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Multiple Imputation for Missing Data:
A Cautionary Tale

Abstract:  Two algorithms for producing multiple imputations for missing data are evaluated

with simulated data.  Software using a propensity score classifier with the approximate Bayesian

boostrap produces badly biased estimates of regression coefficients when data on predictor

variables are missing at random or missing completely at random. On the other hand, a

regression-based method employing the data augmentation algorithm produces estimates with

little or no bias.
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Multiple imputation (MI) appears to be one of the most attractive methods for general-

purpose handling of missing data in multivariate analysis.  The basic idea, first proposed by

Rubin (1977) and elaborated in his (1987) book, is quite simple:

1. Impute missing values using an appropriate model that incorporates random variation.

2. Do this M times (usually 3-5 times), producing M “complete” data sets.

3. Perform the desired analysis on each data set using standard complete-data methods.

4. Average the values of the parameter estimates across the M samples to produce a single

point estimate.

5. Calculate the standard errors by (a) averaging the squared standard errors of the M

estimates (b) calculating the variance of the M parameter estimates across samples, and

(c) combining the two quantities using a simple formula (given below).

Additional discussions of multiple imputation in SMR can be found in Little and Rubin (1989)

and Landerman, Land and Pieper (1997).

Multiple imputation has several desirable features:

• Introducing appropriate random error into the imputation process makes it possible to get

approximately unbiased estimates of all parameters.  No deterministic imputation method

can do this in general settings.

• Repeated imputation allows one to get good estimates of the standard errors. Single

imputation methods don’t allow for the additional error introduced by imputation

(without specialized software of very limited generality).

• MI can be used with any kind of data and any kind of analysis without specialized

software.
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Of course, certain requirements must be met for MI to have these desirable properties.  First, the

data must be missing at random (MAR), meaning that the probability of missing data on a

particular variable Y can depend on other observed variables, but not on Y itself (controlling for

the other observed variables).  Second, the model used to generate the imputed values must be

“correct” in some sense.  Third, the model used for the analysis must match up, in some sense,

with the model used in the imputation.  All these conditions have been rigorously described by

Rubin (1987, 1996).

The problem is that it’s easy to violate these conditions in practice.  There are often

strong reasons to suspect that the data are not MAR.  Unfortunately, not much can be done about

this.  While it’s possible to formulate and estimate models for data that are not MAR, such

models are complex, untestable, and require specialized software.  Hence, any general-purpose

method will necessarily invoke the MAR assumption.

Even when the MAR condition is satisfied, producing random imputations that yield

unbiased estimates of the desired parameters is not always easy or straightforward.  In this paper

I examine two approaches to multiple imputation that have been incorporated into widely

available software.  We will see that one of them (embodied in software currently retailing for

$895) does a terrible job at producing imputations for missing data on predictor variables in

multiple regression analysis.  The other (available free on the Web) does an excellent job.

To compare these two algorithms, I generated 10,000 observations on three variables X, Y,

and Z.  Because the primary concern is with bias, the large sample size is designed to minimize

sampling variations.  X and Z were drawn from a bivariate standard normal distribution with a

correlation of .50.  Thus, in the observed data, X and Z each have means of about 0, standard

deviations of about 1.0, and a correlation of about .5.  Y was then generated from the equation
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Y  =  X + Z + U

where U was drawn from a standard normal distribution, independent of X and Z.

I then caused about half of the Z values to be “missing” according to four different

mechanisms:

1. Missing completely at random:  Z missing with probability .5, independent of Y and X.

2. Missing at random, dependent on X:  Z missing if X < 0.

3. Missing at random, dependent on Y:  Z missing if Y < 0.

4. Nonignorable:  Z missing if Z < 0.

For each missing data mechanism, new draws were made from the underlying distribution of X,

Z and Y.  Column 1 of Table 1 shows results from OLS regression using the original data with

no missing cases on Z.

----------------------
Table 1 about here
----------------------

Column 2 of Table 1 shows the results of an OLS regression using listwise deletion

(complete case analysis) on the data set with missing values.   Listwise deletion shows little or no

bias for all missing data mechanisms except where missingness on Z is dependent on Y.  In that

case, both regression coefficients are about 30% lower than the true values. Not surprisingly, the

standard errors are always somewhat larger than those based on the full data set.  Remarkably,

listwise deletion does well even when missingness on Z depends on Z itself (the nonignorable

case).  More generally, it can be shown that listwise deletion produces unbiased regression

estimates whenever the missing data mechanism depends only on the predictor variables, not on

the response variable (Little and Rubin, forthcoming)

 Next we’ll use multiple imputation as implemented by the Windows program SOLAS

(Statistical Solutions, http://www.statsolusa.com).  SOLAS (version 1.1) incorporates a number
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of imputation methods, the most sophisticated of which is multiple imputation using what is

described in promotional material as “the latest industry-accepted techniques.”  In fact, SOLAS

uses the algorithm proposed by Lavori, Dawson and Shera (1995).  For our example, the

algorithm amounts to this:

1. Do a logistic regression in which the dependent variable is whether or not Z is missing.

Independent variables can be chosen by the analyst; I chose both Y and X, although the

results are not much different if only one of the two is chosen.

2. Use the estimated logistic model to calculate a predicted probability of being missing.

This is called the “propensity score,” following the work of Rosenbaum and Rubin

(1983).

3. Sort the observations by propensity scores and group them into five groups (quintiles).

4. Within each quintile, there are r cases with Z observed and m cases with Z missing.

From among the r fully observed cases, draw a simple random sample of r cases with

replacement.  For each missing case, randomly draw one value (with replacement) from

the random sample of r cases and use the observed value of Z as the imputed value.  This

method is called the “approximate Bayesian bootstrap” (Rubin and Schenker 1986)

Steps 1-4 produce a single imputed data set.  Step 4 is repeated M times to produce M complete

data sets.  For this example, I chose M = 5.

I then performed OLS multiple regressions of Y on X and Z in each of the five imputed

data sets.  The coefficients shown in column 3 of Table 1 are the means of the five estimates.

The standard error is obtained from Rubin’s (1987) formula.  Let bk be the estimated regression

coefficient in sample k of the M samples, and let sk be its estimated standard error.  The mean of

the bk’s is b ;  its estimated standard error is given by
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In words, this is the square root of the average of the sampling variances plus the variance of

coefficient estimates (multiplied by a correction factor 1 + 1/M).

Results for SOLAS are shown in column 3 of Table 1.  All coefficient estimates are

clearly biased and, in most cases, the biases are quite severe.  The worst case is when

missingness on Z depends on X, where both coefficients are about 50% off, either too high or too

low.

Next we turn to a quite different method for generating multiple imputations, described

by Schafer (1997) and embodied in NORM, his freeware Windows program

(http://www.stat.psu.edu/~jls/). To understand the method consider the following simplified

algorithm for random regression imputation:

1. Regress Z on X and Y using all cases with data present on Z.  Based on this

regression, let Ẑ represent the predicted values for all cases including those with data

missing, and let σ̂  be the root mean squared error.

2. For cases with data missing on Z, compute UZZ σ̂ˆ* += where U represents a random

draw from a standard normal distribution.  For cases with no missing data, Z* = Z.

3. Regress Y on X and Z* for all cases.   

Steps 2 and 3 may then be repeated M times.  While this algorithm does a pretty good job, it is

not “proper” in Rubin’s (1987) sense because it does not adjust for the fact that σ̂ and the

coefficients used to produce Ẑ are only estimates, not the true values. This is also true of the

multiple imputation methods available in the recently released missing data module for SPSS or

the predicting mean matching method described by Landerman et al. (1997).  NORM goes the



9

extra mile by using a Bayesian method known as “data augmentation” to iterate between random

imputations under a specified set of parameter values and random draws from the posterior

distribution of the parameters (given the observed and imputed data). The algorithm is based on

the assumptions that the data come from a multivariate normal distribution and are missing at

random.  A similar algorithm that uses a different method for generating random draws of the

parameters is described by King, Honaker, Joseph and Sheve (1999) and incorporated into their

freeware program AMELIA (http://gking.harvard.edu/stats.shtml).

Rather than using NORM, I have coded Schafer’s algorithms into two macros for the

SAS system, MISS and COMBINE (http://www.ssc.upenn.edu/~allison).  The MISS macro was

used to produce five complete data sets.  After performing regression runs in each data set, the

COMBINE macro produced the final estimates shown in column 5 of Table 1.  All the estimates

are close to the true values except, as expected, for the nonignorable case in which both

coefficient show some upward bias.

Somewhat surprisingly, the estimated standard errors for multiple imputation in column 5

are only slightly smaller than those produced by listwise deletion in column 2— which discarded

half the cases.  To further investigate the relative performance of listwise deletion and multiple

imputation (using the data augmentation algorithm), I simulated 500 random samples, each of

size 500, from the model described earlier.  In each sample, I made values of Z missing by

mechanism 2— missing at random whenever X < 0, a condition under which both listwise

deletion and multiple imputation are at least approximately unbiased.  Both methods were

essentially unbiased across the repeated samples.  However, the sampling variance of the

multiple imputation estimates was considerably smaller:  39% less for the coefficient of X and

28% less for the coefficient of Z.  Within-sample estimation of the standard errors for multiple
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imputation were also good.  The standard deviations across the 500 samples for the two

coefficients were .0853 for X and .0600 for Z.  By comparison, the average of the within-sample

standard error estimates were .0835 for X and .0664 for Z.  Nominal 95 percent confidence

intervals for the multiple imputation estimates were computed by taking the point estimate plus

or minus 1.96 times the estimated standard error.  For the X coefficient, 96.4 percent of the

confidence intervals included the true value.  For Z, the coverage rate was 96.6 percent

DISCUSSION

We have seen that multiple imputation using the data augmentation algorithm produces

reasonably good results, but those produced by SOLAS are severely biased, even when the data

are missing completely at random. Why?  There’s nothing intrinsically wrong with the

approximate Bayesian bootstrap algorithm that SOLAS uses to generate the missing values.  The

problem stems from the fact that when forming groups of “similar” cases, SOLAS only uses

information from covariates that are associated with whether or not the data are missing.  It does

not use information from the associations among the variables themselves.  For example, under

the MCAR condition, missingness on Z is not related to either X or Y.  Consequently, the

constructed quintiles of “similar” cases are essentially random groupings of the observations.

One might as well have imputed Z with random draws from all the observed values of Z.  By

contrast, the data augmentation method does use information on both X and Y to generate the

imputed values.  In short, SOLAS violates Rubin’s principle that one must use a “correct” model

in producing the imputed values.

The failure of SOLAS under the missing at random conditions points out another crucial

requirement for correct imputation.  Under condition 2, when missingness on Z is  highly

associated with X, the imputed values of Z generated by SOLAS do make use of the correlation
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between X and Z, but Y contributes nothing to the imputations.  To get unbiased estimates in a

regression analysis, it is essential to use the dependent variable to impute values for missing data

on the predictor variables (Schafer 1997).  Failure to include the dependent variable implies that

the imputed values for the predictors will not be associated with the dependent variable, net of

other variables in the imputation model.  Consequently, regression coefficients for predictors

with large fractions of imputed data will show substantial biases toward zero (Landerman et al.

1997).  While it might seem that using the dependent variable to impute predictors would

produce inflated coefficient estimates, this is avoided by the addition of the random component

to the imputed value.

Are there any conditions under which SOLAS lives up to its claims?  Its imputation

algorithm, as originally as originally described by Lavori et al (1995), was designed for a

randomized experiment with repeated measures on the response variable.  However, some

subjects dropped out of the study before all response measurements could be made.  The goal

was to impute the missing responses based on previous response measurements, as well as

baseline covariates.  While I have not done any simulations for this kind of design, the results

reported by Lavori et al. indicate that their method performs well in this situation.

What is clear is that the method is not helpful in imputing predictor variables.  Indeed,

listwise deletion is clearly better in all the conditions studied here.  Executives at Statistical

Solutions Limited, the originator of SOLAS, have been made aware of this problem and have

stated that a new version with improved algorithms is currently in preparation (personal

communication).  Nevertheless, the current version (1.1) of the software is still heavily marketed,

with no warning about the dangers of imputing missing predictors.
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Table 1.  Estimates for Coefficients in Regression of Y on X and Z

Missing Data
Mechanism

1
OLS on

original data

2
Listwise
Deletion

3
MI with
SOLAS

5
MI with data
augmentation

X .979  (.011) .969  (.016) 1.141  (.016) .976  (.012)MCAR

Z 1.014  (.012) 1.029  (.017) .667  (.020) 1.028  (.016)

X 1.012  (.012) .986  (.025) 1.470  (.013) 1.005  (.025)MAR

(dep. on X) Z 1.007  (.012) 1.011  (.017) .448  (.015) .997  (.016)

X .993  (.012) .695  (.015) 1.350  (.013) .985  (.021)MAR

(dep. on Y) Z 1.001  (.012) .708 (.015) .746  (.023) .997  (.013)

X 1.003  (.012) .995  (.016) 1.250  (.013) 1.154  (.015)Non-Ignorable

(dep. on Z) Z 1.002  (.012) 1.007  (.024) 1.215  (.027) 1.245  (.020)


