wiyt−i,

where the wi are weights and m is an integer chosen by the user. The

“standard” one-sided moving average corresponds to a one-sided weighted

moving average with all weights equal to (m+ 1)−1.

a. For each of the smoothing techniques, discuss the role played by m.

What happens as m gets very large? Very small? In what sense does

m play a role similar to p, the order of a polynomial trend?

b. If the original data runs from time 1 to time T , over what range

can smoothed values be produced using each of the three smoothing

methods? What are the implications for “real-time” smoothing or

“on-line” smoothing versus “ex post” smoothing or “off-line”

smoothing?

14. Hodrick-Prescott Trend and De-Trending
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Another model-free approach to trend fitting and de-trending is known

as Hodrick-Prescott filtering. The “HP trend” solves:

min
{st}Tt=1

T∑
t=1

(yt − st)2 + λ
T−1∑
t=2

((st+1 − st)− (st − st−1))
2

a. λ is often called the “penalty parameter.” What does λ govern?

b. What happens as λ→ 0?

c. What happens as λ→∞?

d. People routinely use bigger λ for higher-frequency data. Why? (Com-

mon values are λ = 100, 1600 and 14,400 for annual, quarterly, and

monthly data, respectively.)

15. Regime Switching I: Observed-Regime Threshold Model

yt =



c(u) + φ(u)yt−1 + ε
(u)
t , θ(u) < yt−d

c(m) + φ(m)yt−1 + ε
(m)
t , θ(l) < yt−d < θ(u)

c(l) + φ(l)yt−1 + ε
(l)
t , θ(l) > yt−d

16. Regime Switching II: Markov-Switching Model

Regime governed by latent 2-state Markov process:

M =

(
p00 1− p00

1− p11 p11

)

Switching mean:

f(yt|st) =
1√
2πσ

exp

(
−(yt − µst)

2

2σ2

)
.
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Switching regression:

f(yt|st) =
1√
2πσ

exp

(
−(yt − x′tβst)

2

2σ2

)
.

11.6 Notes

Nerlove et al. (1979) and Harvey (1991) discuss a variety of models of trend

and seasonality.

The two most common and important “official” seasonal adjustment meth-

ods are X-12-ARIMA from the U.S. Census Bureau, and TRAMO-SEATS

from the Bank of Spain.

http://www.census.gov/srd/www/x12a/
http://www.bde.es/bde/en/secciones/servicios/Profesionales/Programas_estadi/Programas_estad_d9fa7f3710fd821.html
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Chapter 12

Serial Correlation

In this chapter we consider serially correlated regression disturbances, a new

type of violation of the IC of crucial importance in time series. Disturbance

serial correlation, or autocorrelation, means correlation over time. That is,

the current disturbance is correlated with one or more past disturbances.

Under the IC we have:

ε ∼ N(0, σ2I).

Now, with serial correlation, we have:

ε ∼ N(0,Ω),

where Ω is not diagonal. A key cause is omission of serially-correlated x’s

in the regression specification, which results in serially-correlated ε. Hence

the “ommitted variables problem” and the “serial correlation problem” are

closely related.

A leading example is “first-order autoregressive” or “AR(1)” disturbance

serial correlation:

yt = x′tβ + εt

εt = φεt−1 + vt, |φ| < 1

vt ∼ iidN(0, σ2)

205



206 CHAPTER 12. SERIAL CORRELATION

Extension to “AR(p)” disturbance serial correlation is immediate.

Serial correlation has important consequences for β estimation and infer-

ence. As with Heteroskedasticity, point remains OK (OLS parameter esti-

mates remain consistent and asymptotically normal), but inference is dam-

aged (OLS standard errors are biased and inconsistent).

Serial correlation also has important consequences for y prediction. Un-

like With heteroskedasticity, even point predictions need re-thinking. Hence

serial correlation is a bigger problem for prediction than heteroskedasticity.

Here’s the intuition. Serial correlation in disturbances / residuals implies that

the included “x variables” have missed something that could be exploited for

improved point forecasting of y (and hence also improved interval and den-

sity forecasting). That is, all types of forecasts are sub-optimal when serial

correlation is neglected. Put differently, serial correlation in forecast errors

means that you can forecast your forecast errors! So something is wrong and

can be improved...

12.1 Characterizing Serial Correlation (in Population,

Mostly)

We’ve already considered models with trend and seasonal components. In this

chapter we consider a crucial third component, cycles. When you think of a

“cycle,” you might think of a rigid up-and-down pattern, as for example with

a cos or sin function, but cyclical fluctuations in business, finance, economics

and government are typically much less rigid. In fact, when we speak of

cycles, we have in mind a much more general, all-encompassing, notion of

cyclicality: any sort of dynamics not captured by trends or seasonals.

Cycles, according to our broad interpretation, simply have to have some

dynamics, some persistence, some way in which the present is linked to the

past, and the future to the present. Cycles are present in most of the series
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that concern us, and it’s crucial that we know how to model and forecast

them, because their history conveys information regarding their future.

Trend and seasonal dynamics are simple, so we can capture them with

simple deterministic models. Cyclical dynamics, however, are more compli-

cated. Because of the wide variety of cyclical patterns, the sorts of models we

need are substantially more involved. The material is also a bit difficult the

first time around because it’s unavoidably rather mathematical, so careful,

systematic study is required.

12.1.1 Covariance Stationary Time Series

Now we introduce the idea of a covariance stationary time series. We will

generally use yt to denote a time series. That series could be unobserved

(like the disturbance in a regression, which we called εt in the motivational

discussion above), or it could be observed (like U.S. GDP). Everything we

say below is valid either way.

Formally, a time series is an ordered infinite-dimensional random variable.

A realization of a time series is an ordered set,

{..., y−2, y−1, y0, y1, y2, ...}.

Typically the observations are ordered in time – hence the name time series

– but they don’t have to be. We could, for example, examine a spatial series,

such as office space rental rates as we move along a line from a point in

midtown Manhattan to a point in the New York suburbs thirty miles away.

But the most important case, by far, involves observations ordered in time,

so that’s what we’ll stress.

In theory, a time series realization begins in the infinite past and continues

into the infinite future. This perspective may seem abstract and of limited

practical applicability, but it will be useful in deriving certain very important

properties of the models we’ll be using shortly. In practice, of course, the data
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we observe is just a finite subset of a realization, {y1, ..., yT}, called a sample

path.

Shortly we’ll be building models for cyclical time series. If the underlying

probabilistic structure of the series were changing over time, we’d be doomed

– there would be no way to relate the future to the past, because the laws gov-

erning the future would differ from those governing the past. At a minimum

we’d like a series’ mean and its covariance structure (that is, the covariances

between current and past values) to be stable over time, in which case we

say that the series is covariance stationary. Let’s discuss covariance sta-

tionarity in greater depth. The first requirement for a series to be covariance

stationary is that the mean of the series be stable over time. The mean of

the series at time t is Eyt = µt. If the mean is stable over time, as required

by covariance stationarity, then we can write Eyt = µ, for all t. Because the

mean is constant over time, there’s no need to put a time subscript on it.

The second requirement for a series to be covariance stationary is that

its covariance structure be stable over time. Quantifying stability of the

covariance structure is a bit tricky, but tremendously important, and we do

it using the autocovariance function. The autocovariance at displacement

τ is just the covariance between yt and yt−τ . It will of course depend on τ ,

and it may also depend on t, so in general we write

γ(t, τ) = cov(yt, yt−τ) = E(yt − µ)(yt−τ − µ).

If the covariance structure is stable over time, as required by covariance

stationarity, then the autocovariances depend only on displacement, τ , not

on time, t, and we write γ(t, τ) = γ(τ), for all t.

The autocovariance function is important because it provides a basic sum-

mary of cyclical dynamics in a covariance stationary series. By examining

the autocovariance structure of a series, we learn about its dynamic behav-

ior. We graph and examine the autocovariances as a function of τ . Note that
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the autocovariance function is symmetric; that is, γ(τ) = γ(−τ), for all τ .

Typically, we’ll consider only non-negative values of τ . Symmetry reflects the

fact that the autocovariance of a covariance stationary series depends only

on displacement; it doesn’t matter whether we go forward or backward. Note

also that γ(0) = cov(yt, yt) = var(yt).

There is one more technical requirement of covariance stationarity: we

require that the variance of the series – the autocovariance at displacement

0, γ(0), be finite. It can be shown that no autocovariance can be larger

in absolute value than γ(0), so if γ(0) < ∞, then so too are all the other

autocovariances.

It may seem that the requirements for covariance stationarity are quite

stringent, which would bode poorly for our models, almost all of which in-

voke covariance stationarity in one way or another. It is certainly true that

many economic, business, financial and government series are not covariance

stationary. An upward trend, for example, corresponds to a steadily increas-

ing mean, and seasonality corresponds to means that vary with the season,

both of which are violations of covariance stationarity.

But appearances can be deceptive. Although many series are not covari-

ance stationary, it is frequently possible to work with models that give special

treatment to nonstationary components such as trend and seasonality, so that

the cyclical component that’s left over is likely to be covariance stationary.

We’ll often adopt that strategy. Alternatively, simple transformations often

appear to transform nonstationary series to covariance stationarity. For ex-

ample, many series that are clearly nonstationary in levels appear covariance

stationary in growth rates.

In addition, note that although covariance stationarity requires means and

covariances to be stable and finite, it places no restrictions on other aspects

of the distribution of the series, such as skewness and kurtosis.1 The upshot

1For that reason, covariance stationarity is sometimes called second-order stationarity or weak sta-
tionarity.
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is simple: whether we work directly in levels and include special components

for the nonstationary elements of our models, or we work on transformed

data such as growth rates, the covariance stationarity assumption is not as

unrealistic as it may seem.

At the beginning of this chapter we noted that autocorrelation corresponds

to non-diagonal Ω. Now, having introduced the autocovariance function, we

can display the precise form of Ω under serial correlation:

Ω =


γε(0) γε(1) . . . γε(T − 1)

γε(1) γε(0) . . . γε(T − 2)
...

... . . . ...

γε(T − 1) γε(T − 2) . . . γε(0)


Note the ”band symmetric” structure, illustrated here for T = 4:

Ω =


a b c d

b a b c

c b a b

d c b a


Now we introduce the closely-related autocorrelation function. Recall that

the correlation between two random variables x and y is defined by

corr(x, y) =
cov(x, y)

σxσy
.

That is, the correlation is simply the covariance, “normalized,” or “stan-

dardized,” by the product of the standard deviations of x and y. Both the

correlation and the covariance are measures of linear association between two

random variables. The correlation is often more informative and easily inter-

preted, however, because the construction of the correlation coefficient guar-

antees that corr(x, y) ∈ [−1, 1], whereas the covariance between the same two

random variables may take any value. The correlation, moreover, does not
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depend on the units in which x and y are measured, whereas the covariance

does. Thus, for example, if x and y have a covariance of ten million, they’re

not necessarily very strongly associated, whereas if they have a correlation of

.95, it is unambiguously clear that they are very strongly associated.

In light of the superior interpretability of correlations as compared to

covariances, we often work with the correlation, rather than the covariance,

between yt and yt−τ . That is, we work with the autocorrelation function,

ρ(τ), rather than the autocovariance function, γ(τ). The autocorrelation

function is obtained by dividing the autocovariance function by the variance,

ρ(τ) =
γ(τ)

γ(0)
, τ = 0, 1, 2, ....

The formula for the autocorrelation is just the usual correlation formula,

specialized to the correlation between yt and yt−τ . To see why, note that the

variance of yt is γ(0), and by covariance stationarity, the variance of y at any

other time yt−τ is also γ(0). Thus,

ρ(τ) =
cov(yt, yt−τ)√

var(yt)
√
var(yt−τ)

=
γ(τ)√

γ(0)
√
γ(0)

=
γ(τ)

γ(0)
,

as claimed. Note that we always have ρ(0) = γ(0)
γ(0) = 1, because any series is

perfectly contemporaneously correlated with itself. Thus the autocorrelation

at displacement 0 isn’t of interest; rather, only the autocorrelations beyond

displacement 0 inform us about a series’ dynamic structure.

Finally, the partial autocorrelation function, p(τ), is sometimes use-

ful. p(τ) is just the coefficient of yt−τ in a population linear regression of

yt on yt−1, ..., yt−τ .
2 We call such regressions autoregressions, because the

variable is regressed on lagged values of itself. It’s easy to see that the

2To get a feel for what we mean by “population regression,” imagine that we have an infinite sample
of data at our disposal, so that the parameter estimates in the regression are not contaminated by sampling
variation – that is, they’re the true population values. The thought experiment just described is a population
regression.
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autocorrelations and partial autocorrelations, although related, differ in an

important way. The autocorrelations are just the “simple” or “regular” corre-

lations between yt and yt−τ . The partial autocorrelations, on the other hand,

measure the association between yt and yt−τ after controlling for the effects

of yt−1, ..., yt−τ+1; that is, they measure the partial correlation between yt

and yt−τ .

As with the autocorrelations, we often graph the partial autocorrelations

as a function of τ and examine their qualitative shape, which we’ll do soon.

Like the autocorrelation function, the partial autocorrelation function pro-

vides a summary of a series’ dynamics, but as we’ll see, it does so in a different

way.3

All of the covariance stationary processes that we will study subsequently

have autocorrelation and partial autocorrelation functions that approach

zero, one way or another, as the displacement gets large. In Figure 12.1 we

show an autocorrelation function that displays gradual one-sided damping.

The precise decay patterns of autocorrelations and partial autocorrelations of

a covariance stationary series, however, depend on the specifics of the series.

In Figure 12.2, for example, we show an autocorrelation function that that

differs in the way it approaches zero – the autocorrelations drop abruptly to

zero beyond a certain displacement.

12.1.2 Estimation and Inference for the Mean, Autocorrelation

and Partial Autocorrelation Functions

Now suppose we have a sample of data on a time series, and we don’t know

the true model that generated the data, or the mean, autocorrelation function

or partial autocorrelation function associated with that true model. Instead,

we want to use the data to estimate the mean, autocorrelation function, and

3Also in parallel to the autocorrelation function, the partial autocorrelation at displacement 0 is always
one and is therefore uninformative and uninteresting. Thus, when we graph the autocorrelation and partial
autocorrelation functions, we’ll begin at displacement 1 rather than displacement 0.



12.1. CHARACTERIZING SERIAL CORRELATION (IN POPULATION, MOSTLY)213

Figure 12.1

partial autocorrelation function, which we might then use to help us learn

about the underlying dynamics, and to decide upon a suitable model or set

of models to fit to the data.

Sample Mean

The mean of a covariance stationary series is

µ = Eyt.

A fundamental principle of estimation, called the analog principle, suggests

that we develop estimators by replacing expectations with sample averages.

Thus our estimator for the population mean, given a sample of size T , is the

sample mean,

ȳ =
1

T

T∑
t=1

yt.

Typically we’re not directly interested in the estimate of the mean, but it’s

needed for estimation of the autocorrelation function.
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Figure 12.2

Sample Autocorrelations

The autocorrelation at displacement τ for the covariance stationary series y

is

ρ(τ) =
E [(yt − µ)(yt−τ − µ)]

E[(yt − µ)2]
.

Application of the analog principle yields a natural estimator,

ρ̂(τ) =
1
T

∑T
t=τ+1 [(yt − ȳ)(yt−τ − ȳ)]

1
T

∑T
t=1(yt − ȳ)2

=

∑T
t=τ+1 [(yt − ȳ)(yt−τ − ȳ)]∑T

t=1(yt − ȳ)2
.

This estimator, viewed as a function of τ , is called the sample autocorre-

lation function, or correlogram. Note that some of the summations begin

at t = τ + 1, not at t = 1; this is necessary because of the appearance of yt−τ

in the sum. Note that we divide those same sums by T , even though only

T − τ terms appear in the sum. When T is large relative to τ (which is the

relevant case), division by T or by T − τ will yield approximately the same

result, so it won’t make much difference for practical purposes, and moreover

there are good mathematical reasons for preferring division by T .
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It’s often of interest to assess whether a series is reasonably approximated

as white noise, which is to say whether all its autocorrelations are zero in

population. A key result, which we simply assert, is that if a series is white

noise, then the distribution of the sample autocorrelations in large samples

is

ρ̂(τ) ∼ N

(
0,

1

T

)
.

Note how simple the result is. The sample autocorrelations of a white noise

series are approximately normally distributed, and the normal is always a

convenient distribution to work with. Their mean is zero, which is to say the

sample autocorrelations are unbiased estimators of the true autocorrelations,

which are in fact zero. Finally, the variance of the sample autocorrelations

is approximately 1/T (equivalently, the standard deviation is 1/
√
T ), which

is easy to construct and remember. Under normality, taking plus or minus

two standard errors yields an approximate 95% confidence interval. Thus, if

the series is white noise, approximately 95% of the sample autocorrelations

should fall in the interval 0 ± 2/
√
T . In practice, when we plot the sample

autocorrelations for a sample of data, we typically include the “two standard

error bands,” which are useful for making informal graphical assessments of

whether and how the series deviates from white noise.

The two-standard-error bands, although very useful, only provide 95%

bounds for the sample autocorrelations taken one at a time. Ultimately,

we’re often interested in whether a series is white noise, that is, whether all

its autocorrelations are jointly zero. A simple extension lets us test that

hypothesis. Rewrite the expression

ρ̂(τ) ∼ N

(
0,

1

T

)
as √

T ρ̂(τ) ∼ N(0, 1).
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Squaring both sides yields4

T ρ̂2(τ) ∼ χ2
1.

It can be shown that, in addition to being approximately normally dis-

tributed, the sample autocorrelations at various displacements are approxi-

mately independent of one another. Recalling that the sum of independent χ2

variables is also χ2 with degrees of freedom equal to the sum of the degrees

of freedom of the variables summed, we have shown that the Box-Pierce

Q-statistic,

QBP = T
m∑
τ=1

ρ̂2(τ),

is approximately distributed as a χ2
m random variable under the null hypoth-

esis that y is white noise.5 A slight modification of this, designed to follow

more closely the χ2 distribution in small samples, is

QLB = T (T + 2)
m∑
τ=1

(
1

T − τ

)
ρ̂2(τ).

Under the null hypothesis that y is white noise, QLB is approximately dis-

tributed as a χ2
m random variable. Note that the Ljung-Box Q-statistic is

the same as the Box-Pierce Q statistic, except that the sum of squared auto-

correlations is replaced by a weighted sum of squared autocorrelations, where

the weights are (T + 2)/(T − τ). For moderate and large T , the weights are

approximately 1, so that the Ljung-Box statistic differs little from the Box-

Pierce statistic.

Selection of m is done to balance competing criteria. On one hand, we

don’t want m too small, because after all, we’re trying to do a joint test on

a large part of the autocorrelation function. On the other hand, as m grows

4Recall that the square of a standard normal random variable is a χ2 random variable with one degree
of freedom. We square the sample autocorrelations ρ̂(τ) so that positive and negative values don’t cancel
when we sum across various values of τ , as we will soon do.

5m is a maximum displacement selected by the user. Shortly we’ll discuss how to choose it.
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relative to T , the quality of the distributional approximations we’ve invoked

deteriorates. In practice, focusing on m in the neighborhood of
√
T is often

reasonable.

Sample Partial Autocorrelations

Recall that the partial autocorrelations are obtained from population linear

regressions, which correspond to a thought experiment involving linear re-

gression using an infinite sample of data. The sample partial autocorrelations

correspond to the same thought experiment, except that the linear regression

is now done on the (feasible) sample of size T . If the fitted regression is

ŷt = ĉ+ β̂1yt−1 + ...+ β̂τyt−τ ,

then the sample partial autocorrelation at displacement τ is

p̂(τ) ≡ β̂τ .

Distributional results identical to those we discussed for the sample auto-

correlations hold as well for the sample partial autocorrelations. That is, if

the series is white noise, approximately 95% of the sample partial autocorre-

lations should fall in the interval ±2/
√
T . As with the sample autocorrela-

tions, we typically plot the sample partial autocorrelations along with their

two-standard-error bands.

A “correlogram analysis” simply means examination of the sample au-

tocorrelation and partial autocorrelation functions (with two standard error

bands), together with related diagnostics, such as Q statistics.

We don’t show the sample autocorrelation or partial autocorrelation at

displacement 0, because as we mentioned earlier, they equal 1.0, by construc-

tion, and therefore convey no useful information. We’ll adopt this convention

throughout.
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Note that the sample autocorrelation and partial autocorrelation are iden-

tical at displacement 1. That’s because at displacement 1, there are no earlier

lags to control for when computing the sample partial autocorrelation, so it

equals the sample autocorrelation. At higher displacements, of course, the

two diverge.

12.2 Modeling Serial Correlation (in Population)

12.2.1 White Noise

In this section we’ll study the population properties of certain important time

series models, or time series processes. Before we estimate time series

models, we need to understand their population properties, assuming that

the postulated model is true. The simplest of all such time series processes

is the fundamental building block from which all others are constructed. In

fact, it’s so important that we introduce it now. We use y to denote the

observed series of interest. Suppose that

yt = εt

εt ∼ (0, σ2),

where the “shock,” εt, is uncorrelated over time. We say that εt, and hence

yt, is serially uncorrelated. Throughout, unless explicitly stated otherwise,

we assume that σ2 <∞. Such a process, with zero mean, constant variance,

and no serial correlation, is called zero-mean white noise, or simply white

noise.6 Sometimes for short we write

εt ∼ WN(0, σ2)

6It’s called white noise by analogy with white light, which is composed of all colors of the spectrum,
in equal amounts. We can think of white noise as being composed of a wide variety of cycles of differing
periodicities, in equal amounts.
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and hence

yt ∼ WN(0, σ2).

Note that, although εt and hence yt are serially uncorrelated, they are

not necessarily serially independent, because they are not necessarily nor-

mally distributed.7 If in addition to being serially uncorrelated, y is serially

independent, then we say that y is independent white noise.8 We write

yt ∼ iid(0, σ2),

and we say that “y is independently and identically distributed with zero

mean and constant variance.” If y is serially uncorrelated and normally

distributed, then it follows that y is also serially independent, and we say

that y is normal white noise, or Gaussian white noise.9 We write

yt ∼ iidN(0, σ2).

We read “y is independently and identically distributed as normal, with zero

mean and constant variance,” or simply “y is Gaussian white noise.” In

Figure 12.3 we show a sample path of Gaussian white noise, of length T = 150,

simulated on a computer. There are no patterns of any kind in the series due

to the independence over time.

You’re already familiar with white noise, although you may not realize it.

Recall that the disturbance in a regression model is typically assumed to be

white noise of one sort or another. There’s a subtle difference here, however.

Regression disturbances are not observable, whereas we’re working with an

observed series. Later, however, we’ll see how all of our models for observed

series can be used to model unobserved variables such as regression distur-

7Recall that zero correlation implies independence only in the normal case.
8Another name for independent white noise is strong white noise, in contrast to standard serially

uncorrelated weak white noise.
9Carl Friedrich Gauss, one of the greatest mathematicians of all time, discovered the normal distribution

some 200 years ago; hence the adjective “Gaussian.”
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Figure 12.3

bances. Let’s characterize the dynamic stochastic structure of white noise,

yt ∼ WN(0, σ2). By construction the unconditional mean of y is E(yt) = 0,

and the unconditional variance of y is var(yt) = σ2.

Note that the unconditional mean and variance are constant. In fact, the

unconditional mean and variance must be constant for any covariance sta-

tionary process. The reason is that constancy of the unconditional mean was

our first explicit requirement of covariance stationarity, and that constancy

of the unconditional variance follows implicitly from the second requirement

of covariance stationarity, that the autocovariances depend only on displace-

ment, not on time.10

To understand fully the linear dynamic structure of a covariance station-

ary time series process, we need to compute and examine its mean and its

autocovariance function. For white noise, we’ve already computed the mean

and the variance, which is the autocovariance at displacement 0. We have

yet to compute the rest of the autocovariance function; fortunately, however,

10Recall that σ2 = γ(0).
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Figure 12.4

it’s very simple. Because white noise is, by definition, uncorrelated over time,

all the autocovariances, and hence all the autocorrelations, are zero beyond

displacement 0.11 Formally, then, the autocovariance function for a white

noise process is

γ(τ) =


σ2, τ = 0

0, τ ≥ 1,

and the autocorrelation function for a white noise process is

ρ(τ) =


1, τ = 0

0, τ ≥ 1.

In Figure 12.4 we plot the white noise autocorrelation function.

Finally, consider the partial autocorrelation function for a white noise

series. For the same reason that the autocorrelation at displacement 0 is

11If the autocovariances are all zero, so are the autocorrelations, because the autocorrelations are propor-
tional to the autocovariances.
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Figure 12.5

always one, so too is the partial autocorrelation at displacement 0. For a

white noise process, all partial autocorrelations beyond displacement 0 are

zero, which again follows from the fact that white noise, by construction, is

serially uncorrelated. Population regressions of yt on yt−1, or on yt−1 and

yt−2, or on any other lags, produce nothing but zero coefficients, because the

process is serially uncorrelated. Formally, the partial autocorrelation function

of a white noise process is

p(τ) =


1, τ = 0

0, τ ≥ 1.

We show the partial autocorrelation function of a white noise process in

Figure 12.5 . Again, it’s degenerate, and exactly the same as the autocorre-

lation function!

White noise is very special, indeed degenerate in a sense, as what happens

to a white noise series at any time is uncorrelated with anything in the past,

and similarly, what happens in the future is uncorrelated with anything in the
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present or past. But understanding white noise is tremendously important

for at least two reasons. First, as already mentioned, processes with much

richer dynamics are built up by taking simple transformations of white noise.

Second, the goal of all time series modeling (and 1-step-ahead forecasting)

is to reduce the data (or 1-step-ahead forecast errors) to white noise. After

all, if such forecast errors aren’t white noise, then they’re serially correlated,

which means that they’re forecastable, and if forecast errors are forecastable

then the forecast can’t be very good. Thus it’s important that we understand

and be able to recognize white noise.

Thus far we’ve characterized white noise in terms of its mean, variance,

autocorrelation function and partial autocorrelation function. Another char-

acterization of dynamics involves the mean and variance of a process, condi-

tional upon its past. In particular, we often gain insight into the dynamics in

a process by examining its conditional mean.12 In fact, throughout our study

of time series, we’ll be interested in computing and contrasting the uncondi-

tional mean and variance and the conditional mean and variance of

various processes of interest. Means and variances, which convey information

about location and scale of random variables, are examples of what statisti-

cians call moments. For the most part, our comparisons of the conditional

and unconditional moment structure of time series processes will focus on

means and variances (they’re the most important moments), but sometimes

we’ll be interested in higher-order moments, which are related to properties

such as skewness and kurtosis.

For comparing conditional and unconditional means and variances, it will

simplify our story to consider independent white noise, yt ∼ iid(0, σ2). By

the same arguments as before, the unconditional mean of y is 0 and the un-

conditional variance is σ2. Now consider the conditional mean and variance,

where the information set Ωt−1 upon which we condition contains either the

12If you need to refresh your memory on conditional means, consult any good introductory statistics book,
such as Wonnacott and Wonnacott (1990).
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past history of the observed series, Ωt−1 = yt−1, yt−2, ..., or the past history of

the shocks, Ωt−1 = εt−1, εt−2.... (They’re the same in the white noise case.)

In contrast to the unconditional mean and variance, which must be constant

by covariance stationarity, the conditional mean and variance need not be

constant, and in general we’d expect them not to be constant. The uncondi-

tionally expected growth of laptop computer sales next quarter may be ten

percent, but expected sales growth may be much higher, conditional upon

knowledge that sales grew this quarter by twenty percent. For the indepen-

dent white noise process, the conditional mean is

E(yt|Ωt−1) = 0,

and the conditional variance is

var(yt|Ωt−1) = E[(yt − E(yt|Ωt−1))
2|Ωt−1] = σ2.

Conditional and unconditional means and variances are identical for an inde-

pendent white noise series; there are no dynamics in the process, and hence

no dynamics in the conditional moments.

12.2.2 The Lag Operator

The lag operator and related constructs are the natural language in which

time series models are expressed. If you want to understand and manipulate

time series models – indeed, even if you simply want to be able to read the

software manuals – you have to be comfortable with the lag operator. The

lag operator, L, is very simple: it “operates” on a series by lagging it. Hence

Lyt = yt−1. Similarly, L2yt = L(L(yt)) = L(yt−1) = yt−2, and so on. Typically

we’ll operate on a series not with the lag operator but with a polynomial

in the lag operator. A lag operator polynomial of degree m is just a linear
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function of powers of L, up through the m-th power,

B(L) = b0 + b1L+ b2L
2 + ...bmL

m.

To take a very simple example of a lag operator polynomial operating on

a series, consider the m-th order lag operator polynomial Lm, for which

Lmyt = yt−m.

A well-known operator, the first-difference operator ∆, is actually a first-order

polynomial in the lag operator; you can readily verify that

∆yt = (1− L)yt = yt − yt−1.

As a final example, consider the second-order lag operator polynomial 1 +

.9L+ .6L2 operating on yt. We have

(1 + .9L+ .6L2)yt = yt + .9yt−1 + .6yt−2,

which is a weighted sum, or distributed lag, of current and past values.

All time-series models, one way or another, must contain such distributed

lags, because they’ve got to quantify how the past evolves into the present

and future; hence lag operator notation is a useful shorthand for stating and

manipulating time-series models.

Thus far we’ve considered only finite-order polynomials in the lag operator;

it turns out that infinite-order polynomials are also of great interest. We write

the infinite-order lag operator polynomial as

B(L) = b0 + b1L+ b2L
2 + ... =

∞∑
i=0

biL
i.

Thus, for example, to denote an infinite distributed lag of current and past
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shocks we might write

B(L)εt = b0εt + b1εt−1 + b2εt−2 + ... =
∞∑
i=0

biεt−i.

At first sight, infinite distributed lags may seem esoteric and of limited prac-

tical interest, because models with infinite distributed lags have infinitely

many parameters (b0, b1, b2, ...) and therefore can’t be estimated with a finite

sample of data. On the contrary, and surprisingly, it turns out that models

involving infinite distributed lags are central to time series modeling. =’s

theorem, to which we now turn, establishes that centrality.

12.2.3 Autoregression

When building models, we don’t want to pretend that the model we fit is

true. Instead, we want to be aware that we’re approximating a more complex

reality. That’s the modern view, and it has important implications for time-

series modeling. In particular, the key to successful time series modeling

is parsimonious, yet accurate, approximations. Here we emphasize a very

important class of approximations, the autoregressive (AR) model.

We begin by characterizing the autocorrelation function and related quan-

tities under the assumption that the AR model is “true.”13 These charac-

terizations have nothing to do with data or estimation, but they’re crucial

for developing a basic understanding of the properties of the models, which

is necessary to perform intelligent modeling. They enable us to make state-

ments such as “If the data were really generated by an autoregressive process,

then we’d expect its autocorrelation function to have property x.” Armed

with that knowledge, we use the sample autocorrelations and partial auto-

correlations, in conjunction with the AIC and the SIC, to suggest candidate

models, which we then estimate.
13Sometimes, especially when characterizing population properties under the assumption that the models

are correct, we refer to them as processes, which is short for stochastic processes.
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The autoregressive process is a natural approximation to time-series dy-

namics. It’s simply a stochastic difference equation, a simple mathematical

model in which the current value of a series is linearly related to its past

values, plus an additive stochastic shock. Stochastic difference equations are

a natural vehicle for discrete-time stochastic dynamic modeling.

The AR(1) Process

The first-order autoregressive process, AR(1) for short, is

yt = φyt−1 + εt

εt ∼ WN(0, σ2).

In lag operator form, we write

(1− φL)yt = εt.

In Figure 12.6 we show simulated realizations of length 150 of two AR(1)

processes; the first is

yt = .4yt−1 + εt,

and the second is

yt = .95yt−1 + εt,

where in each case

εt ∼ iidN(0, 1),

and the same innovation sequence underlies each realization. The fluctuations

in the AR(1) with parameter φ = .95 appear much more persistent that those

of the AR(1) with parameter φ = .4. Thus the AR(1) model is capable of

capturing highly persistent dynamics.

Certain conditions must be satisfied for an autoregressive process to be
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Figure 12.6

covariance stationary. If we begin with the AR(1) process,

yt = φyt−1 + εt,

and substitute backward for lagged y’s on the right side, we obtain

yt = εt + φεt−1 + φ2εt−2 + ...

This representation of y in terms of current and past shocks is called a

moving-average representation. In lag operator form we write

yt =
1

1− φL
εt.

This moving average representation for y is convergent if and only if |φ| < 1

; thus, |φ| < 1 is the condition for covariance stationarity in the AR(1) case.

Equivalently, the condition for covariance stationarity is that the inverse of

the root of the autoregressive lag operator polynomial be less than one in

absolute value.
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Figure 12.7

From the moving average representation of the covariance stationaryAR(1)

process, we can compute the unconditional mean and variance,

E(yt) = E(εt + φεt−1 + φ2εt−2 + ...)

= E(εt) + φE(εt−1) + φ2E(εt−2) + ...

= 0

and
var(yt) = var(εt + φεt−1 + φ2εt−2 + ...)

= σ2 + φ2σ2 + φ4σ2 + ...

= σ2
∑∞

i=0 φ
2i

= σ2

1−φ2 .
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Figure 12.8

The conditional moments, in contrast, are

E(yt|yt−1) = E(φyt−1 + εt|yt−1)

= φE(yt−1|yt−1) + E(εt|yt−1)

= φyt−1 + 0

= φyt−1
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Figure 12.9

and
var(yt|yt−1) = var((φyt−1 + εt)|yt−1)

= φ2var(yt−1|yt−1) + var(εt|yt−1)

= 0 + σ2

= σ2.

Note in particular that the simple way that the conditional mean adapts to

the changing information set as the process evolves.

To find the autocovariances, we proceed as follows. The process is

yt = φyt−1 + εt,

so that multiplying both sides of the equation by yt−τ we obtain

ytyt−τ = φyt−1yt−τ + εtyt−τ .



232 CHAPTER 12. SERIAL CORRELATION

Figure 12.10

For τ ≥ 1, taking expectations of both sides gives

γ(τ) = φγ(τ − 1).

This is called the Yule-Walker equation. It is a recursive equation; that is,

given γ(τ), for any τ , the Yule-Walker equation immediately tells us how to

get γ(τ + 1). If we knew γ(0) to start things off (an “initial condition”), we

could use the Yule-Walker equation to determine the entire autocovariance

sequence. And we do know γ(0); it’s just the variance of the process, which

we already showed to be

γ(0) = σ
2

1−φ2 .

Thus we have

γ(0) = σ
2

1−φ2

γ(1) = φσ
2

1−φ2

γ(2) = φ2σ
2

1−φ2 ,
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and so on. In general, then,

γ(τ) = φτσ
2

1−φ2 , τ = 0, 1, 2, ....

Dividing through by γ(0) gives the autocorrelations,

ρ(τ) = φτ , τ = 0, 1, 2, ....

Note the gradual autocorrelation decay, which is typical of autoregressive

processes. The autocorrelations approach zero, but only in the limit as the

displacement approaches infinity. In particular, they don’t cut off to zero, as

is the case for moving average processes. If φ is positive, the autocorrelation

decay is one-sided. If φ is negative, the decay involves back-and-forth oscilla-

tions. The relevant case in business and economics is φ > 0, but either way,

the autocorrelations damp gradually, not abruptly. In Figures 12.7 and 12.8

we show the autocorrelation functions for AR(1) processes with parameters

φ = .4 and φ = .95. The persistence is much stronger when φ = .95.

Finally, the partial autocorrelation function for the AR(1) process cuts off

abruptly; specifically,

p(τ) =


φ, τ = 1

0, τ > 1.

It’s easy to see why. The partial autocorrelations are just the last coeffi-

cients in a sequence of successively longer population autoregressions. If the

true process is in fact an AR(1), the first partial autocorrelation is just the

autoregressive coefficient, and coefficients on all longer lags are zero.

In Figures 12.9 and 12.10 we show the partial autocorrelation functions

for our two AR(1) processes. At displacement 1, the partial autocorrelations

are simply the parameters of the process (.4 and .95, respectively), and at

longer displacements, the partial autocorrelations are zero.
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The AR(p) Process

The general p-th order autoregressive process, or AR(p) for short, is

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt

εt ∼ WN(0, σ2).

In lag operator form we write

Φ(L)yt = (1− φ1L− φ2L
2 − ...− φpLp)yt = εt.

In our discussion of the AR(p) process we dispense with mathematical

derivations and instead rely on parallels with the AR(1) case to establish

intuition for its key properties.

An AR(p) process is covariance stationary if and only if the inverses of all

roots of the autoregressive lag operator polynomial Φ(L) are inside the unit

circle.14 In the covariance stationary case we can write the process in the

convergent infinite moving average form

yt =
1

Φ(L)
εt.

The autocorrelation function for the general AR(p) process, as with that of

the AR(1) process, decays gradually with displacement. Finally, the AR(p)

partial autocorrelation function has a sharp cutoff at displacement p, for

the same reason that the AR(1) partial autocorrelation function has a sharp

cutoff at displacement 1.

Let’s discuss the AR(p) autocorrelation function in a bit greater depth.

The key insight is that, in spite of the fact that its qualitative behavior

(gradual damping) matches that of the AR(1) autocorrelation function, it

14A necessary condition for covariance stationarity, which is often useful as a quick check, is
∑p
i=1 φi < 1.

If the condition is satisfied, the process may or may not be stationary, but if the condition is violated, the
process can’t be stationary.
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can nevertheless display a richer variety of patterns, depending on the order

and parameters of the process. It can, for example, have damped monotonic

decay, as in the AR(1) case with a positive coefficient, but it can also have

damped oscillation in ways that AR(1) can’t have. In the AR(1) case, the

only possible oscillation occurs when the coefficient is negative, in which case

the autocorrelations switch signs at each successively longer displacement. In

higher-order autoregressive models, however, the autocorrelations can oscil-

late with much richer patterns reminiscent of cycles in the more traditional

sense. This occurs when some roots of the autoregressive lag operator poly-

nomial are complex.15 Consider, for example, the AR(2) process,

yt = 1.5yt−1 − .9yt−2 + εt.

The corresponding lag operator polynomial is 1− 1.5L+ .9L2, with two com-

plex conjugate roots, .83±.65i. The inverse roots are .75±.58i, both of which

are close to, but inside, the unit circle; thus the process is covariance station-

ary. It can be shown that the autocorrelation function for an AR(2) process

is

ρ(0) = 1

ρ(τ) = φ1ρ(τ − 1) + φ2ρ(τ − 2), τ = 2, 3, ...

ρ(1) =
φ1

1− φ2

Using this formula, we can evaluate the autocorrelation function for the

process at hand; we plot it in Figure 12.11. Because the roots are complex,

the autocorrelation function oscillates, and because the roots are close to the

unit circle, the oscillation damps slowly.

15Note that complex roots can’t occur in the AR(1) case.
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Figure 12.11

12.3 Modeling Serial Correlation (in Sample)

Here we return to regression with AR(p) disturbances, as always using the

liquor sales data for illustration.

12.3.1 Detecting Serial Correlation

If a model has extracted all the systematic information from the data, then

what’s left – the residual – should be iid random noise. Hence the usefulness

of various residual-based tests of the hypothesis that regression disturbances

are white noise (i.e., not serially correlated).

Of course the most obvious thing is simply to inspect the residual plot.

For convenience we reproduce our liquor sales residual plot in Figure 12.12.

There is clear visual evidence of serial correlation in our liquor sales residu-

als. Sometimes, however, things are not so visually obvious. Hence we now

introduce some additional tools.
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Figure 12.12

Residual Scatterplots

The relevant scatterplot for detecting serial correlation involves plotting et

against et−τ . A leading case, corresponding to potential relevance of first-

order serial correlation, involves plotting et against et−1. We show this scat-

terplot for our liquor sales residuals in Figure 12.13. There is an obvious

relationship.

Durbin-Watson

The Durbin-Watson is a more formal test. We work in the simple paradigm

(AR(1)):

yt = x′tβ + εt

εt = φεt−1 + vt

vt ∼ iidN(0, σ2)

The regression disturbance is serially correlated when φ 6= 0 . The hy-

pothesis of interest is that φ = 0 . When φ = 0, the ideal conditions hold,
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Figure 12.13

but when φ 6= 0, the disturbance is serially correlated. More specifically,

when φ 6= 0, εt follows an AR(1) processs. If φ > 0 the disturbance is posi-

tively serially correlated, and if φ < 0 the disturbance is negatively serially

correlated. Positive serial correlation is typically the relevant alternative in

economic applications.

Proceeding, we want to test H0 : φ = 0 against H1 : φ 6= 0. We regress

y → X and obtain the residuals et

DW =

∑T
t=2(et − et−1)

2∑T
t=1 e

2
t

DW takes values in the interval [0, 4], and if all is well, DW should be

around 2. If DW is substantially less than 2, there is evidence of positive

serial correlation. As a rough rule of thumb, if DW is less than 1.5, there

may be cause for alarm, and we should consult the tables of the DW statistic,

available in many statistics and econometrics texts.
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Let us attempt to understand DW more thoroughly. We have:

DW =

∑T
t=2(et − et−1)

2∑T
t=1 e

2
t

=
1
T

∑T
t=2(et − et−1)

2

1
T

∑T
t=1 e

2
t

=
1
T

∑T
t=2 e

2
t + 1

T

∑T
t=2 e

2
t−1 − 2 1

T

∑T
t=2 etet−1

1
T

∑T
t=1 e

2
t

Hence as T →∞:

DW ≈ σ2 + σ2 − 2cov(et, et−1)

σ2
= 2(1− corr(et, et−1)︸ ︷︷ ︸

ρe(1)

)

Hence DW ∈ [0, 4], DW → 2 as φ→ 0, and DW → 0 as φ→ 1.

Also note that the Durbin-Watson test is effectively based only on the first

sample autocorrelation and really only tests whether the first autocorrelation

is zero. We say therefore that the Durbin-Watson is a test for first-order

serial correlation.

In addition, the Durbin-Watson test is not valid if the regressors include

lagged dependent variables.16 (See EPC 6.) On both counts, we’d like more

general and flexible approaches for diagnosing serial correlation.

For liquor sales, DW = .59 – clear evidence of residual serial correlation!

The Breusch-Godfrey Test

The Breusch-Godfrey test is an alternative to the Durbin-Watson test.

It’s designed to detect pth-order serial correlation, where p is selected by the

user, and is also valid in the presence of lagged dependent variables.

16Following standard, if not strictly appropriate, practice, in this book we often report and examine the
Durbin-Watson statistic even when lagged dependent variables are included. We always supplement the
Durbin-Watson statistic, however, with other diagnostics such as the residual correlogram, which remain
valid in the presence of lagged dependent variables, and which almost always produce the same inference as
the Durbin-Watson statistic.
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Figure 12.14: BG Test Equation, 4 Lags

We work in a general AR(p) environment:

yt = x′tβ + εt

εt = φ1εt−1 + ...+ φpεt−p + vt

vt ∼ iidN(0, σ2)

We want to test H0 : (φ1, ..., φp) = 0 against H1 : (φ1, ..., φp) 6= 0. We

proceed as follows:

1. Regress yt → xt and obtain the residuals et

2. Regress et → xt, et−1, ..., et−p

3. Examine TR2. In large samples TR2 ∼ χ2
p under the null.

This should sound familiar, as it precisely parallels the BGP heteroskedas-

ticity test that we studied earlier in Chapter 8.

Some test regression results appear in Figures 12.14-12.15. In particular

we have a BG for AR(4) disturbances of TR2 = 216.7, (p = 0.0000), and
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Figure 12.15: BG Test Equation, 8 Lags

a BG for AR(8) Disturbances of TR2 = 219.0 (p = 0.0000). There is is

strong evidence of autoregressve dynamics through lag 4, but not after lag 4,

suggesting AR(4).

12.3.2 The Residual Correlogram

The residual sample autocorrelations are:

ρ̂e(τ) =
ĉov(et, et−τ)

v̂ar(et)
=

1
T

∑
t etet−τ

1
T

∑
t e

2
t

.

The residual sample partial autocorrelation at displacement τs, p̂e(τ), is



242 CHAPTER 12. SERIAL CORRELATION

the coefficient on et−τ in the regression

et → c, et−1, ..., et−(τ−1), et−τ .

The approximate 95% “Bartlett bands” remain 0± 2√
T

. The Q statistics also

remain unchanged:

QBP = T
m∑
τ=1

ρ̂2
e(τ) ∼ χ2

m−K

QLB = T (T + 2)
m∑
τ=1

(
1

T − τ

)
ρ̂2
e(τ) ∼ χ2

m−K .

The only wringkle is that, when we earlier introduced the correlogram, we

focused on the case of an observed time series, in which case we showed

that the Q statistics are distributed as χ2
m. Now, however, we want to assess

whether unobserved model disturbances are white noise. To do so, we use the

model residuals, which are estimates of the unobserved disturbances. Because

we fit a model to get the residuals, we need to account for the degrees of

freedom used. The upshot is that the distribution of the Q statistics under the

white noise hypothesis is better approximated by a χ2
m−K random variable,

where k is the number of parameters estimated.

We show the residual correlogram for the trend + seasonal model in Figure

12.16. It strongly supports the AR(4) specification. The sample autocorrela-

tions decay gradually, and the sample partial autocorrelations cut off sharply

at displacement 4.

12.3.3 Estimating Serial Correlation

The remaining issue is how to estimate a regression model with serially cor-

related disturbances. Let us illustrate with the AR(1) case. The model is:

yt = x′tβ + εt (1a)
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Figure 12.16: Residual Correlogram From Trend + Seasonal Model

εt = φεt−1 + vt (1b)

vt ∼ iidN(0, σ2) (1c)

It is possible to work out the likelihood function for this model and maximize

it. It is also possible to work out so-called “generalized least squares” proce-

dures, which are different from OLS and which account for serial correlation.

Fortunately, however, there is no need for any of that. Instead, let us simply

manipulate the above equations a bit. We have:

φyt−1 = φx′t−1β + φεt−1 (1a∗) (by multiplying (1a) through by φ)

=⇒ (yt − φyt−1) = (x′t − φx′t−1)β + (εt − φεt−1) (just (1a)− (1a∗))

=⇒ yt = φyt−1 + x′tβ − x′t−1(φβ) + vt

This “new” model satisfies the IC!

So dealing with autocorrelated disturbances amounts to nothing more than

including some extra lags in the regression. The IC are satisfied so OLS is

fine. AR(1) disturbances require 1 lag, as we just showed. General AR(p)

disturbances require p lags.

For liquor sales, everything ponts to AR(4) dynamics
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Figure 12.17: Trend + Seasonal Model with Four Autoregressive Lags

– Supported by original trend + seasonal residual correlogram

– Supported by DW (designed to detect AR(1) but of course it can also

reject against higher-order autoregressive alternatives)

– Supported by BG

– Supported by SIC pattern (AR(1) = −3.797, AR(2) = −3.941, AR(3) =

−4.080, AR(4) = −4.086, AR(5) = −4.071, AR(6) = −4.058, AR(7) =

−4.057, AR(8) = −4.040)

In Figures 12.17-12.20 we show the “final” model estimation results, the

corresponding residual plot, and the residual histogram and normality test.
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Figure 12.18: Trend + Seasonal Model with Four Lags of y, Residual Plot

12.4 Exercises, Problems and Complements

1. (Autocorrelation functions of covariance stationary series)

While interviewing at a top investment bank, your interviewer is im-

pressed by the fact that you have taken a course on time series. She

decides to test your knowledge of the autocovariance structure of covari-

ance stationary series and lists five autocovariance functions:

a. γ(t, τ) = α

b. γ(t, τ) = e−ατ

c. γ(t, τ) = ατ
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Figure 12.19: Trend + Seasonal Model with Four Autoregressive Lags, Residual Scatterplot

d. γ(t, τ) = α
τ , where α is a positive constant.

Which autocovariance function(s) are consistent with covariance station-

arity, and which are not? Why?

2. (Autocorrelation vs. partial autocorrelation)

Describe the difference between autocorrelations and partial autocorre-

lations. How can autocorrelations at certain displacements be positive

while the partial autocorrelations at those same displacements are neg-

ative?

3. (Simulating time series processes)

Many cutting-edge estimation techniques involve simulation. Moreover,

simulation is often a good way to get a feel for a model and its behavior.
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Figure 12.20: Trend + Seasonal Model with Four Autoregressive Lags, Residual Autocorre-
lations

White noise can be simulated on a computer using random number

generators, which are available in most statistics, econometrics and

forecasting packages.

a. Simulate a Gaussian white noise realization of length 200. Call the

white noise εt. Compute the correlogram. Discuss.

b. Form the distributed lag yt = εt + .9εt−1, t = 2, 3, ..., 200. Compute

the sample autocorrelations and partial autocorrelations. Discuss.

c. Let y1 = 1 and yt = .9yt−1 + εt, t = 2, 3, ..., 200. Compute the sample

autocorrelations and partial autocorrelations. Discuss.

4. (Outliers in Time Series)

Outliers can arise for a number of reasons. Perhaps the outlier is simply

a mistake due to a clerical recording error, in which case you’d want to
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replace the incorrect data with the correct data. We’ll call such outliers

measurement outliers, because they simply reflect measurement er-

rors. In a time-series context, if a particular value of a recorded series is

plagued by a measurement outlier, there’s no reason why observations

at other times should necessarily be affected.

Alternatively, outliers in time series may be associated with large unan-

ticipated shocks, the effects of which may certainly linger. If, for exam-

ple, an adverse shock hits the U.S. economy this quarter (e.g., the price

of oil on the world market triples) and the U.S. plunges into a severe

depression, then it’s likely that the depression will persist for some time.

Such outliers are called innovation outliers, because they’re driven by

shocks, or “innovations,” whose effects naturally last more than one pe-

riod due to the dynamics operative in business, economic, and financial

series.

5. (DW from a pure trend model)

Fit a quadratic trend to the liquor sales data, and check the DW statistic.

It looks fine. Why? Are things really fine?

6. (Diagnostic checking of model residuals)

The Durbin-Watson test is invalid in the presence of lagged dependent

variables. Breusch-Godfrey remains valid.

a. Durbin’s h test is an alternative to the Durbin-Watson test. As

with the Durbin-Watson test, it’s designed to detect first-order serial

correlation, but it’s valid in the presence of lagged dependent vari-

ables. Do some background reading as well on Durbin’s h test and

report what you learned.

b. Which do you think is likely to be most useful to you in assessing the

properties of residuals from time-series models: the residual correlo-
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gram, Durbin’s h test, or the Breusch-Godfrey test? Why?

7. Dynamic logit.

Note that, in a logit regression, one or more of the RHS variables could

be lagged dependent variables, It−i(z), i = 1, 2, ...

8. IC2.1 in time-series.

In cross sections we wrote IC2 as “εi independent of xi”. We did not

yet have occasion to state IC2 in time series, since we will not introduce

time series until now. In time series IC2 becomes “εt independent of

xt, xt−1, ...”.

9. Instruments in time-series environments.

In time-series contexts with xt serially correlated, an obvious instrument

for xt is its lag, xt−1. Due to the serial correlation in x, xt−1 is correlated

with xt, yet xt−1 can’t be correlated with its innovation εt, because the

innovation is independent over time and hence uncorrelated with xt−1.

10. Event studies for causal estimation.

In Chapter *** we introduced “diff-in-diff” estimation, which made use

of panel data. Time-series “event studies”, or “synthetic controls”, are

closely related.

In many time series situations we never intervene and do an experiment;

instead we are in the world of “observational studies”, trying to make

causal inferences from the historical record. One would of course like

to watch the realizations of two universes, the one that actually oc-

curred with some treatment applied, and a parallel counterfactual uni-

verse without the treatment applied. That’s not possible in general,

but we can approximate the comparison by estimating a model on pre-

treatment data and using it to predict what would have happened in
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the absence of the treatment, and comparing it to what happened in the

real data with the treatment.

“Treatment” sounds like active intervention, but again, the treatment is

usually passive in event study contexts. Consider the following example.

We want to know the effect of a new gold discovery on stock returns of a

certain gold mining firm. We can’t just look at the firm’s returns on the

announcement day, because daily stock returns vary greatly for lots of

reasons. Event studies proceed by (1) specifying and estimating a model

for the object of interest (in this case a firm’s daily stock returns) over

the pre-event period, using only pre-event data, 1, ..., T (in this case pre-

announcement data), (2) using the model to predict into the post-event

period T + 1, T + 2, ..., and (3) comparing the post-event forecast to the

post-event realization.



Chapter 13

Structural Change

Recall the full ideal conditions, one of which was that the model coefficients

are fixed. Violations of that condition are of great concern in time series.

The cross-section dummy variables that we already studied effectively allow

for structural change in the cross section (heterogeneity across groups). But

structural change is of special relevance in time series. It can be gradual

(Lucas critique, learning, evolution of tastes, ...) or abrupt (e.g., new legis-

lation).

Structural change is related to nonlinearity, because structural change is

actually a type of nonlinearity. Structural change is also related to outliers,

because outliers can sometimes be viewed as a kind of structural change – a

quick intercept break and return.

For notational simplicity we consider the case of simple regression through-

out, but the ideas extend immediately to multiple regression.

13.1 Gradual Parameter Evolution

In many cases, parameters may evolve gradually rather than breaking abruptly.

Suppose, for example, that

yt = β1t + β2txt + εt

251



252 CHAPTER 13. STRUCTURAL CHANGE

where

β1t = γ1 + γ2TIMEt

β2t = δ1 + δ2TIMEt.

Then we have:

yt = (γ1 + γ2TIMEt) + (δ1 + δ2TIMEt)xt + εt.

We simply run:

yt → c, , T IMEt, xt, T IMEt · xt.

This is yet another important use of dummies. The regression can be

used both to test for structural change (F test of γ2 = δ2 = 0), and to

accommodate it if present.

13.2 Abrupt Parameter Breaks

13.2.1 Exogenously-Specified Breaks

Suppose that we don’t know whether a break occurred, but we know that if

it did occur, it occurred at time T ∗.

A Dummy-Variable Approach That is, we entertain the possibility that

yt =

{
β1

1 + β1
2xt + εt, t = 1, ..., T ∗

β2
1 + β2

2xt + εt, t = T ∗ + 1, ..., T

Let

Dt =

{
0, t = 1, ..., T ∗

1, t = T ∗ + 1, ...T

Then we can write the model as:

yt = (β1
1 + (β2

1 − β1
1)Dt) + (β1

2 + (β2
2 − β1

2)Dt)xt + εt
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We simply run:

yt → c, Dt, xt, Dt · xt

The regression can be used both to test for structural change, and to accom-

modate it if present. It represents yet another use of dummies. The no-break

null corresponds to the joint hypothesis of zero coefficients on Dt and Dt · xt,
for which an F test is appropriate.

The Chow Test The dummy-variable setup and associated F test above

is actually just a laborious way of calculating the so-called Chow breakpoint

test statistic,

Chow =
(SSRres − SSR)/K

SSR/(T − 2K)
,

where SSRres is from the regression using sample t = 1, ..., T and SSR =

SSR1 + SSR2, where SSR1 is from the regression using sample t = 1, ..., T ∗

and SSR2 is from the regression using sample t = T ∗+ 1, ...T . Under the IC,

Chow is distributed F , with K and T − 2K degrees of freedom.

13.2.2 The Chow test with Endogenous Break Selection

Thus far we have (unrealistically) assumed that the potential break date is

known. In practice, potential break dates are often unknown and are identi-

fied by “peeking” at the data. We can capture this phenomenon in stylized

fashion by imagining splitting the sample sequentially at each possible break

date, and picking the split at which the Chow breakpoint test statistic is

maximized. Implicitly, that’s what people often do in practice, even if they

don’t always realize or admit it.

The distribution of such a test statistic is not F , as for the traditional

Chow breakpoint test statistic. Rather, the distribution is that of the maxi-

mum of many draws from an F , which will be pushed far to the right of the

distribution of a single F draw.
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The test statistic is

MaxChow = max
τ1≤τ≤τ2

Chow(τ),

where τ denotes sample fraction (typically we take τ1 = .15 and τ2 = .85).

The distribution of MaxChow has been tabulated.

13.3 Dummy Variables and Omitted Variables, Again

and Again

13.3.1 Dummy Variables

Notice that dummy (indicator) variables have arisen repeatedly in our discus-

sions. We used 0-1 dummies to handle group heterogeneity in cross-sections.

We used time dummies to indicate the date in time series. We used 0-1

seasonal dummies to indicate the season in time series.

Now, in this chapter, we used both (1) time dummies to allow for gradual

parameter evolution, and (2) 0-1 dummies to indicate a sharp break date, in

time series.

13.3.2 Omitted Variables

Notice that omitted variables have also arisen repeatedly in our discussions.

1. If there are neglected group effects in cross-section regression, we fix the

problem (of omitted group dummies) by including the requisite group

dummies.

2. If there is neglected trend or seasonality in time-series regression, we fix

the problem (of omitted trend or seasonal dummies) by including the

requisite trend or seasonal dummies.
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3. If there is neglected non-linearity, we fix the problem (effectively one

of omitted Taylor series terms) by including the requisite Taylor series

terms.

4. If there is neglected structural change in time-series regression, we fix the

problem (effectively one of omitted parameter trend dummies or break

dummies) by including the requisite trend dummies or break dummies.

You can think of the basic “uber-strategy” as ”If some systematic feature of

the DGP is missing from the model, then include it.” That is, if something is

missing, then model what’s missing, and then the new uber-model won’t have

anything missing, and all will be well (i.e., the IC will be satisfied). This is

an important recognition. In a subsequent chapter, for example, we’ll study

another violation of the IC known as serial correlation (Chapter ??). The

problem amounts to a feature of the DGP neglected by the initially-fitted

model, and we address the problem by incorporating the neglected feature

into the model.

13.4 Recursive Analysis and CUSUM

13.5 Structural Change in Liquor Sales Trend

13.6 Exercises, Problems and Complements

1. Rolling Regression for Generic Structural Change ***
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Chapter 14

Vector Autoregression

A univariate autoregression involves one variable. In a univariate autore-

gression of order p, we regress a variable on p lags of itself. In contrast,

a multivariate autoregression – that is, a vector autoregression, or V AR –

involves N variables. In an N -variable vector autoregression of order p, or

V AR(p), we estimate N different equations. In each equation, we regress the

relevant left-hand-side variable on p lags of itself, and p lags of every other

variable.1 Thus the right-hand-side variables are the same in every equation

– p lags of every variable.

The key point is that, in contrast to the univariate case, vector autore-

gressions allow for cross-variable dynamics. Each variable is related not only

to its own past, but also to the past of all the other variables in the system.

In a two-variable V AR(1), for example, we have two equations, one for each

variable (y1 and y2) . We write

y1,t = φ11y1,t−1 + φ12y2,t−1 + ε1,t

y2,t = φ21y1,t−1 + φ22y2,t−1 + ε2,t.

Each variable depends on one lag of the other variable in addition to one lag

of itself; that’s one obvious source of multivariate interaction captured by the

1Trends, seasonals, and other exogenous variables may also be included, as long as they’re all included in
every equation.
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V AR that may be useful for forecasting. In addition, the disturbances may

be correlated, so that when one equation is shocked, the other will typically

be shocked as well, which is another type of multivariate interaction that

univariate models miss. We summarize the disturbance variance-covariance

structure as

ε1,t ∼ WN(0, σ2
1)

ε2,t ∼ WN(0, σ2
2)

cov(ε1,t, ε2,t) = σ12.

The innovations could be uncorrelated, which occurs when σ12 = 0, but they

needn’t be.

You might guess that V ARs would be hard to estimate. After all, they’re

fairly complicated models, with potentially many equations and many right-

hand-side variables in each equation. In fact, precisely the opposite is true.

V ARs are very easy to estimate, because we need only run N linear regres-

sions. That’s one reason why V ARs are so popular – OLS estimation of

autoregressive models is simple and stable. Equation-by-equation OLS es-

timation also turns out to have very good statistical properties when each

equation has the same regressors, as is the case in standard V ARs. Otherwise,

a more complicated estimation procedure called seemingly unrelated regres-

sion, which explicitly accounts for correlation across equation disturbances,

would be required to obtain estimates with good statistical properties.

When fitting V AR’s to data, we ca use the Schwarz criterion, just as in

the univariate case. The formula differs, however, because we’re now working

with a multivariate system of equations rather than a single equation. To get

an SIC value for a V AR system, we could add up the equation-by-equation

SIC’s, but unfortunately, doing so is appropriate only if the innovations are

uncorrelated across equations, which is a very special and unusual situation.

Instead, explicitly multivariate versions of information criteria are required,
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which account for cross-equation innovation correlation. We interpret the

SIC values computed for V ARs of various orders in exactly the same way as

in the univariate case: we select that order p such that SIC is minimized.

We construct V AR forecasts in a way that precisely parallels the univari-

ate case. We can construct 1-step-ahead point forecasts immediately, because

all variables on the right-hand side are lagged by one period. Armed with

the 1-step-ahead forecasts, we can construct the 2-step-ahead forecasts, from

which we can construct the 3-step-ahead forecasts, and so on in the usual

way, following the chain rule of forecasting. We construct interval and den-

sity forecasts in ways that also parallel the univariate case. The multivariate

nature of V AR’s makes the derivations more tedious, however, so we by-

pass them. As always, to construct practical forecasts we replace unknown

parameters by estimates.

14.1 Predictive Causality

There’s an important statistical notion of causality that’s intimately related

to forecasting and naturally introduced in the context of V AR’s. It is based

on two key principles: first, cause should occur before effect, and second,

a causal series should contain information useful for forecasting that is not

available in the other series (including the past history of the variable being

forecast). In the unrestricted V AR’s that we’ve studied thus far, everything

causes everything else, because lags of every variable appear on the right of

every equation. Cause precedes effect because the right-hand-side variables

are lagged, and each variable is useful in forecasting every other variable.

We stress from the outset that the notion of predictive causality contains

little if any information about causality in the philosophical sense. Rather,

the statement “yi causes yj” is just shorthand for the more precise, but long-

winded, statement, “ yi contains useful information for predicting yj (in the
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linear least squares sense), over and above the past histories of the other

variables in the system.” To save space, we simply say that yi causes yj.

To understand what predictive causality means in the context of a V AR(p),

consider the j-th equation of the N -equation system, which has yj on the left

and p lags of each of the N variables on the right. If yi causes yj, then at

least one of the lags of yi that appear on the right side of the yj equation

must have a nonzero coefficient.

It’s also useful to consider the opposite situation, in which yi does not

cause yj. In that case, all of the lags of that yi that appear on the right

side of the yj equation must have zero coefficients.2 Statistical causality tests

are based on this formulation of non-causality. We use an F -test to assess

whether all coefficients on lags of yi are jointly zero.

Note that we’ve defined non-causality in terms of 1-step-ahead prediction

errors. In the bivariate V AR, this implies non-causality in terms of h-step-

ahead prediction errors, for all h. (Why?) In higher dimensional cases, things

are trickier; 1-step-ahead noncausality does not necessarily imply noncausal-

ity at other horizons. For example, variable i may 1-step cause variable j,

and variable j may 1-step cause variable k. Thus, variable i 2-step causes

variable k, but does not 1-step cause variable k.

Causality tests are often used when building and assessing forecasting

models, because they can inform us about those parts of the workings of

complicated multivariate models that are particularly relevant for forecasting.

Just staring at the coefficients of an estimated V AR (and in complicated

systems there are many coefficients) rarely yields insights into its workings.

Thus we need tools that help us to see through to the practical forecasting

properties of the model that concern us. And we often have keen interest

in the answers to questions such as “Does yi contribute toward improving

forecasts of yj?,” and “Does yj contribute toward improving forecasts of yi?”

2Note that in such a situation the error variance in forecasting yj using lags of all variables in the system
will be the same as the error variance in forecasting yj using lags of all variables in the system except yi.
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If the results violate intuition or theory, then we might scrutinize the model

more closely. In a situation in which we can’t reject a certain noncausality

hypothesis, and neither intuition nor theory makes us uncomfortable with it,

we might want to impose it, by omitting certain lags of certain variables from

certain equations.

Various types of causality hypotheses are sometimes entertained. In any

equation (the j-th, say), we’ve already discussed testing the simple noncausal-

ity hypothesis that:

(a) No lags of variable i aid in one-step-ahead prediction of variable j.

We can broaden the idea, however. Sometimes we test stronger noncausal-

ity hypotheses such as:

1. No lags of a set of other variables aid in one-step-ahead prediction of

variable j.

2. No lags of any other variables aid in one-step-ahead prediction of vari-

able j.

3. No variable in a set A causes any variable in a set B, in which case we

say that the variables in A are block non-causal for those in B.

14.2 Application: Housing Starts and Completions

We estimate a bivariate V AR for U.S. seasonally-adjusted housing starts and

completions, two widely-watched business cycle indicators, 1968.01-1996.06.

We use the V AR to produce point extrapolation forecasts. We show housing

starts and completions in Figure 14.1. Both are highly cyclical, increasing

during business-cycle expansions and decreasing during contractions. More-

over, completions tend to lag behind starts, which makes sense because a

house takes time to complete.
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Figure 14.1: Housing Starts and Completions, 1968 - 1996

We split the data into an estimation sample, 1968.01-1991.12, and a hold-

out sample, 1992.01-1996.06 for forecasting. We therefore perform all model

specification analysis and estimation, to which we now turn, on the 1968.01-

1991.12 data. We show the starts correlogram in Table 14.2 and Figure 14.3.

The sample autocorrelation function decays slowly, whereas the sample par-

tial autocorrelation function appears to cut off at displacement 2. The pat-

terns in the sample autocorrelations and partial autocorrelations are highly

statistically significant, as evidenced by both the Bartlett standard errors

and the Ljung-Box Q-statistics. The completions correlogram, in Table 14.4

and Figure 14.5, behaves similarly.

We’ve not yet introduced the cross correlation function. There’s been no

need, because it’s not relevant for univariate modeling. It provides important

information, however, in the multivariate environments that now concern us.

Recall that the autocorrelation function is the correlation between a variable

and lags of itself. The cross-correlation function is a natural multivariate

analog; it’s simply the correlation between a variable and lags of another

variable. We estimate those correlations using the usual estimator and graph

them as a function of displacement along with the Bartlett two- standard-

error bands, which apply just as in the univariate case.
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Figure 14.2: Housing Starts Correlogram

The cross-correlation function (Figure 14.6) for housing starts and com-

pletions is very revealing. Starts and completions are highly correlated at all

displacements, and a clear pattern emerges as well: although the contempo-

raneous correlation is high (.78), completions are maximally correlated with

starts lagged by roughly 6-12 months (around .90). Again, this makes good

sense in light of the time it takes to build a house.

Now we proceed to model starts and completions. We need to select

the order, p, of our V AR(p). Based on exploration using SIC, we adopt a

V AR(4).

First consider the starts equation (Table 14.7a), residual plot (Figure

14.7b), and residual correlogram (Table 14.8, Figure 14.9). The explana-

tory power of the model is good, as judged by the R2 as well as the plots

of actual and fitted values, and the residuals appear white, as judged by

the residual sample autocorrelations, partial autocorrelations, and Ljung-Box

statistics. Note as well that no lag of completions has a significant effect on

starts, which makes sense – we obviously expect starts to cause completions,
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Figure 14.3: Housing Starts Autocorrelations and Partial Autocorrelations

but not conversely. The completions equation (Table 14.10a), residual plot

(Figure 14.10b), and residual correlogram (Table 14.11, Figure 14.12) appear

similarly good. Lagged starts, moreover, most definitely have a significant

effect on completions.

Table 14.13 shows the results of formal causality tests. The hypothesis

that starts don’t cause completions is simply that the coefficients on the four

lags of starts in the completions equation are all zero. The F -statistic is

overwhelmingly significant, which is not surprising in light of the previously-

noticed highly-significant t-statistics. Thus we reject noncausality from starts

to completions at any reasonable level. Perhaps more surprising, we also

reject noncausality from completions to starts at roughly the 5% level. Thus

the causality appears bi-directional, in which case we say there is feedback.



14.2. APPLICATION: HOUSING STARTS AND COMPLETIONS 265

Figure 14.4: Housing Completions Correlogram
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Figure 14.5: Housing Completions Autocorrelations and Partial Autocorrelations

Figure 14.6: Housing Starts and Completions Sample Cross Correlations
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(a) VAR Starts Equation

(b) VAR Starts Equation - Residual Plot

Figure 14.7: VAR Starts Model
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Figure 14.8: VAR Starts Residual Correlogram
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Figure 14.9: VAR Starts Equation - Sample Autocorrelation and Partial Autocorrelation
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(a) VAR Completions Equation

(b) VAR Completions Equation - Residual Plot

Figure 14.10: VAR Completions Model
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Figure 14.11: VAR Completions Residual Correlogram
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Figure 14.12: VAR Completions Equation - Sample Autocorrelation and Partial Autocorre-
lation
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Figure 14.13: Housing Starts and Completions - Causality Tests

Finally, we construct forecasts for the out-of-sample period, 1992.01-1996.06.

The starts forecast appears in Figure 14.14. Starts begin their recovery before

1992.01, and the V AR projects continuation of the recovery. The V AR fore-

casts captures the general pattern quite well, but it forecasts quicker mean

reversion than actually occurs, as is clear when comparing the forecast and

realization in Figure 14.15. The figure also makes clear that the recovery

of housing starts from the recession of 1990 was slower than the previous

recoveries in the sample, which naturally makes for difficult forecasting. The

completions forecast suffers the same fate, as shown in Figures 14.16 and

14.17. Interestingly, however, completions had not yet turned by 1991.12,

but the forecast nevertheless correctly predicts the turning point. (Why?)
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Figure 14.14: Housing Starts Forecast

Figure 14.15: Housing Starts Forecast and Realization
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Figure 14.16: Housing Completions Forecast

Figure 14.17: Housing Completions Forecast and Realization
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14.3 Exercises, Problems and Complements

1. Housing starts and completions, continued.

Our VAR analysis of housing starts and completions, as always, involved

many judgment calls. Using the starts and completions data, assess the

adequacy of our models and forecasts. Among other things, you may

want to consider the following questions:

a. Should we allow for a trend in the forecasting model?

b. How do the results change if, in light of the results of the causality

tests, we exclude lags of completions from the starts equation, re-

estimate by seemingly-unrelated regression, and forecast?

c. Are the VAR forecasts of starts and completions more accurate than

univariate forecasts?

2. Comparative forecasting performance of V ARs and univariate models.

Using the housing starts and completions data on the book’s website,

compare the forecasting performance of the VAR used in this chapter

to that of the obvious competitor: univariate autoregressions. Use the

same in-sample and out-of-sample periods as in the chapter. Why might

the forecasting performance of the V AR and univariate methods differ?

Why might you expect the V AR completions forecast to outperform

the univariate autoregression, but the V AR starts forecast to be no

better than the univariate autoregression? Do your results support your

conjectures?



Chapter 15

Dynamic Heteroskedasticity

Recall the full ideal conditions.

The celebrated Wold decomposition makes clear that every covariance

stationary series may be viewed as ultimately driven by underlying weak

white noise innovations. Hence it is no surprise that every model discussed

in this book is driven by underlying white noise. To take a simple example, if

the series yt follows an AR(1) process, then yt = φyt−1 + εt, where εt is white

noise. In some situations it is inconsequential whether εt is weak or strong

white noise, that is, whether εt is independent, as opposed to merely serially

uncorrelated. Hence, to simplify matters we sometimes assume strong white

noise, εt ∼ iid(0, σ2). Throughout this book, we have thus far taken that

approach, sometimes explicitly and sometimes implicitly.

When εt is independent, there is no distinction between the unconditional

distribution of εt and the distribution of εt conditional upon its past, by def-

inition of independence. Hence σ2 is both the unconditional and conditional

variance of εt. The Wold decomposition, however, does not require that εt be

serially independent; rather it requires only that εt be serially uncorrelated.

If εt is dependent, then its unconditional and conditional distributions will

differ. We denote the unconditional innovation distribution by εt ∼ (0, σ2).

We are particularly interested in conditional dynamics characterized by het-

eroskedasticity, or time-varying volatility. Hence we denote the conditional
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distribution by εt|Ωt−1 ∼ (0, σ2
t ), where Ωt−1 = εt−1, εt−2, .... The conditional

variance σ2
t will in general evolve as Ωt−1 evolves, which focuses attention on

the possibility of time-varying innovation volatility.1

Allowing for time-varying volatility is crucially important in certain

economic and financial contexts. The volatility of financial asset returns, for

example, is often time-varying. That is, markets are sometimes tranquil and

sometimes turbulent, as can readily be seen by examining the time series of

stock market returns in Figure 1, to which we shall return in detail. Time-

varying volatility has important implications for financial risk management,

asset allocation and asset pricing, and it has therefore become a central part

of the emerging field of financial econometrics. Quite apart from financial

applications, however, time-varying volatility also has direct implications for

interval and density forecasting in a wide variety of applications: correct con-

fidence intervals and density forecasts in the presence of volatility fluctuations

require time-varying confidence interval widths and time-varying density fore-

cast spreads. The models that we have considered thus far, however, do not

allow for that possibility. In this chapter we do so.

15.1 The Basic ARCH Process

Consider the general linear process,

yt = B(L)εt

B(L) =
∞∑
i=0

biL
i

∞∑
i=0

b2
i <∞

1In principle, aspects of the conditional distribution other than the variance, such as conditional skewness,
could also fluctuate. Conditional variance fluctuations are by far the most important in practice, however,
so we assume that fluctuations in the conditional distribution of ε are due exclusively to fluctuations in σ2

t .
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b0 = 1

εt ∼ WN(0, σ2).

We will work with various cases of this process.

Suppose first that εt is strong white noise, εt ∼ iid(0, σ2). Let us review

some results already discussed for the general linear process, which will prove

useful in what follows. The unconditional mean and variance of y are

E(yt) = 0

and

E(y2
t ) = σ2

∞∑
i=0

b2
i ,

which are both time-invariant, as must be the case under covariance sta-

tionarity. However, the conditional mean of y is time-varying:

E(yt|Ωt−1) =
∞∑
i=1

biεt−i,

where the information set is

Ωt−1 = εt−1, εt−2, ....

The ability of the general linear process to capture covariance stationary

conditional mean dynamics is the source of its power.

Because the volatility of many economic time series varies, one would hope

that the general linear process could capture conditional variance dynamics

as well, but such is not the case for the model as presently specified: the

conditional variance of y is constant at

E
(
(yt − E(yt|Ωt−1))

2|Ωt−1

)
= σ2.
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This potentially unfortunate restriction manifests itself in the properties of

the h-step-ahead conditional prediction error variance. The minimum mean

squared error forecast is the conditional mean,

E(yt+h|Ωt) =
∞∑
i=0

bh+iεt−i,

and so the associated prediction error is

yt+h − E(yt+h|Ωt) =
h−1∑
i=0

biεt+h−i,

which has a conditional prediction error variance of

E
(

(yt+h − E(yt+h|Ωt))
2 |Ωt

)
= σ2

h−1∑
i=0

b2
i .

The conditional prediction error variance is different from the uncondi-

tional variance, but it is not time-varying: it depends only on h, not on the

conditioning information Ωt. In the process as presently specified, the con-

ditional variance is not allowed to adapt to readily available and potentially

useful conditioning information.

So much for the general linear process with iid innovations. Now we extend

it by allowing εt to be weak rather than strong white noise, with a particular

nonlinear dependence structure. In particular, suppose that, as before,

yt = B(L)εt

B(L) =
∞∑
i=0

biL
i

∞∑
i=0

b2
i <∞

b0 = 1,
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but now suppose as well that

εt|Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + γ(L)ε2

t

ω > 0γ(L) =

p∑
i=1

γiL
iγi ≥ 0foralli

∑
γi < 1.

Note that we parameterize the innovation process in terms of its condi-

tional density,

εt|Ωt−1,

which we assume to be normal with a zero conditional mean and a con-

ditional variance that depends linearly on p past squared innovations. εt is

serially uncorrelated but not serially independent, because the current con-

ditional variance σ2
t depends on the history of εt.

2 The stated regularity

conditions are sufficient to ensure that the conditional and unconditional

variances are positive and finite, and that yt is covariance stationary.

The unconditional moments of εt are constant and are given by

E(εt) = 0

and

E(εt − E(εt))
2 =

ω

1−
∑
γi
.

The important result is not the particular formulae for the unconditional

mean and variance, but the fact that they are fixed, as required for covariance

stationarity. As for the conditional moments of εt , its conditional variance

2In particular, σ2
t depends on the previous p values of εt via the distributed lag

γ(L)ε2t .



282 CHAPTER 15. DYNAMIC HETEROSKEDASTICITY

is time-varying,

E
(
(εt − E(εt|Ωt−1))

2|Ωt−1

)
= ω + γ(L)ε2

t ,

and of course its conditional mean is zero by construction.

Assembling the results to move to the unconditional and conditional mo-

ments of y as opposed to εt , it is easy to see that both the unconditional mean

and variance of y are constant (again, as required by covariance stationarity),

but that both the conditional mean and variance are time-varying:

E(yt|Ωt−1) =
∞∑
i=1

biεt−i

E
(
(yt − E(yt|Ωt−1))

2|Ωt−1

)
= ω + γ(L)ε2

t .

Thus, we now treat conditional mean and variance dynamics in a symmet-

ric fashion by allowing for movement in each, as determined by the evolving

information set Ωt−1. In the above development, εt is called an ARCH(p)

process, and the full model sketched is an infinite-ordered moving average

with ARCH(p) innovations, where ARCH stands for autoregressive condi-

tional heteroskedasticity. Clearly εt is conditionally heteroskedastic, because

its conditional variance fluctuates. There are many models of conditional

heteroskedasticity, but most are designed for cross-sectional contexts, such

as when the variance of a cross-sectional regression disturbance depends on

one or more of the regressors.3 However, heteroskedasticity is often present as

well in the time-series contexts relevant for forecasting, particularly in finan-

cial markets. The particular conditional variance function associated with

the ARCH process,

σ2
t = ω + γ(L)ε2

t ,

3The variance of the disturbance in a model of household expenditure, for example, may depend on
income.
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is tailor-made for time-series environments, in which one often sees volatil-

ity clustering, such that large changes tend to be followed by large changes,

and small by small, of either sign. That is, one may see persistence, or serial

correlation, in volatility dynamics (conditional variance dynamics), quite

apart from persistence (or lack thereof) in conditional mean dynamics. The

ARCH process approximates volatility dynamics in an autoregressive fashion;

hence the name autoregressiveconditional heteroskedasticity. To understand

why, note that the ARCH conditional variance function links today’s con-

ditional variance positively to earlier lagged ε2
t ’s, so that large ε2

t ’s in the

recent past produce a large conditional variance today, thereby increasing

the likelihood of a large ε2
t today. Hence ARCH processes are to conditional

variance dynamics precisely as standard autoregressive processes are to con-

ditional mean dynamics. The ARCH process may be viewed as a model for

the disturbance in a broader model, as was the case when we introduced it

above as a model for the innovation in a general linear process. Alternatively,

if there are no conditional mean dynamics of interest, the ARCH process may

be used for an observed series. It turns out that financial asset returns often

have negligible conditional mean dynamics but strong conditional variance

dynamics; hence in much of what follows we will view the ARCH process as

a model for an observed series, which for convenience we will sometimes call

a “return.”

15.2 The GARCH Process

Thus far we have used an ARCH(p) process to model conditional variance

dynamics. We now introduce the GARCH(p,q) process (GARCH stands

for generalized ARCH), which we shall subsequently use almost exclusively.

As we shall see, GARCH is to ARCH (for conditional variance dynamics) as

ARMA is to AR (for conditional mean dynamics).
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The pure GARCH(p,q) process is given by4

yt = εt

εt|Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + α(L)ε2

t + β(L)σ2
t

α(L) =

p∑
i=1

αiL
i, β(L) =

q∑
i=1

βiL
i

ω > 0, αi ≥ 0, βi ≥ 0,
∑

αi +
∑

βi < 1.

The stated conditions ensure that the conditional variance is positive and

that yt is covariance stationary.

Back substitution on σ2
t reveals that the GARCH(p,q) process can be

represented as a restricted infinite-ordered ARCH process,

σ2
t =

ω

1−
∑
βi

+
α(L)

1− β(L)
ε2
t =

ω

1−
∑
βi

+
∞∑
i=1

δiε
2
t−i,

which precisely parallels writing an ARMA process as a restricted infinite-

ordered AR. Hence the GARCH(p,q) process is a parsimonious approximation

to what may truly be infinite-ordered ARCH volatility dynamics.

It is important to note a number of special cases of the GARCH(p,q)

process. First, of course, the ARCH(p) process emerges when

β(L) = 0.

Second, if both α(L) and β(L) are zero, then the process is simply iid Gaus-

sian noise with variance ω. Hence, although ARCH and GARCH processes

may at first appear unfamiliar and potentially ad hoc, they are in fact much

more general than standard iid white noise, which emerges as a potentially

4By “pure” we mean that we have allowed only for conditional variance dynamics, by setting yt = εt. We
could of course also introduce conditional mean dynamics, but doing so would only clutter the discussion
while adding nothing new.
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highly-restrictive special case.

Here we highlight some important properties of GARCH processes. All

of the discussion of course applies as well to ARCH processes, which are

special cases of GARCH processes. First, consider the second-order moment

structure of GARCH processes. The first two unconditional moments of the

pure GARCH process are constant and given by

E(εt) = 0

and

E(εt − E(εt))
2 =

ω

1−
∑
αi −

∑
βi
,

while the conditional moments are

E(εt|Ωt−1) = 0

and of course

E
(
(εt − E(εt|Ωt−1))

2|Ωt−1

)
= ω + α(L)ε2

t + β(L)σ2
t .

In particular, the unconditional variance is fixed, as must be the case under

covariance stationarity, while the conditional variance is time-varying. It is no

surprise that the conditional variance is time-varying – the GARCH process

was of course designed to allow for a time-varying conditional variance – but

it is certainly worth emphasizing: the conditional variance is itself a serially

correlated time series process.

Second, consider the unconditional higher-order (third and fourth) mo-

ment structure of GARCH processes. Real-world financial asset returns,

which are often modeled as GARCH processes, are typically uncondition-

ally symmetric but leptokurtic (that is, more peaked in the center and with

fatter tails than a normal distribution). It turns out that the implied uncondi-
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tional distribution of the conditionally Gaussian GARCH process introduced

above is also symmetric and leptokurtic. The unconditional leptokurtosis of

GARCH processes follows from the persistence in conditional variance, which

produces clusters of “low volatility” and “high volatility” episodes associated

with observations in the center and in the tails of the unconditional distri-

bution, respectively. Both the unconditional symmetry and unconditional

leptokurtosis agree nicely with a variety of financial market data.

Third, consider the conditional prediction error variance of a GARCH

process, and its dependence on the conditioning information set. Because

the conditional variance of a GARCH process is a serially correlated random

variable, it is of interest to examine the optimal h-step-ahead prediction,

prediction error, and conditional prediction error variance. Immediately, the

h-step-ahead prediction is

E(εt+h|Ωt) = 0,

and the corresponding prediction error is

εt+h − E(εt+h|Ωt) = εt+h.

This implies that the conditional variance of the prediction error,

E
(
(εt+h − E(εt+h|Ωt))

2|Ωt

)
= E(ε2

t+h|Ωt),

depends on both h and

Ωt,

because of the dynamics in the conditional variance. Simple calculations
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reveal that the expression for the GARCH(p, q) process is given by

E(ε2
t+h|Ωt) = ω

(
h−2∑
i=0

(α(1) + β(1))i

)
+ (α(1) + β(1))h−1σ2

t+1.

In the limit, this conditional variance reduces to the unconditional variance

of the process,

lim
h→∞

E(ε2
t+h|Ωt) =

ω

1− α(1)− β(1)
.

For finite h, the dependence of the prediction error variance on the current

information set Ωt can be exploited to improve interval and density forecasts.

Fourth, consider the relationship between ε2
t and σ2

t . The relationship is

important: GARCH dynamics in σ2
t turn out to introduce ARMA dynamics

in ε2
t .

5 More precisely, if εt is a GARCH(p,q) process, then

ε2
t

has the ARMA representation

ε2
t = ω + (α(L) + β(L))ε2

t − β(L)νt + νt,

where

νt = ε2
t − σ2

t

is the difference between the squared innovation and the conditional variance

at time t. To see this, note that if εt is GARCH(p,q), then

σ2
t = ω + α(L)ε2

t + β(L)σ2
t .

Adding and subtracting

β(L)ε2
t

5Put differently, the GARCH process approximates conditional variance dynamics in the same way that
an ARMA process approximates conditional mean dynamics.
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from the right side gives

σ2
t = ω + α(L)ε2

t + β(L)ε2
t − β(L)ε2

t + β(L)σ2
t

= ω + (α(L) + β(L))ε2
t − β(L)(ε2

t − σ2
t ).

Adding

ε2
t

to each side then gives

σ2
t + ε2

t = ω + (α(L) + β(L))ε2
t − β(L)(ε2

t − σ2
t ) + ε2

t ,

so that

ε2
t = ω + (α(L) + β(L))ε2

t − β(L)(ε2
t − σ2

t ) + (ε2
t − σ2

t ),

= ω + (α(L) + β(L))ε2
t − β(L)νt + νt.

Thus,

ε2
t

is an ARMA((max(p,q)), p) process with innovation νt , where

νt ∈ [−σ2
t ,∞).

ε2
t is covariance stationary if the roots of α(L)+β(L)=1 are outside the

unit circle.

Fifth, consider in greater depth the similarities and differences between σ2
t

and

ε2
t .

It is worth studying closely the key expression,

νt = ε2
t − σ2

t ,
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which makes clear that

ε2
t

is effectively a “proxy” for σ2
t , behaving similarly but not identically, with

νt being the difference, or error. In particular, ε2
t is a noisy proxy: ε2

t is

an unbiased estimator of σ2
t , but it is more volatile. It seems reasonable,

then, that reconciling the noisy proxy ε2
t and the true underlying σ2

t should

involve some sort of smoothing of ε2
t . Indeed, in the GARCH(1,1) case σ2

t

is precisely obtained by exponentially smoothing ε2
t . To see why, consider

the exponential smoothing recursion, which gives the current smoothed value

as a convex combination of the current unsmoothed value and the lagged

smoothed value,

ε̄2
t = γε2

t + (1− γ)ε̄2
t−1.

Back substitution yields an expression for the current smoothed value as

an exponentially weighted moving average of past actual values:

ε̄2
t =

∑
wjε

2
t−j,

where

wj = γ(1− γ)j.

Now compare this result to the GARCH(1,1) model, which gives the cur-

rent volatility as a linear combination of lagged volatility and the lagged

squared return, σ2
t = ω + αε2

t−1 + βσ2
t−1.

Back substitution yields σ2
t = ω

1−β + α
∑
βj−1ε2

t−j, so that the GARCH(1,1)

process gives current volatility as an exponentially weighted moving average

of past squared returns.

Sixth, consider the temporal aggregation of GARCH processes. By tem-

poral aggregation we mean aggregation over time, as for example when we

convert a series of daily returns to weekly returns, and then to monthly

returns, then quarterly, and so on. It turns out that convergence toward
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normality under temporal aggregation is a feature of real-world financial as-

set returns. That is, although high-frequency (e.g., daily) returns tend to

be fat-tailed relative to the normal, the fat tails tend to get thinner under

temporal aggregation, and normality is approached. Convergence to normal-

ity under temporal aggregation is also a property of covariance stationary

GARCH processes. The key insight is that a low-frequency change is simply

the sum of the corresponding high-frequency changes; for example, an annual

change is the sum of the internal quarterly changes, each of which is the sum

of its internal monthly changes, and so on. Thus, if a Gaussian central limit

theorem can be invoked for sums of GARCH processes, convergence to nor-

mality under temporal aggregation is assured. Such theorems can be invoked

if the process is covariance stationary.

In closing this section, it is worth noting that the symmetry and leptokur-

tosis of the unconditional distribution of the GARCH process, as well as the

disappearance of the leptokurtosis under temporal aggregation, provide nice

independent confirmation of the accuracy of GARCH approximations to as-

set return volatility dynamics, insofar as GARCH was certainly not invented

with the intent of explaining those features of financial asset return data.

On the contrary, the unconditional distributional results emerged as unan-

ticipated byproducts of allowing for conditional variance dynamics, thereby

providing a unified explanation of phenomena that were previously believed

unrelated.

15.3 Extensions of ARCH and GARCH Models

There are numerous extensions of the basic GARCH model. In this section,

we highlight several of the most important. One important class of extensions

allows for asymmetric response; that is, it allows for last period’s squared
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return to have different effects on today’s volatility, depending on its sign.6

Asymmetric response is often present, for example, in stock returns.

15.3.1 Asymmetric Response

The simplest GARCH model allowing for asymmetric response is the thresh-

old GARCH, or TGARCH, model.7 We replace the standard GARCH con-

ditional variance function, σ2
t = ω + αε2

t−1 + βσ2
t−1, with σ2

t = ω + αε2
t−1 + γε2

t−1Dt−1 + βσ2
t−1,

where Dt =
1, ifεt < 0

0otherwise.
.

The dummy variable D keeps track of whether the lagged return is posi-

tive or negative. When the lagged return is positive (good news yesterday),

D=0, so the effect of the lagged squared return on the current conditional

variance is simply α. In contrast, when the lagged return is negative (bad

news yesterday), D=1, so the effect of the lagged squared return on the cur-

rent conditional variance is α+γ. If γ = 0, the response is symmetric and we

have a standard GARCH model, but if γ 6=0 we have asymmetric response

of volatility to news. Allowance for asymmetric response has proved use-

ful for modeling “leverage effects” in stock returns, which occur when γ <0.8

Asymmetric response may also be introduced via the exponential GARCH

(EGARCH) model,

ln(σ2
t ) = ω + α

∣∣∣ε t−1
σt−1

∣∣∣+ γε t−1
σt−1

+ β ln(σ2
t−1).

Note that volatility is driven by both size and sign of shocks; hence the model

allows for an asymmetric response depending on the sign of news.9 The

6In the GARCH model studied thus far, only the square of last period’s return affects the current condi-
tional variance; hence its sign is irrelevant.

7For expositional convenience, we will introduce all GARCH extensions in the context of GARCH(1,1),
which is by far the most important case for practical applications. Extensions to the GARCH(p,q) case are
immediate but notationally cumbersome.

8Negative shocks appear to contribute more to stock market volatility than do positive shocks. This is
called the leverage effect, because a negative shock to the market value of equity increases the aggregate
debt/equity ratio (other things the same), thereby increasing leverage.

9The absolute “size” of news is captured by |rt−1/σt−1| , and the sign is captured by rt−1/σt−1.
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log specification also ensures that the conditional variance is automatically

positive, because σ2
t is obtained by exponentiating ln(σ2

t ) ; hence the name

“exponential GARCH.”

15.3.2 Exogenous Variables in the Volatility Function

Just as ARMA models of conditional mean dynamics can be augmented to

include the effects of exogenous variables, so too can GARCH models of

conditional variance dynamics.

We simply modify the standard GARCH volatility function in the obvious

way, writing

σ2
t = ω + αε2

t−1 + βσ2
t−1 + γxt,

where γ is a parameter and x is a positive exogenous variable.10 Allowance

for exogenous variables in the conditional variance function is sometimes

useful. Financial market volume, for example, often helps to explain market

volatility.

15.3.3 Regression with GARCH disturbances and GARCH-M

Just as ARMA models may be viewed as models for disturbances in regres-

sions, so too may GARCH models. We write

yt = β0 + β1xt + εt

εt|Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + αε2

t−1 + βσ2
t−1. Consider now a regression model with GARCH

disturbances of the usual sort, with one additional twist: the conditional

variance enters as a regressor, thereby affecting the conditional mean. We

10Extension to allow multiple exogenous variables is straightforward.
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write

yt = β0 + β1xt + γσ2
t + εt

εt|Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + αε2

t−1 + βσ2
t−1. This model, which is a special case of the gen-

eral regression model with GARCH disturbances, is called GARCH-in-Mean

(GARCH-M). It is sometimes useful in modeling the relationship between

risks and returns on financial assets when risk, as measured by the condi-

tional variance, varies.11

15.3.4 Component GARCH

Note that the standard GARCH(1,1) process may be written as (σ2
t − ω̄) = α(ε2

t−1 − ω̄) + β(σ2
t−1 − ω̄),

where ω̄ = ω
1−α−β is the unconditional variance.12 This is precisely the GARCH(1,1)

model introduced earlier, rewritten in a slightly different but equivalent form.

In this model, short-run volatility dynamics are governed by the parameters

α and β, and there are no long-run volatility dynamics, because ω̄ is constant.

Sometimes we might want to allow for both long-run and short-run, or persis-

tent and transient, volatility dynamics in addition to the short-run volatility

dynamics already incorporated. To do this, we replace ω̄ with a time-varying

process, yielding (σ2
t − qt) = α(ε2

t−1 − qt−1) + β(σ2
t−1 − qt−1), where the time-

varying long-run volatility, qt , is given by qt = ω + ρ(qt−1 − ω) + φ(ε2
t−1 − σ2

t−1).

This “component GARCH” model effectively lets us decompose volatility

dynamics into long-run (persistent) and short-run (transitory) components,

which sometimes yields useful insights. The persistent dynamics are governed

by ρ , and the transitory dynamics are governed by α and β.13

11One may also allow the conditional standard deviation, rather than the conditional variance, to enter
the regression.

12ω̄ is sometimes called the “long-run” variance, referring to the fact that the unconditional variance is
the long-run average of the conditional variance.

13It turns out, moreover, that under suitable conditions the component GARCH model introduced here is
covariance stationary, and equivalent to a GARCH(2,2) process subject to certain nonlinear restrictions on
its parameters.
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15.3.5 Mixing and Matching

In closing this section, we note that the different variations and extensions of

the GARCH process may of course be mixed. As an example, consider the fol-

lowing conditional variance function: (σ2
t − qt) = α(ε2

t−1 − qt−1) + γ(ε2
t−1 − qt−1)Dt−1 + β(σ2

t − qt−1) + θxt.

This is a component GARCH specification, generalized to allow for asymmet-

ric response of volatility to news via the sign dummy D, as well as effects from

the exogenous variable x.

15.4 Estimating, Forecasting and Diagnosing GARCH

Models

Recall that the likelihood function is the joint density function of the data,

viewed as a function of the model parameters, and that maximum likelihood

estimation finds the parameter values that maximize the likelihood function.

This makes good sense: we choose those parameter values that maximize

the likelihood of obtaining the data that were actually obtained. It turns

out that construction and evaluation of the likelihood function is easily done

for GARCH models, and maximum likelihood has emerged as the estimation

method of choice.14 No closed-form expression exists for the GARCH maxi-

mum likelihood estimator, so we must maximize the likelihood numerically.15

Construction of optimal forecasts of GARCH processes is simple. In fact,

we derived the key formula earlier but did not comment extensively on it.

Recall, in particular, that

σ2
t+h,t = E

[
ε2
t+h|Ωt

]
= ω

(
h−1∑
i=1

[α(1) + β(1)]i
)

+ [α(1) + β(1)]h−1 σ2
t+1.

14The precise form of the likelihood is complicated, and we will not give an explicit expression here, but
it may be found in various of the surveys mentioned in the Notes at the end of the chapter.

15Routines for maximizing the GARCH likelihood are available in a number of modern software packages
such as Eviews. As with any numerical optimization, care must be taken with startup values and convergence
criteria to help insure convergence to a global, as opposed to merely local, maximum.
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In words, the optimal h-step-ahead forecast is proportional to the optimal

1-step-ahead forecast. The optimal 1-step-ahead forecast, moreover, is easily

calculated: all of the determinants of σ2
t+1 are lagged by at least one period,

so that there is no problem of forecasting the right-hand side variables. In

practice, of course, the underlying GARCH parameters α and β are unknown

and so must be estimated, resulting in the feasible forecast σ̂2
t+h,t formed in

the obvious way. In financial applications, volatility forecasts are often of di-

rect interest, and the GARCH model delivers the optimal h-step-ahead point

forecast, σ2
t+h,t. Alternatively, and more generally, we might not be intrin-

sically interested in volatility; rather, we may simply want to use GARCH

volatility forecasts to improve h-step-ahead interval or density forecasts of εt ,

which are crucially dependent on the h-step-ahead prediction error variance,

σ2
t+h,t. Consider, for example, the case of interval forecasting. In the case

of constant volatility, we earlier worked with Gaussian ninety-five percent

interval forecasts of the form

yt+h,t ± 1.96σh,

where σh denotes the unconditional h-step-ahead standard deviation (which

also equals the conditional h-step-ahead standard deviation in the absence of

volatility dynamics). Now, however, in the presence of volatility dynamics

we use

yt+h,t ± 1.96σt+h,t.

The ability of the conditional prediction interval to adapt to changes in

volatility is natural and desirable: when volatility is low, the intervals are

naturally tighter, and conversely. In the presence of volatility dynamics, the

unconditional interval forecast is correct on average but likely incorrect at any

given time, whereas the conditional interval forecast is correct at all times.

The issue arises as to how to detect GARCH effects in observed returns, and
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related, how to assess the adequacy of a fitted GARCH model. A key and

simple device is the correlogram of squared returns, ε2
t . As discussed earlier,

ε2
t is a proxy for the latent conditional variance; if the conditional variance

displays persistence, so too will ε2
t .

16 Once can of course also fit a GARCH

model, and assess significance of the GARCH coefficients in the usual way.

Note that we can write the GARCH process for returns as εt = σtvt,

where vt ∼ iidN(0, 1), σ2
t = ω + αε2

t−1 + βσ2
t−1. Equivalently, the standard-

izedreturn, v, is iid, ε t
σ t

= vt ∼ iidN(0, 1).

This observation suggests a way to evaluate the adequacy of a fitted

GARCH model: standardize returns by the conditional standard deviation

from the fitted GARCH model, σ̂ , and then check for volatility dynam-

ics missed by the fitted model by examining the correlogram of the squared

standardized return, (εt/σ̂t)
2. This is routinely done in practice.

15.5 Exercises, Problems and Complements

1. (Graphical regression diagnostic: time series plot of e2
t or |et|)

Plots of e2
t or |et| reveal patterns (most notably serial correlation) in the

squared or absolute residuals, which correspond to non-constant volatil-

ity, or heteroskedasticity, in the levels of the residuals. As with the

standard residual plot, the squared or absolute residual plot is always a

simple univariate plot, even when there are many right-hand side vari-

ables. Such plots feature prominently, for example, in tracking and

forecasting time-varying volatility.

2. (Removing conditional mean dynamics before modeling volatility dy-

16Note well, however, that the converse is not true. That is, if ε2t displays persistence, it does not necessarily
follow that the conditional variance displays persistence. In particular, neglected serial correlation associated
with conditional mean dynamics may cause serial correlation in εt and hence also in ε2t . Thus, before
proceeding to examine and interpret the correlogram of ε2t as a check for volatility dynamics, it is important
that any conditional mean effects be appropriately modeled, in which case εt should be interpreted as the
disturbance in an appropriate conditional mean model.
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namics)

In the application in the text we noted that NYSE stock returns ap-

peared to have some weak conditional mean dynamics, yet we ignored

them and proceeded directly to model volatility.

a. Instead, first fit autoregressive models using the SIC to guide order

selection, and then fit GARCH models to the residuals. Redo the

entire empirical analysis reported in the text in this way, and discuss

any important differences in the results.

b. Consider instead the simultaneous estimation of all parameters of

AR(p)-GARCH models. That is, estimate regression models where

the regressors are lagged dependent variables and the disturbances

display GARCH. Redo the entire empirical analysis reported in the

text in this way, and discuss any important differences in the results

relative to those in the text and those obtained in part a above.

3. (Variations on the basic ARCH and GARCH models) Using the stock

return data, consider richer models than the pure ARCH and GARCH

models discussed in the text.

a. Estimate, diagnose and discuss a threshold GARCH(1,1) model.

b. Estimate, diagnose and discuss an EGARCH(1,1) model.

c. Estimate, diagnose and discuss a component GARCH(1,1) model.

d. Estimate, diagnose and discuss a GARCH-M model.

4. (Empirical performance of pure ARCH models as approximations to

volatility dynamics)

Here we will fit pure ARCH(p) models to the stock return data, including

values of p larger than p=5 as done in the text, and contrast the results

with those from fitting GARCH(p,q) models.



298 CHAPTER 15. DYNAMIC HETEROSKEDASTICITY

a. When fitting pure ARCH(p) models, what value of p seems adequate?

b. When fitting GARCH(p,q) models, what values of p and q seem ad-

equate?

c. Which approach appears more parsimonious?

5. (Direct modeling of volatility proxies)

In the text we fit an AR(5) directly to a subset of the squared NYSE

stock returns. In this exercise, use the entire NYSE dataset.

a. Construct, display and discuss the fitted volatility series from the

AR(5) model.

b. Construct, display and discuss an alternative fitted volatility series

obtained by exponential smoothing, using a smoothing parameter of

.10, corresponding to a large amount of smoothing, but less than done

in the text.

c. Construct, display and discuss the volatility series obtained by fitting

an appropriate GARCH model.

d. Contrast the results of parts a, b and c above.

e. Why is fitting of a GARCH model preferable in principle to the AR(5)

or exponential smoothing approaches?

6. (Assessing volatility dynamics in observed returns and in standardized

returns)

In the text we sketched the use of correlograms of squared observed re-

turns for the detection of GARCH, and squared standardized returns

for diagnosing the adequacy of a fitted GARCH model. Examination of

Ljung-Box statistics is an important part of a correlogram analysis. It

can be shown that the Ljung-Box statistics may be legitimately used on
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squared observed returns, in which case it will have the usual χ2
m distri-

bution under the null hypothesis of independence. One may also use the

Ljung-Box statistic on the squared standardized returns, but a better

distributional approximation is obtained in that case by using a χ2
m−k

distribution, where k is the number of estimated GARCH parameters,

to account for degrees of freedom used in model fitting.

7. (Allowing for leptokurtic conditional densities)

Thus far we have worked exclusively with conditionally Gaussian GARCH

models, which correspond to εt = σtvt vt ∼ iidN(0, 1), or equivalently,

to normality of the standardized return, εt/σt.

a. The conditional normality assumption may sometimes be violated.

However, GARCH parameters are consistently estimated by Gaussian

maximum likelihood even when the normality assumption is incorrect.

Sketch some intuition for this result.

b. Fit an appropriate conditionally Gaussian GARCH model to the stock

return data. How might you use the histogram of the standardized

returns to assess the validity of the conditional normality assumption?

Do so and discuss your results.

c. Sometimes the conditionally Gaussian GARCH model does indeed

fail to explain all of the leptokurtosis in returns; that is, especially

with very high-frequency data, we sometimes find that the conditional

density is leptokurtic. Fortunately, leptokurtic conditional densities

are easily incorporated into the GARCH model. For example, in the

conditionally Student’s-t GARCH model, the conditional density

is assumed to be Student’s t, with the degrees-of-freedom d treated

as another parameter to be estimated. More precisely, we write

vt ∼ iid
td

std(td)
.
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εt = σtvt

What is the reason for dividing the Student’s t variable, td , by its

standard deviation, std(td) ? How might such a model be estimated?

8. (Multivariate GARCH models)

In the multivariate case, such as when modeling a set of returns rather

than a single return, we need to model not only conditional variances,

but also conditional covariances.

a. Is the GARCH conditional variance specification introduced earlier,

say for the i− th return, σ2
it = ω + αε2

i,t−1 + βσ2
i,t−1, still appealing in

the multivariate case? Why or why not?

b. Consider the following specification for the conditional covariance be-

tween i− th and j-th returns: σij,t = ω + αεi,t−1εj,t−1 + βσij,t−1. Is it

appealing? Why or why not?

c. Consider a fully general multivariate volatility model, in which ev-

ery conditional variance and covariance may depend on lags of every

conditional variance and covariance, as well as lags of every squared

return and cross product of returns. What are the strengths and

weaknesses of such a model? Would it be useful for modeling, say, a

set of five hundred returns? If not, how might you proceed?

15.6 Notes
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Appendix A

Probability and Statistics Review

Here we review a few aspects of probability and statistics that we will rely

upon at various times.

A.1 Populations: Random Variables, Distributions and

Moments

A.1.1 Univariate

Consider an experiment with a set O of possible outcomes. A random

variable Y is simply a mapping from O to the real numbers. For exam-

ple, the experiment might be flipping a coin twice, in which case O =

{(Heads,Heads), (Tails, Tails), (Heads, Tails), (Tails,Heads)}. We might

define a random variable Y to be the number of heads observed in the two

flips, in which case Y could assume three values, y = 0, y = 1 or y = 2.1

Discrete random variables, that is, random variables with discrete

probability distributions, can assume only a countable number of values

yi, i = 1, 2, ..., each with positive probability pi such that
∑

i pi = 1 . The

probability distribution f(y) assigns a probability pi to each such value yi .

In the example at hand, Y is a discrete random variable, and f(y) = 0.25 for

1Note that, in principle, we use capitals for random variables (Y ) and small letters for their realizations
(y). We will often neglect this formalism, however, as the meaning will be clear from context.
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y = 0, f(y) = 0.50 for y = 1, f(y) = 0.25 for y = 2, and f(y) = 0 otherwise.

In contrast, continuous random variables can assume a continuous

range of values, and the probability density function f(y) is a non-

negative continuous function such that the area under f(y) between any

points a and b is the probability that Y assumes a value between a and b.2

In what follows we will simply speak of a “distribution,” f(y). It will

be clear from context whether we are in fact speaking of a discrete random

variable with probability distribution f(y) or a continuous random variable

with probability density f(y).

Moments provide important summaries of various aspects of distribu-

tions. Roughly speaking, moments are simply expectations of powers of ran-

dom variables, and expectations of different powers convey different sorts of

information. You are already familiar with two crucially important moments,

the mean and variance. In what follows we’ll consider the first four moments:

mean, variance, skewness and kurtosis.3

The mean, or expected value, of a discrete random variable is a probability-

weighted average of the values it can assume,4

E(y) =
∑
i

piyi.

Often we use the Greek letter µ to denote the mean, which measures the

location, or central tendency, of y.

The variance of y is its expected squared deviation from its mean,

var(y) = E(y − µ)2.

We use σ2 to denote the variance, which measures the dispersion, or scale,

of y around its mean.

2In addition, the total area under f(y) must be 1.
3In principle, we could of course consider moments beyond the fourth, but in practice only the first four

are typically examined.
4A similar formula holds in the continuous case, E(y) =

∫
y f(y) dy.
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Often we assess dispersion using the square root of the variance, which is

called the standard deviation,

σ = std(y) =
√
E(y − µ)2.

The standard deviation is more easily interpreted than the variance, because

it has the same units of measurement as y. That is, if y is measured in dollars

(say), then so too is std(y). V ar(y), in contrast, would be measured in rather

hard-to-grasp units of “dollars squared”.

The skewness of y is its expected cubed deviation from its mean (scaled

by σ3 for technical reasons),

S =
E(y − µ)3

σ3
.

Skewness measures the amount of asymmetry in a distribution. The larger

the absolute size of the skewness, the more asymmetric is the distribution.

A large positive value indicates a long right tail, and a large negative value

indicates a long left tail. A zero value indicates symmetry around the mean.

The kurtosis of y is the expected fourth power of the deviation of y from

its mean (scaled by σ4, again for technical reasons),

K =
E(y − µ)4

σ4
.

Kurtosis measures the thickness of the tails of a distribution. A kurtosis

above three indicates “fat tails” or leptokurtosis, relative to the normal,

or Gaussian distribution that you studied earlier. Hence a kurtosis above

three indicates that extreme events (“tail events”) are more likely to occur

than would be the case under normality.
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A.1.2 Multivariate

Suppose now that instead of a single random variable Y , we have two random

variables Y and X.5 We can examine the distributions of Y or X in isolation,

which are called marginal distributions. This is effectively what we’ve

already studied. But now there’s more: Y andX may be related and therefore

move together in various ways, characterization of which requires a joint

distribution. In the discrete case the joint distribution f(y, x) gives the

probability associated with each possible pair of y and x values, and in the

continuous case the joint density f(y, x) is such that the area in any region

under it gives the probability of (y, x) falling in that region.

We can examine the moments of y or x in isolation, such as mean, variance,

skewness and kurtosis. But again, now there’s more: to help assess the

dependence between y and x, we often examine a key moment of relevance

in multivariate environments, the covariance. The covariance between y

and x is simply the expected product of the deviations of y and x from their

respective means,

cov(y, x) = E[(y − µy)(x− µx)].

A positive covariance means that y and x are positively related; that is, when

y is above its mean x tends to be above its mean, and when y is below its

mean x tends to be below its mean. Conversely, a negative covariance means

that y and x are inversely related; that is, when y is below its mean x tends

to be above its mean, and vice versa. The covariance can take any value in

the real numbers.

Frequently we convert the covariance to a correlation by standardizing

by the product of σy and σx,

corr(y, x) =
cov(y, x)

σyσx
.

5We could of course consider more than two variables, but for pedagogical reasons we presently limit
ourselves to two.
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The correlation takes values in [-1, 1]. Note that covariance depends on units

of measurement (e.g., dollars, cents, billions of dollars), but correlation does

not. Hence correlation is more immediately interpretable, which is the reason

for its popularity.

Note also that covariance and correlation measure only linear dependence;

in particular, a zero covariance or correlation between y and x does not neces-

sarily imply that y and x are independent. That is, they may be non-linearly

related. If, however, two random variables are jointly normally distributed

with zero covariance, then they are independent.

Our multivariate discussion has focused on the joint distribution f(y, x).

In various chapters we will also make heavy use of the conditional distri-

bution f(y|x), that is, the distribution of the random variable Y conditional

upon X = x. Conditional moments are similarly important. In partic-

ular, the conditional mean and conditional variance play key roles in

econometrics, in which attention often centers on the mean or variance of a

series conditional upon the past.

A.2 Samples: Sample Moments

A.2.1 Univariate

Thus far we’ve reviewed aspects of known distributions of random variables,

in population. Often, however, we have a sample of data drawn from an

unknown population distribution f ,

{yi}Ni=1 ∼ f(y),

and we want to learn from the sample about various aspects of f , such as

its moments. To do so we use various estimators.6 We can obtain estima-
6An estimator is an example of a statistic, or sample statistic, which is simply a function of the sample

observations.
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tors by replacing population expectations with sample averages, because the

arithmetic average is the sample analog of the population expectation. Such

“analog estimators” turn out to have good properties quite generally. The

sample mean is simply the arithmetic average,

ȳ =
1

N

N∑
i=1

yi.

It provides an empirical measure of the location of y.

The sample variance is the average squared deviation from the sample

mean,

σ̂2 =

∑N
i=1(yi − ȳ)2

N
.

It provides an empirical measure of the dispersion of y around its mean.

We commonly use a slightly different version of σ̂2, which corrects for the

one degree of freedom used in the estimation of ȳ, thereby producing an

unbiased estimator of σ2,

s2 =

∑N
i=1(yi − ȳ)2

N − 1
.

Similarly, the sample standard deviation is defined either as

σ̂ =
√
σ̂2 =

√∑N
i=1(yi − ȳ)2

N

or

s =
√
s2 =

√∑N
i=1(yi − ȳ)2

N − 1
.

It provides an empirical measure of dispersion in the same units as y.

The sample skewness is

Ŝ =
1
N

∑N
i=1(yi − ȳ)3

σ̂3
.
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It provides an empirical measure of the amount of asymmetry in the distri-

bution of y.

The sample kurtosis is

K̂ =
1
N

∑N
i=1(yi − ȳ)4

σ̂4
.

It provides an empirical measure of the fatness of the tails of the distribution

of y relative to a normal distribution.

Many of the most famous and important statistical sampling distributions

arise in the context of sample moments, and the normal distribution is the

father of them all. In particular, the celebrated central limit theorem es-

tablishes that under quite general conditions the sample mean ȳ will have a

normal distribution as the sample size gets large. The χ2 distribution arises

from squared normal random variables, the t distribution arises from ratios

of normal and χ2 variables, and the F distribution arises from ratios of

χ2 variables. Because of the fundamental nature of the normal distribution

as established by the central limit theorem, it has been studied intensively,

a great deal is known about it, and a variety of powerful tools have been

developed for use in conjunction with it.

A.2.2 Multivariate

We also have sample versions of moments of multivariate distributions. In

particular, the sample covariance is

ĉov(y, x) =
1

N

N∑
i=1

[(yi − ȳ)(xi − x̄)],

and the sample correlation is

ĉorr(y, x) =
ĉov(y, x)

σ̂yσ̂x
.
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A.3 Finite-Sample and Asymptotic Sampling Distri-

butions of the Sample Mean

Here we refresh your memory on the sampling distribution of the most im-

portant sample moment, the sample mean.

A.3.1 Exact Finite-Sample Results

In your earlier studies you learned about statistical inference, such as how

to form confidence intervals for the population mean based on the sample

mean, how to test hypotheses about the population mean, and so on. Here

we partially refresh your memory.

Consider the benchmark case of Gaussian simple random sampling,

yi ∼ iidN(µ, σ2), i = 1, ..., N,

which corresponds to a special case of what we will later call the “full ideal

conditions” for regression modeling. The sample mean ȳ is the natural es-

timator of the population mean µ. In this case, as you learned earlier, ȳ is

unbiased, consistent, normally distributed with variance σ2/N , and efficient

(minimum variance unbiased, MVUE). We write

ȳ ∼ N

(
µ,
σ2

N

)
,

or equivalently √
N(ȳ − µ) ∼ N(0, σ2).

We estimate σ2 consistently using s2.

We construct exact finite-sample confidence intervals for µ as

µ ∈
[
ȳ ± t1−α2 (N − 1)

s√
N

]
w.p. 1− α,
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where t1−α2 (N − 1) is the 1 − α
2 percentile of a t distribution with N − 1

degrees of freedom. Similarly, we construct exact finite-sample (likelihood

ratio) hypothesis tests of H0 : µ = µ0 against the two-sided alternative

H0 : µ 6= µ0 using
ȳ − µ0

s√
N

∼ t1−α2 (N − 1).

A.3.2 Approximate Asymptotic Results (Under Weaker Assump-

tions)

Much of statistical inference is linked to large-sample considerations, such

as the law of large numbers and the central limit theorem, which you also

studied earlier. Here we again refresh your memory.

Consider again a simple random sample, but without the normality as-

sumption,

yi ∼ iid(µ, σ2), i = 1, ..., N.

Despite our dropping the normality assumption we still have that ȳ is con-

sistent, asymptotically normally distributed with variance σ2/N , and asymp-

totically efficient. We write,

ȳ

a

∼ N

(
µ,
σ2

N

)
.

More precisely, as T →∞,

√
N(ȳ − µ)→d N(0, σ2).

We estimate σ2 consistently using s2.

This result forms the basis for asymptotic inference. We construct asymptotically-
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valid confidence intervals for µ as

µ ∈
[
ȳ ± z1−α2

s√
N

]
w.p. 1− α,

where z1−α2 is the 1 − α
2 percentile of a N(0, 1) distribution. Similarly, we

construct asymptotically-valid hypothesis tests of H0 : µ = µ0 against the

two-sided alternative H0 : µ 6= µ0 using

ȳ − µ0
s√
N

∼ N(0, 1).

A.4 Exercises, Problems and Complements

1. (Interpreting distributions and densities)

The Sharpe Pencil Company has a strict quality control monitoring pro-

gram. As part of that program, it has determined that the distribution

of the amount of graphite in each batch of one hundred pencil leads

produced is continuous and uniform between one and two grams. That

is, f(y) = 1 for y in [1, 2], and zero otherwise, where y is the graphite

content per batch of one hundred leads.

a. Is y a discrete or continuous random variable?

b. Is f(y) a probability distribution or a density?

c. What is the probability that y is between 1 and 2? Between 1 and

1.3? Exactly equal to 1.67?

d. For high-quality pencils, the desired graphite content per batch is 1.8

grams, with low variation across batches. With that in mind, discuss

the nature of the density f(y).

2. (Covariance and correlation)
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Suppose that the annual revenues of world’s two top oil producers have

a covariance of 1,735,492.

a. Based on the covariance, the claim is made that the revenues are

“very strongly positively related.” Evaluate the claim.

b. Suppose instead that, again based on the covariance, the claim is

made that the revenues are “positively related.” Evaluate the claim.

c. Suppose you learn that the revenues have a correlation of 0.93. In

light of that new information, re-evaluate the claims in parts a and b

above.

3. (Simulation)

You will often need to simulate data of various types, such as iidN(µ, σ2)

(Gaussian simple random sampling).

a. Using a random number generator, simulate a sample of size 30 for

y, where y ∼ iidN(0, 1).

b. What is the sample mean? Sample standard deviation? Sample skew-

ness? Sample kurtosis? Discuss.

c. Form an appropriate 95 percent confidence interval for E(y).

d. Perform a t test of the hypothesis that E(y) = 0.

e. Perform a t test of the hypothesis that E(y) = 1.

4. (Sample moments of the CPS wage data)

Use the 1995 CPS wage dataset.

a. Calculate the sample mean wage and test the hypothesis that it equals

$9/hour.

b. Calculate sample skewness.
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c. Calculate and discuss the sample correlation between wage and years

of education.



Appendix B

Construction of the Wage Datasets

We construct our datasets from randomly sampling the much-larger Current

Population Survey (CPS) datasets.1

We extract the data from the March CPS for 1995, 2004 and 2012 respec-

tively, using the National Bureau of Economic Research (NBER) front end

(http://www.nber.org/data/cps.html) and NBER SAS, SPSS, and Stata

data definition file statements (http://www.nber.org/data/cps_progs.html).

We use both personal and family records. Here we focus our discussion on

1995.

There are many CPS observations for which earnings data are completely

missing. We drop those observations, as well as those that are not in the

universe for the eligible CPS earning items ( ERNEL=0), leaving 14363 ob-

servations. From those, we draw a random unweighted subsample with ten

percent selection probability. This results in 1348 observations.

We use seven variables. From the CPS we obtain AGE (age), FEMALE

(1 if female, 0 otherwise), NONWHITE (1 if nonwhite, 0 otherwise), and

UNION (1 if union member, 0 otherwise). We also create EDUC (years

of schooling) based on CPS variable PEEDUCA (educational attainment).

Because the CPS does not ask about years of experience, we create EXPER

1See http://aspe.hhs.gov/hsp/06/catalog-ai-an-na/cps.htm for a brief and clear introduction to
the CPS datasets.
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(potential working experience) as AGE minus EDUC minus 6.

We construct the variable WAGE as follows. WAGE equals PRERNHLY

(earnings per hour) in dollars for those paid hourly. For those not paid hourly

(PRERNHLY=0), we use PRERNWA (gross earnings last week) divided by

PEHRUSL1 (usual working hours per week). That sometimes produces miss-

ing values, which we treat as missing earnings and drop from the sample.

The final dataset contains 1323 observations with AGE, FEMALE, NON-

WHITE, UNION, EDUC, EXPER and WAGE.
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Variable Name (95) Name (04,12) Selection Criteria
Age PEAGE A AGE 18-65

Labor force status A LFSR 1 working (we exclude armed
forces)

Class of worker A CLSWKR 1,2,3,4 (we exclude self-
employed and pro bono)

CPS Personal Data Selection Criteria
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Variable Description
PEAGE (A AGE) Age
A LFSR Labor force status
A CLSWKR Class of worker
PEEDUCA (A HGA) Educational attainment
PERACE (PRDTRACE) RACE
PESEX (A SEX) SEX
PEERNLAB (A UNMEM) UNION
PRERNWA (A GRSWK) Usual earnings per week
PEHRUSL1 (A USLHRS) Usual hours worked weekly
PEHRACTT (A HRS1) Hours worked last week
PRERNHLY (A HRSPAY) Earnings per hour

AGE Equals PEAGE
FEMALE Equals 1 if PESEX=2, 0 otherwise
NONWHITE Equals 0 if PERACE=1, 0 otherwise
UNION Equals 1 if PEERNLAB=1, 0 otherwise
EDUC Refers to the Table
EXPER Equals AGE-EDUC-6
WAGE Equals PRERNHLY or PRERNWA/ PEHRUSL1
NOTE: Variable names in parentheses are for 2004 and 2012.

Variable List
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EDUC PEEDUCA Description
(A HGA)

0 31 Less than first grade
1 32 Frist, second, third or four grade
5 33 Fifth or sixth grade
7 34 Seventh or eighth grade
9 35 Ninth grade
10 36 Tenth grade
11 37 Eleventh grade
12 38 Twelfth grade no diploma
12 39 High school graduate
12 40 Some college but no degree
14 41 Associate degree-occupational/vocational
14 42 Associate degree-academic program
16 43 Bachelor’ degree (B.A., A.B., B.S.)
18 44 Master’ degree (M.A., M.S., M.Eng., M.Ed., M.S.W.,

M.B.A.)
20 45 Professional school degree (M.D., D.D.S., D.V.M.,

L.L.B., J.D.)
20 46 Doctorate degree (Ph.D., Ed.D.)

Definition of EDUC
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Appendix C

Some Popular Books Worth

Encountering

I have cited many of these books elsewhere, typically in various end-of-chapter

complements. Here I list them collectively.

Lewis (2003) [Michael Lewis, Moneyball ]. “Appearances may lie, but the

numbers don’t, so pay attention to the numbers.”

Gladwell (2000) [Malcolm Gladwell, The Tipping Point ]. “Nonlinear phe-

nomena are everywhere.”

Gladwell pieces together an answer to the puzzling question of why certain

things “take off” whereas others languish (products, fashions, epidemics, etc.)

More generally, he provides deep insights into nonlinear environments, in

which small changes in inputs can lead to small changes in outputs under

some conditions, and to huge changes in outputs under other conditions.

Taleb (2007) [Nassim Nicholas Taleb, The Black Swan] “Warnings, and

more warnings, and still more warnings, about non-normality and much else.”

See Chapter 5 EPC 1.

Angrist and Pischke (2009) [Joshua Angrist and Jorn-Steffen Pischke,

Mostly Harmless Econometrics ]. “Natural and quasi-natural experiments

suggesting instruments.”

This is a fun and insightful treatment of instrumental-variables and related
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methods. Just don’t be fooled by the book’s attempted landgrab, as discussed

in a 2015 No Hesitations post.

Silver (2012) [Nate Silver, The Signal and the Noise]. “Pitfalls and oppor-

tunities in predictive modeling.”

http://fxdiebold.blogspot.com/2015/01/mostly-harmless-econometrics.html
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